
TApplication
Hierarchy Properties Methods Events See also
TApplication is the type used for a Borland C++Builder application.
Header
vcl/forms.hpp
Description
TApplication is a class that encapsulates a windows application. The methods and properties
introduced in TApplication reflect the fundamentals established in the Windows operating system
to create, run, sustain, and destroy an application. TApplication thereby simplifies the interface
between the user and the Windows environment when writing a Windows application. For this
purpose TApplication encapsulates behavior for:
• Windows message processing.
• Context-sensitive online help.
• Menu accelerator and key processing.
• Exception handling.
• Managing the fundamental parts defined by the Windows operating system for an application,

such as MainWindow, WindowClass and so on.
Each Borland C++Builder application automatically declares an Application variable of type
TApplication as the instance of the application. Therefore TApplication does not need to appear
on the Component palette, nor is it available in the form designer to visually manipulate; so it has
no published properties. Nevertheless, some of its public properties can be set or modified at
design-time on the Application page of the Options|Project dialog box.

TApplication properties
TApplication Alphabetically Legend

In TApplication
Active

DialogHandle
ExeName

Handle
HelpFile
Hint
HintColor
HintHidePause
HintPause
HintShortPause
Icon

MainForm
ShowHint
ShowMainForm

Terminated
Title
UpdateFormatSettings

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TApplication properties
TApplication By object Legend

Active
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DesignInfo
DialogHandle

ExeName
Handle
HelpFile
HintColor
HintHidePause
HintPause
HintShortPause

Hint
Icon

MainForm
Name

Owner
ShowHint
ShowMainForm
Tag

Terminated
Title
UpdateFormatSettings

TApplication::Active
TApplication See also
Active specifies whether the application is active and has focus.
__property bool Active;
Description
Active is read-only. Active is true while the application is active and false if it is not. Active is set
to true in the constructor.
An application is active if the form or application has focus. An application becomes inactive
when a window from a different application is about to become activated. When the application
closes, Active is set to false in the destructor.

TApplication::DialogHandle
TApplication See also
DialogHandle provides a mechanism for using non-Borland C++Builder dialog boxes in a
Borland C++Builder application.
__property HWND DialogHandle;
Description
Use DialogHandle when creating a modeless dialog box that was created using the
CreateDialog API function, and that needs to see messages from the application's message loop
in order to operate.
To do this, assign the handle of the modeless dialog box to DialogHandle when it receives an
activation message (WM_NCACTIVATE) and set DialogHandle to zero when the dialog box
receives a deactivation message. The following code demonstrates:
Example
Here is part of the window procedure for Borland C++Builder's encapsulation of the Windows
search-and-replace common dialog box:
long SearchAndReplaceWndProc(HWnd Wnd, Word WParam, Word Msg, Longint
LParam)

{
try
{

switch (Msg)
{
case WM_DESTROY:

Application->DialogHandle = 0; // clear handle on destroy
case WM_NCACTIVATE:
{

if (WParam != NULL) // if it's activating...
Application->DialogHandle = Wnd; // ...assign the handle...
else

Application->DialogHandle = 0; // ...otherwise clear it
...

}
}
}
catch(...)
{

Application->HandleException();
}
return CallDefDialogProc;

}

TApplication::ExeName
TApplication See also
ExeName contains the file name of the executable application including path information.
__property System::AnsiString ExeName;
Description
ExeName is a read-only property. Use ExeName to obtain the name of the executable file for the
application.
The name of the application is the root name of the project file with an .EXE extension. By
default this name is PROJECT1.EXE. To change the ExeName, save the project by the desired
new root name and rebuild the application. ExeName will reflect the change to the project
filename.

TApplication::Handle
TApplication See also Example
Handle provides access to the window handle of the main form (window) of the application.
__property HWND Handle;
Description
Use Handle when calling a Windows API functions that require a parent window handle. For
example, a DLL that displays its own top-level pop-up windows will need a parent window to
display its windows in the application. Using the Application.Handle makes such windows part of
the application, so that they will be minimized, restored, enabled and disabled with the
application.
Note
When writing a DLL that uses VCL forms, assign the window handle of the host EXE’s main
window to the DLL’s Application.Handle property. This makes the DLL’s form part of the host
application. Never assign to Application.Handle in an EXE.

TApplication::HelpFile
TApplication See also
HelpFile specifies the name of the file the application uses to display Help.
__property System::AnsiString HelpFile;
Description
Use HelpFile for applications that have a help file to use with the Windows Help system.
Windows displays the file specified by the HelpFile property. Either assign a filename to the
HelpFile property at runtime, or specify a Help File on the Application page of the
Project|Options dialog box at design-time.
By default, HelpFile is a null string, and the application's Help method ignores attempts to
display Help. If HelpFile contains anything, the HelpContext method passes it to the Windows
Help system as the name of the file to use for Help.

TApplication::Hint
TApplication See also Example
Hint specifies the text string that appears in the Help Hint box.
__property System::AnsiString Hint;
Description
TApplication’s Hint property is assigned the Hint value of the control or menu item that the
mouse is currently moving over. It can also be assigned a string value that informs the user of
some action, error, or other type of information. Therefore, use Hint either to:
• Transfer hints from controls to another area of display, such as a status bar, using the OnHint

event handler. This reads the Hint property.
• Indicate the status of the application while it is processing some action. This sets the Hint

property.
Help Hints appear when the OnHint event occurs. Therefore, if TApplication’s Hint property is
assigned to the status bar’s caption, for example, the caption of the status bar control displays
the current string value of the Hint property during an OnHint event.
There are two parts to the Hint string: short and long. Short hints are used by pop-up tool tips.
Long hints are used by the status bar, separated by the | character.
Note
When setting Hint to a message informing the user of an event occurring in the application,
remember that, by default, the Hint string is reset to a control’s Hint when the mouse cursor
moves over a control.

TApplication::HintColor
TApplication See also
HintColor determines the color of the hint boxes for the Help Hints for the application.
__property Graphics::TColor HintColor;
Description
Use HintColor to specify the hint box color. A default color value is set for the HintColor property
in the constructor when the application is created. To change the HintColor assign it a new
TColor value at runtime.

TApplication::HintHidePause
TApplication See also
HintHidePause specifies the time interval to wait before hiding the Help Hint if the mouse has not
moved from the control or menu item.
__property int HintHidePause;
Description
Use HintHidePause to specify a wait time in milliseconds that is different from the default value
that is set in the constructor. The Help Hint for the control or menu item is specified in the Hint
property.
Note
The default is a predefined const value that is several times longer than, HintPause.

TApplication::HintPause
TApplication See also
HintPause specifies the time interval that passes before the control's Help Hint appears when
the user places the mouse pointer on a control or menu item.
__property int HintPause;
Description
Use HintPause to change the default pause time set in the constructor. When assigning a value
to HintPause specify the interval in milliseconds. The Help Hint displayed at the end of the pause
is specified in the Hint property.

TApplication::HintShortPause
TApplication See also
HintShortPause specifies the pause to wait before bringing up a hint if a hint has already been
shown.
__property int HintShortPause;
Description
Use HintShortPause to reduce the flicker when moving the mouse quickly over a set of buttons
that all have help hints on. Specify a value in milliseconds that is different from the default set in
the constructor.

TApplication::Icon
TApplication See also
Icon determines which icon represents the application when it is minimized.
__property Graphics::TIcon* Icon;
Description
Use Icon to assign a specific icon to represent the application. Set the Icon property by either:
• Assigning it a TIcon at runtime.
• Loading an icon on the Application pages of the Project|Options dialog box at design-time.
Icon represents the application when it is minimized and appears either on the Windows desktop
or on the task bar in Windows 95.

TApplication::MainForm
TApplication See also
MainForm identifies which form in the application is the main window that is always created first.
__property TForm* MainForm;
Description
Use MainForm to specify a form, different from the default, as the main window of the
application. When a new project is created, Form1 automatically becomes the value of the
MainForm property. To assign a different form to the MainForm property, use the Forms page of
the Project|Options dialog box at design-time. MainForm cannot be modified at runtime because
it is read-only.
The main form is the first form created in the main body of the application. When the main form
closes, the application terminates.

TApplication::ShowHint
TApplication See also
Showing determines whether Help Hints are enabled or disabled for the entire application.
__property bool ShowHint;
Description
Use ShowHints to choose when to display Help Hints. If ShowHint is true, Help Hints are
enabled; if ShowHint is false, Help Hints are disabled. The default value is true. Help Hints are
specified in the Hint property.
Setting ShowHint for the application to false disables all Help Hints, regardless of the value of
the ShowHint properties for individual controls.

TApplication::ShowMainForm
TApplication See also
ShowMainWindow determines whether the application shows its main form on startup.
__property bool ShowMainForm;
Description
Use ShowMainForm to control whether and when the application shows its main form.
The default value of true is set in the constructor. By default the main window shows. The
MainForm property specifies which form is the main form.
To hide the main form at startup, set ShowMainForm to false in the main project file before the
call to Application.Run. This is mostly useful for implementing OLE automation servers, to hide
the server’s main form when started for automation purposes.

TApplication::Terminated
TApplication See also
Terminated reports whether the application has received the Windows WM_QUIT message,
which then terminates the application.
__property bool Terminated;
Description
Terminated is read-only. It is used when calling the ProcessMessages method so that the
application doesn't attempt to process Windows messages after the application has quit.
ProcessMessage sets Terminated to true when it receives a WM_QUIT message.
A Borland C++Builder application usually receives a WM_QUIT message because the main
window of the application has closed, or because the Terminate method has been called,
thereby requiring windows to quit the application.
For applications using calculation-intensive loops, call Application.ProcessMessages
periodically, and also check Application.Terminated to determine whether or not to abort the
calculation so that the application can terminate.

TApplication::Title
TApplication See also
Title contains the text that appears below the icon representing the application when it is
minimized.
__property System::AnsiString Title;
Description
Use the Title property to modify the name of this text string appearing below the icon of the
application. The default value is taken from the DLL/EXE filename at runtime.
Set the Title at runtime, or enter the value of the Title property on the Application page of the
Project |Options dialog box.

TApplication::UpdateFormatSettings
TApplication
UpdateFormatSettings specifies whether the format settings are updated automatically when the
user alters the system configuration.
__property bool UpdateFormatSettings;
Description
Use UpdateFormatSettings to control automatic updating of format settings.
The default of true is set in the constructor. UpdateFormatSettings is checked when the
application receives a WM_WININICHANGE message.
It is recommended to use the default format settings, which are initialized to the Windows local
settings. However, to prevent the settings from changing during the execution of the application
when altering the format settings in a Borland C++Builder application, UpdateFormatSettings
can be set to false.

TApplication events
TApplication Alphabetically

In TApplication
OnActivate
OnDeactivate
OnException
OnHelp
OnHint
OnIdle
OnMessage
OnMinimize
OnRestore
OnShowHint

TApplication events
TApplication By object

OnActivate
OnDeactivate
OnException
OnHelp
OnHint
OnIdle
OnMessage
OnMinimize
OnRestore
OnShowHint

TApplication::OnActivate
TApplication See also
OnActivate occurs when an application becomes active.
__property Classes::TNotifyEvent OnActivate;
Description
Use OnActivate to write an event handler to perform special processing when the application
becomes activated.
An application becomes active when it is initially run or when focus moves from another
Windows application back to any window of the application.

TApplication::OnDeactivate
TApplication See also
OnDeactivate occurs when an application becomes inactive.
__property Classes::TNotifyEvent OnDeactivate;
Description
Use the OnDeactive event to specify any special processing that should occur immediately
before the application becomes deactivated. The OnDeactivate event occurs when the user
switches from the application to another Windows application.

TApplication::OnException
TApplication See also
OnException occurs when an unhandled exception occurs in the application.
__property TExceptionEvent OnException;
Description
Use OnException to change the default behavior that occurs during an unhandled exception in
the application. The OnException event handler is called automatically in the HandleException
method.
OnException only handles exceptions that occur during message processing. Exceptions that
occur before or after the Application.Run do not go through Application.HandleException or
OnException.
If an exception passes through the try blocks in the application code, the application
automatically calls the HandleException method, which displays a dialog box indicating an error
occurred. Unless the exception object is EAbort, HandleException calls the OnException
handler, if one exists, otherwise it calls ShowException to display a message dialog box
indicating an error occurred.
The TExceptionEvent type is the type of the OnException event. It points to a method that
handles exceptions in the application. The Sender parameter is the object that raised the
exception, and E is the exception message.

TApplication::OnHelp
TApplication See also
OnHelp occurs when the application receives a request for help.
__property Classes::THelpEvent OnHelp;
Description
Use OnHelp to write an event handler to perform special processing when help is requested.
The HelpContext and the HelpJump methods automatically trigger the OnHelp event.
Set CallHelp to true to have the VCL call WinHelp after the event. Set CallHelp to false to
prevent the VCL from calling WinHelp.
All application help methods go through OnHelp. Only if OnHelp’s CallHelp parameter returns
true, or if OnHelp is not assigned, is WinHelp called.
To find the possible values of the Command and Data parameters, search for WinHelp in the
Win32 Developer's Reference Help (Win32.HLP) file, which explains the WinHelp API
(application programming interface). The possible values for the Data parameter depend upon
the value of the Command parameter.
The return value is true if the function succeeds, false if the function fails.

TApplication::OnHint
TApplication See also
OnHint occurs when the mouse pointer moves over a control or menu item that can display a
Help Hint.
__property Classes::TNotifyEvent OnHint;
Description
Use OnHint to write an event handler to perform special processing when the OnHint event
occurs. OnHint occurs when the user positions the mouse pointer over a control with a Hint
property value other than an empty string ('').
A common use of the OnHint event is to display the value of a control or menu item's Hint
property as the caption of a panel control (TStatusBar), thereby using the panel as a status bar.
The Hint property can specify a Help Hint and a usually longer hint that appears elsewhere when
the OnHint event occurs.
Example
This example uses a status bar component, a menu, and an edit box on a form. Include a value
for the Hint property for each menu item in the menu. Also, specify a value for the Hint property
of the edit box.
To write the OnHint event handler, create a method of the TForm1 object and give it an
appropriate name, such as DisplayHint. Write the method in the implementation part of the unit,
declare the method in the TForm1 type declaration in the public section.
In the DisplayHint method assign the Hint property of the application to the Caption property of
the panel component.
Assign this new method as the method used by the OnHint event. In the example this is done in
the form's OnCreate event handler.
This code shows the complete type declaration, the new method, and the OnCreate event
handler. When the user runs the application and positions the cursor over the edit box or a menu
item on the menu, the specified hint appears as the caption of the panel at the bottom of the
form:
class TForm1 : public TForm
{
TButton* Button1;
TStatusBar* Statusbar1;
TEdit* Edit1;

private:
// private declarations

public:
__fastcall TForm1(TComponent* Owner);
void __fastcall DisplayHint(TObject* Sender);

}
__fastcall TForm1::TForm1(TObject* Sender): TForm(Owner)
{
Button1 = new TButton(this);
Statusbar1 = new TStatusBar(this);
Edit1 = new TEdit(this);
Application->OnHint = DisplayHint();

}
void __fastcall TForm1::DisplayHint(TObject* Sender)
{
Statusbar1.Caption = Application.Hint();

}

TApplication::OnIdle
TApplication
OnIdle occurs when an application becomes idle.
__property TIdleEvent OnIdle;
Description
Use OnIdle to write an event handler to perform special processing when an application is idle.
An application is idle when it is processing code, for example, or when it is waiting for input from
the user.
OnIdle is called only once, as the application transitions into an idle state. It is not called
continuously unless Done is set to false. If Done is false, WaitMessage is not called. Applications
that set Done to false consume an inordinate amount of CPU time that affects overall system
performance.
The TIdleEvent type is the type of the OnIdle event. It points to a method that runs when the
application is idle. TIdleEvent has a Boolean parameter Done that is true by default. When Done
is true, the Windows API WaitMessage function is called when OnIdle returns. WaitMessage
yields control to other applications until a new message appears in the message queue of the
application.

TApplication::OnMessage
TApplication See also
OnMessage processes Windows messages that an application receives.
__property TMessageEvent OnMessage;
Description
Use OnMessage to trap any or all Windows messages posted to all windows in the application.
The OnMessage event occurs when an application receives a Windows message. Creating an
OnMessage event handler in an application allows other handlers to respond to messages other
than those declared in the events for TApplication. If the application doesn't have a specific
handler for an incoming message, the message is dispatched to the window for which it was
intended, and Windows handles the message.
The TMessageEvent type is the type of the OnMessage event. It points to a method that handles
the processing of incoming Windows messages. The Msg parameter identifies the Windows
message, and the Handled parameter determines whether the message is handled or not. Set
Handled to true, if the message has been completely handled, to prevent normal processing of
the message.
Note
OnMessage only receives messages that are posted to the message queue, not those sent
directly with the Windows API SendMessage function.
Caution
Thousands of messages per second flow though this event. Be careful when coding the handler
since it can affect the performance of the entire application.

TApplication::OnMinimize
TApplication See also
OnMinimize occurs when an application is minimized.
__property Classes::TNotifyEvent OnMinimize;
Description
Use OnMinimize to write an event handler to perform special processing when the application is
minimized. The application is minimized, either because the user minimizes the main window, or
because of a call to the Minimize method. The Icon property determines the icon that represents
the minimized application.

TApplication::OnRestore
TApplication See also
OnRestore occurs when the previously minimized application is restored to its normal size.
__property Classes::TNotifyEvent OnRestore;
Description
Use OnRestore to write an event handler to perform special processing when the application is
restored from a minimized state in which it appears as an icon. An application is restored either
because the user restores the application, or because the application calls the Restore method.
Note
Don't confuse restoring an application with restoring a form or window to its original size. To
minimize, maximize, and restore a window or form, change the value of the WindowState
property.

TApplication::OnShowHint
TApplication See also
OnShowHint occurs when the application is about to display a hint window for a Help Hint for a
particular control.
__property TShowHintEvent OnShowHint;
Description
Use OnShowHint to write an event handler that changes the appearance and behavior of Help
Hints.
The TShowHintEvent is the type of the OnShowHint event. It points to a method that displays a
Help Hint for a control. The HintStr parameter sets the text of the Help Hint. To obtain the text of
a hint for a particular control, call the GetLongHint or GetShortHint function, assigning the result
to HintStr. To change the text, change the contents of this string.
Use the CanShow variable to permit or prevent the Help Hint from displaying. If CanShow is
true, the Help Hint displays. If it is false, the Help Hint does not appear.
The HintInfo parameter is a record that contains information about the appearance and behavior
of the Help window.
The HintColor field of the record contains the name of the control for which hint processing is
occurring.
The HintPos field determines the default position in screen coordinates of the top-left corner of
the hint window. Change where the window appears by changing this value.
The HintMaxWidth field determines the maximum width of the hint window before word wrapping
begins. By default, the value is the width of the screen (Screen.Width).
The CursorRect field determines the rectangle the user's mouse pointer must be in for the hint
window to appear. The default value for CursorRect is the client rectangle of the control. An
application can change this value so that a single control can divided into several hint regions.
When the user moves the mouse pointer moves outside the rectangle, the hint window
disappears.
The CursorPos field contains the location of the mouse pointer within the control.

TApplication methods
TApplication Alphabetically

In TApplication
~TApplication
BringToFront
CancelHint
ControlDestroyed
CreateForm
CreateHandle
HandleException
HandleMessage
HelpCommand
HelpContext
HelpJump
HideHint
HintMouseMessage
HookMainWindow
Initialize
MessageBox
Minimize
NormalizeTopMosts
ProcessMessages
Restore
RestoreTopMosts
Run
ShowException
TApplication
Terminate
UnhookMainWindow

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance

InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TApplication methods
TApplication By object

~TApplication
Assign
BringToFront
CancelHint
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ControlDestroyed
CreateForm
CreateHandle
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HandleException
HandleMessage
HasParent
HelpCommand
HelpContext
HelpJump
HideHint
HintMouseMessage
HookMainWindow
InheritsFrom
Initialize
InitInstance
InsertComponent
InstanceSize
MessageBox
MethodAddress
MethodName
Minimize
NewInstance
NormalizeTopMosts
ProcessMessages
RemoveComponent
Restore
RestoreTopMosts
Run
ShowException

TApplication
Terminate
UnhookMainWindow

TApplication::~TApplication
TApplication See also
~TApplication frees the memory associated with the TApplication object. Do not call ~
TApplication directly. Instead, use the delete keyword on the object, which causes ~
TApplication to be invoked automatically.
__fastcall virtual ~TApplication(void);
Description
~TApplication signals that the application has been deactivated before calling the constructor of
its parent object. It then frees memory for hooked windows, the object instance, objects and lists
that were created at application startup or that accumulated during execution
Since the Application owns all forms, it will destroy all forms in its destructor.

TApplication::BringToFront
TApplication See also
BringToFront sets the last active window as the topmost window on the desktop above all other
applications.
void __fastcall BringToFront(void);
Description
Use BringToFront to find the window owned by the MainForm that was last active and bring it to
the foreground. BringToFront also tests to see if the window is visible and enabled before
making it the topmost window.

TApplication::CancelHint
TApplication See also
CancelHint cancels the displaying of a hint for a control.
void __fastcall CancelHint(void);
Description
Applications rarely, if ever, call CancelHint directly. CancelHint is used internally in the VCL to
cancel the displaying of hints at appropriate times, such as when a window is not valid or when
the application closes. CancelHint calls a series of routines that perform a cleanup on the display
and timing issues of the hint window for a control.

TApplication::ControlDestroyed
TApplication See also
ControlDestroyed notifies the application that a control has been destroyed.
void __fastcall ControlDestroyed(Controls::TControl* Control);
Description
ControlDestroyed notifies the application that the control passed as the Control parameter has
been destroyed, so that the application pointers, such as MainForm and ActiveForm, can be
updated to point to a valid control object or to NULL.
ControlDestroyed is called by TControl::~TControl. Do not call it directly.

TApplication::CreateForm
TApplication See also
CreateForm creates a new form.
void __fastcall CreateForm(System::TMetaClass* InstanceClass, void *
Reference);

Description
Applications always call CreateForm. However, Borland C++Builder programmers rarely write
code that necessitates calling CreateForm directly.
A Borland C++Builder project typically contains one or more calls to CreateForm in the project's
main statement part and handles form creation automatically when using the form designer. An
application might call CreateForm to dynamically create a form at runtime.
CreateForm creates a new form of the type specified by the FormClass parameter and assigns it
to the variable given by the Reference parameter. The owner of the new form is the Application
object. By default the form created by the first call to CreateForm in a project becomes the
project's main form.

TApplication::CreateHandle
TApplication See also
CreateHandle generates a handle for the Handle property of the application if it does not already
have one.
void __fastcall CreateHandle(void);
Description
Do not call CreateHandle directly. In EXEs TApplication::TApplication calls CreateHandle. In
DLLs it does not.
CreateHandle is mainly an encapsulation of much of the Windows API function WinMain. For
example, CreateHandle registers the Window Class, creates the application window and
determines how the application window is shown.

TApplication::HandleException
TApplication See also
HandleException provides default handling of exceptions for the application.
void __fastcall HandleException(System::TObject* Sender);
Description
It should not be necessary to call HandleException directly.
To assign other exception handling code for the application, use the OnException event handler.
If an exception passes through all the try blocks in the application code, the application
automatically calls the HandleException method, which displays a dialog box indicating an error
occurred. Unless the exception object is EAbort, HandleException calls the OnException
handler, if one exists, otherwise it calls ShowException to display a message dialog box
indicating an error occurred.

TApplication::HandleMessage
TApplication See also
HandleMessage interrupts the execution of an application so that Windows can process a single
message in the Windows message queue and then returns control to the application.
void __fastcall HandleMessage(void);
Description
If the message queue is empty, HandleMessage calls the application's Idle method, which, in
turn, calls the OnIdle event handler if one is defined.
Note
If the application goes idle HandleMessage may take a long time to return. Therefore, do not call
HandleMessage when waiting for something message-based, while priority actions are also
being processed. In contrast, call ProcessMessages when processing other actions besides
messages.

TApplication::HelpCommand
TApplication See also
HelpCommand provides quick access to any of the Help commands in the WinHelp API
(application programming interface).
bool __fastcall HelpCommand(int Command, long Data);
Description
Use HelpCommand to access WinHelp.
HelpCommand is a wrapper function that simply calls a method which calls the OnHelp event.
For information about these commands and the data passed to them, see the WinHelp topic in
the Windows Help system.

TApplication::HelpContext
TApplication See also
HelpContext displays the help file for an application.
bool __fastcall HelpContext(Classes::THelpContext Context);
Description
Use HelpContext to bring up the help file for the application specified in the HelpFile property.
HelpContext calls OnHelp directly.
HelpContext passes the file name contained in HelpFile and the context number passed in
Context parameter. For example, if the Context value is 714, the HelpContext method displays
the screen with the context help ID of 714 in the Help file.
HelpContext returns false if HelpFile is an empty string, meaning the application has no Help file
assigned. In all other cases, HelpContext returns true.

TApplication::HelpJump
TApplication See also
HelpJump calls OnHelp indirectly.
bool __fastcall HelpJump(const System::AnsiString JumpID);
Description
Use HelpJump to bring up Help for the specific topic. HelpJump passes the file name contained
in HelpFile and the context string specified in the JumpID parameter. For example, if the JumpID
value is 'vclDefaultProperty', the HelpJump method displays the screen in the Help file that has
the context string 'vclDefaultProperty'.
HelpJump returns false if HelpFile is an empty string, meaning the application has no Help file
assigned. In all other cases, HelpJump returns true.

TApplication::HideHint
TApplication See also
HideHint hides the current hint.
void __fastcall HideHint(void);
Description
Applications rarely, if ever, call HideHint directly. HideHint is used internally in Borland C++
Builder to hide the hint window at the appropriate times according to predetermined conditions
and timer values. For example, CancelHint calls HideHint.

TApplication::HintMouseMessage
TApplication See also
HintMouseMessage regulates the display of hint windows.
void __fastcall HintMouseMessage(Controls::TControl* Control, Messages:
:TMessage &Message);

Description
Applications rarely, if ever, call HintMouseMessage directly. HintMouseMessage is used
internally by Borland C++Builder to manage the display of the hint windows.

TApplication::HookMainWindow
TApplication See also
HookMainWindow enables a non-Borland C++Builder dialog box to receive messages sent to its
parent, represented by the application object's Handle property.
void __fastcall HookMainWindow(TWindowHook Hook);
Description
Use HookMainWindow to ensure that the non-Borland C++Builder dialog box behaves correctly
as a child of the application, not as a stand-alone window. For example, switching among
applications with Alt+Tab treats the application as a single task after calling HookMainWindow,
rather than treating the non-Borland C++Builder dialog box as a separate task.
The TWindowHook type is the parameter type used for the HookMainWindow method. It is a
method-pointer type used for the dialog-procedures of non-Borland C++Builder dialog boxes.
The dialog procedure is similar to a window procedure for a window, in that it processes
messages for the dialog box, but its syntax is somewhat different.
There is no problem with leaving a dialog box hooked into the main window, even for extended
periods. However, should the dialog box close, call the UnhookMainWindow method to release
the hook.
For more information about Windows hooks see the SetWindowsHookEx and
UnhookWindowsEx functions in the Windows Help File.

TApplication::Initialize
TApplication
Initialize is the first method called for every Borland C++Builder project, providing an opportunity
to call an OLE automation procedure.
void __fastcall Initialize(void);
Description
Use Initialize to call a procedure for OLE automation. Initialize automatically calls the InitProc
procedure pointer, which is a pointer to a procedure that handles OLE automation.
Since Initialize is the first method called for a Borland C++Builder application, the InitProc pointer
must somehow be predefined. By default the call to Initialize for the application does nothing,
because it calls a default InitProc pointer that is NULL.
Therefore, to call an OLE automation procedure either:
• Add a unit that defines InitProc, such as the OleAuto unit.
• Define a custom procedure for OLE automation, assign it to the InitProc pointer, and add
this as the first line of code, that is, before the call to Initialize.
For projects that do not contain OLE automation servers, the call to Initialize can be safely
deleted.
Note
Although Initialize is the first method called in the main project source code, it is not the first code
that is executed in an application.

TApplication::MessageBox
TApplication
MessageBox displays a specified message to the user.
int __fastcall MessageBox(char * Text, char * Caption, unsigned short
Flags);

Description
Use MessageBox to display a generic dialog box, a message, and one or more buttons. Caption
is the caption of the dialog box and is optional.
MessageBox is an encapsulation of the Windows API MessageBox function. TApplication’s
encapsulation of MessageBox automatically supplies the missing window handle parameter
needed for the Windows API function.
The value of the Text parameter is the message, which can be longer than 255 characters if
necessary. Long messages are automatically wrapped in the message box. The value of the
Caption property is the caption that appears in the title bar of the dialog box. Captions can be
longer than 255 characters, but they don't wrap. A long caption results in a wide message box.
To see the possible values of the Flags parameter, see the MessageBox function in the
Windows API Help file. The corresponding parameter on that Help screen is called TextType.
The values determine the buttons that appear in the message box and the behavior of the
message box. The values can be combined to obtain the desired effect.
The return value of the MessageBox method is 0, if there wasn't enough memory to create the
message box, or one of these values:
Value Numeric value Meaning

IDABORT 3 The user chose the Abort button.
IDCANCEL 2 The user chose the Cancel button.
IDIGNORE 5 The user chose the Ignore button.
IDNO 7 The user chose the No button.
IDOK 1 The user chose the OK button.
IDRETRY 4 The user chose the Retry button.
IDYES 6 The user chose the Yes button.

TApplication::Minimize
TApplication See also
Minimize shrinks an application to an icon on the Windows desktop.
void __fastcall Minimize(void);
Description
Call Minimize directly to minimize the application. When the user minimizes the application, the
Minimize method is automatically called.
Note
Don't confuse the Minimize method with minimizing a form or window. To minimize, maximize, or
restore a window or form, change the value of the WindowState property.

TApplication::NormalizeTopMosts
TApplication See also
NormalizeTopMosts makes forms that have been designated as topmost forms (their FormStyle
is fsStayOnTop) behave as if they were not topmost forms.
void __fastcall NormalizeTopMosts(void);
Description
Use NormalizeTopMosts to have a message box or dialog box that is displayed using the
Windows API functions (such as MessageBox and MessageDlg) directly, appear on top of a
topmost form. Otherwise the form remains on top, which may obscure the message box.
Calling NormalizeTopMosts is not necessary when using Borland C++Builder methods and
functions to display message boxes.
To return the forms designated as fsStayOnTop to be topmost again, call RestoreTopMosts.

TApplication::ProcessMessages
TApplication See also
ProcessMessages interrupts the execution of an application so that Windows can respond to
events.
void __fastcall ProcessMessages(void);
Description
Call ProcessMessages to permit Windows to process these events at the time
ProcessMessages is called. The ProcessMessages method cycles the Windows message loop
until it is empty and then returns control to the application.
Note
In Win32, neglecting message processing affects only the application calling ProcessMessages,
not other applications. In lengthy operations calling ProcessMessages periodically will allow the
application to respond to paint and other messages.
Note
ProcessMessages does not allow the application to go idle, whereas HandleMessages does.

TApplication::Restore
TApplication See also
Restore restores a minimized application to its normal size.
void __fastcall Restore(void);
Description
Use Restore to restore the application to its previous size before it was minimized. When the
user restores the application to normal size, the Restore method is automatically called.
Note
Don't confuse the Restore method with restoring a form or window to its original size. To
minimize, maximize, and restore a window or form, change the value of the WindowState
property.

TApplication::RestoreTopMosts
TApplication See also
RestoreTopMosts restores forms designated as fsStayOnTop to be topmost again.
void __fastcall RestoreTopMosts(void);
Description
Use RestoreTopMosts to return forms that were originally designated as topmost forms
(FormStyle is fsStayOnTop), then temporarily changed to be non-topmost forms with the
NormalizeTopMosts method, to a topmost position.

TApplication::Run
TApplication See also
Run executes the application.
void __fastcall Run(void);
Description
Run contains the application’s main message loop. The call to Run does not return until the
application’s message loop is terminated.
When creating a new project, Borland C++Builder automatically creates a main program block in
the project file that calls the Run method. When the application is executed, the application’s
Run method is called.

TApplication::ShowException
TApplication See also
ShowException displays an exception that occurred in an application in a message box.
void __fastcall ShowException(Sysutils::Exception* E);
Description
ShowException is called by HandleException as a default if no handler is specified for the
OnException event.
If an exception handler filters exceptions, ShowException will need to be called for those
exceptions that are not filtered out.
To specify how exceptions are handled for an application write a handler for the OnException
event.
Note
Calling ShowException is rarely necessary in a Borland C++Builder application, since the default
VCL exception handler will call ShowException automatically.

TApplication::TApplication
TApplication See also
TApplication creates a new application.
__fastcall virtual TApplication(Classes::TComponent* AOwner);
Description
Applications do not call TApplication directly. Each Borland C++Builder application automatically
creates an instance of an application object.
TApplication sets default values for some of its properties. It also prepares the application to run
by setting up, for example, hint windows, the application icon, the main window handle, the
HInstance, lists for managing child windows of the main window (form) and so on.

TApplication::Terminate
TApplication See also
Terminate ends application execution.
void __fastcall Terminate(void);
Description
Terminate calls the Windows API PostQuitMessage function to perform an orderly shutdown of
the application. Terminate is not immediate.
Terminate is called automatically on a WM_QUIT message and when the main form closes.

TApplication::UnhookMainWindow
TApplication See also
UnhookMainWindow releases the dialog procedure previously hooked by a call to the
HookMainWindow method.
void __fastcall UnhookMainWindow(TWindowHook Hook);
Description
Use UnhookMainWindow to release the hooked window. Specify the dialog procedure as the
value of the Hook parameter.
The TWindowHook type is the parameter type used for the InhookMainWindow method. It is a
method-pointer type used for the dialog-procedures of non-Borland C++Builder dialog boxes.
The dialog procedure is similar to a window procedure for a window, in that it processes
messages for the dialog box, but its syntax is somewhat different.
For more information about Windows hooks see the SetWindowsEx and UnhookWindowsEx
functions in the Windows Help File.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent

TApplication example
TApplication

TAutoIncField
Hierarchy Properties Methods Events See also
A TAutoInc object represents an autoincrement field in a dataset.
Header
vcl/dbtables.hpp
Description
Autoincrement fields can hold values in the range -2,147,483,648 to 2,147,483,647, and are
used as a counter for the records in the dataset. Each record will have a unique value in an
autoincrement field, with each record receiving the next highest integer from that of the
previously inserted record. Autoincrement fields are commonly used to provide a unique primary
key value for a record.
TAutoInc does not introduce any new properties, events, or methods beyond those provided by
the TInteger class. It exists as a separate class to represent the DataType for an autoincrement
field.

TAutoIncField properties
TAutoIncField Alphabetically Legend

Derived from TIntegerField
MaxValue
MinValue
Value

Derived from TNumericField
DisplayFormat
EditFormat

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TAutoIncField properties
TAutoIncField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayFormat
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditFormat

EditMaskPtr
EditMask
FieldKind

FieldName
FieldNo

Index
IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
MaxValue
MinValue
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Value
Visible

TAutoIncField events
TAutoIncField Alphabetically

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TAutoIncField events
TAutoIncField By object

OnChange
OnGetText
OnSetText
OnValidate

TAutoIncField methods
TAutoIncField Alphabetically

In TAutoIncField
~TAutoIncField
TAutoIncField

Derived from TIntegerField
IsValidChar

Derived from TField
Assign
AssignValue
Clear
FocusControl
GetData
SetData
SetFieldType

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TAutoIncField methods
TAutoIncField By object

~TAutoIncField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TAutoIncField

TAutoIncField::~TAutoIncField
TAutoIncField
~TAutoIncField frees the memory associated with the TAutoIncField object. Do not call ~
TAutoIncField directly. Instead, use the delete keyword on the object, which causes ~
TAutoIncField to be invoked automatically.
__fastcall virtual ~TAutoIncField(void);

TAutoIncField::TAutoIncField
TAutoIncField
TAutoIncField creates an instance of TAutoIncField.

__fastcall virtual TAutoIncField(Classes::TComponent* AOwner);

Call TAutoIncField to create and initialize an instance of TAutoIncField. After calling its parent’s
constructor, TAutoIncField sets the DataType property to ftAutoInc.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent
TField
TNumericField
TIntegerField

TAutoIncField example
TAutoIncField

TAutomation
Hierarchy Properties Methods Events See also
The TAutomation object is the OLE automation manager object.
Header
vcl/oleauto.hpp

TAutomation properties
TAutomation Alphabetically Legend

In TAutomation
AutoObjectCount

IsInprocServer
StartMode

TAutomation properties
TAutomation By object Legend

AutoObjectCount
IsInprocServer

StartMode

TAutomation::AutoObjectCount
TAutomation

Description
__property int AutoObjectCount;
Indicates how many OLE automation object instances the Automation manager is currently
managing.
Each time the Automation manager creates an instance of one of the server objects it manages,
it increments its internal count, which your application can read through the read-only property
AutoObjectCount.

TAutomation::IsInprocServer
TAutomation

Description
__property bool IsInprocServer;
Indicates whether the OLE automation server is an in-process server.
Borland C++Builder assumes that all OLE automation servers in DLLs are in-process servers,
and that those in applications are not.

TAutomation::StartMode
TAutomation

Description
__property TStartMode StartMode;
Indicates the reason an OLE automation server was started: as a stand-alone, interactive
application, as an embedded object, or for registration or unregistration.
The Automation manager decides what, if anything, to do with the server when its controller
applications have finished with it based on the value of StartMode, as described under
OnLastRelease.
The TStartMode type specifies the possible values for the StartMode property, indicating the
different reasons why an OLE automation server can be started.
The following table explains each of the possible start-mode values and the command-line
switch that corresponds to each.
Start mode Switch Meaning

smAutomation embedding The application was started by Windows in
response to a request from an automation
controller.

smRegServer regserver The application was started only to add the server
to the system registry.

smStandalone --- The user started the application as a stand-alone,
interactive application.

smUnregServer unregserver The application was started only to remove the
server from the system registry.

TAutomation events
TAutomation Alphabetically

In TAutomation
OnLastRelease

TAutomation events
TAutomation By object

OnLastRelease

TAutomation::OnLastRelease
TAutomation

Description
__property TLastReleaseEvent OnLastRelease;
Occurs when the automation manager releases the last instance of an OLE automation object.
OnLastRelease does not occur for in-process servers.
The Shutdown parameter of the event is a var parameter, so an event handler can force or
prevent the shutdown of the automation manager by setting Shutdown to true or false,
respectively. By default, Shutdown is true only for servers with a StartMode of smAutomation;
that is, shutdown is only automatic for servers started expressly for automation.
The TLastReleaseEvent type is a method-pointer type used for the OnLastRelease event. The
variable parameter Shutdown enables the application to override the default behavior for
whether to shut down the server application when all instances are released.

TAutomation methods
TAutomation Alphabetically

In TAutomation
~TAutomation
RegisterClass
TAutomation
UpdateRegistry

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TAutomation methods
TAutomation By object

~TAutomation
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
RegisterClass
TAutomation
UpdateRegistry

TAutomation::~TAutomation
TAutomation
~TAutomation frees the memory associated with the TAutomation object. Do not call ~
TAutomation directly. Instead, use the delete keyword on the object, which causes ~
TAutomation to be invoked automatically.
__fastcall virtual ~TAutomation(void);

TAutomation::RegisterClass
TAutomation

Description
void __fastcall RegisterClass(const TAutoClassInfo &AutoClassInfo);
Registers an OLE automation server class with the OLE automation manager (Automation).
Every unit that defines an OLE automation server class (an object derived from TAutoObject)
must include a call in its initialization section to Automation.RegisterClass, passing a record of
class-registration information.

TAutomation::UpdateRegistry
TAutomation

Description
void __fastcall UpdateRegistry(bool Register);
Updates the system registry for all the OLE automation objects handled by the OLE automation
manager (that is, all the OLE automation objects in a particular server application).
If the Register parameter is true, UpdateRegistry registers the servers. Otherwise, it unregisters
them.
The DllRegisterServer function calls UpdateRegistry automatically, so you should never need to
call it yourself.

TAutomation::TAutomation
TAutomation

Description
__fastcall TAutomation(void);
Constructs the instance of the automation manager, then determines whether it is running in a
DLL.
If it is, it sets its IsInprocServer property to true. Finally, TAutomation searches for the standard
OLE automation command-line switches and sets the corresponding StartMode value.

Accessibility
Read-only

Hierarchy

TObject

TAutomation example
TAutomation

TAutoObject
Hierarchy Properties Methods See also
The TAutoObject object is the base class for all objects in Delphi automation servers. When you
create a new automation object, you derive it from TAutoObject, then declare properties and
methods in an automated section of the new class.
Header
vcl/oleauto.hpp
Description
To expose an automation object to external OLE automation controllers, the unit that implements
the automation object must call Automation.RegisterClass in its initialization section, passing in a
TAutoClassInfo record.Once you register your automation object, the global Automation object
automatically manages all aspects of the object’s interface with the OLE automation APIs.
When an external OLE automation controller requests an instance of the automation object, the
Automation manager calls the Create constructor to construct the instance. When all external
references to the object disappear, the Automation manager calls the Destroy method to destroy
the instance. The automation object maintains a reference count to determine when all
references are gone.

TAutoObject properties
TAutoObject Alphabetically Legend

In TAutoObject
AutoDispatch
OleObject
RefCount

TAutoObject properties
TAutoObject By object Legend

AutoDispatch
OleObject
RefCount

TAutoObject::AutoDispatch
TAutoObject See also
__property TAutoDispatch* AutoDispatch;
Description
Provides an IDispatch interface to the automation object, suitable for passing to OLE API
functions.

TAutoObject::OleObject
TAutoObject
__property System::Variant OleObject;
Provides a variant containing the automation object.
Description
When your server needs to pass an OLE object to a controller, the controller expects it in the
form of a variant. You should therefore always references to an automation object's OleObject
property, rather than references to the object itself.

TAutoObject::RefCount
TAutoObject
__property int RefCount;
Description
Holds the current reference count of the OLE automation object.
To increment or decrement the reference count, call the AddRef or Release methods.

TAutoObject methods
TAutoObject Alphabetically

In TAutoObject
~TAutoObject
AddRef
Release
TAutoObject

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TAutoObject methods
TAutoObject By object

~TAutoObject
AddRef
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
Release
TAutoObject

TAutoObject::~TAutoObject
TAutoObject
~TAutoObject frees the memory associated with the TAutoObject object. Do not call ~TAutoObject
directly. Instead, use the delete keyword on the object, which causes ~TAutoObject to be invoked
automatically.
__fastcall virtual ~TAutoObject(void);

TAutoObject::AddRef
TAutoObject
int __fastcall AddRef(void);
Description
Increments the reference count for an OLE automation object and returns the current reference
count.

TAutoObject::Release
TAutoObject
int __fastcall Release(void);
Description
Decrements the OLE automation object's reference count and returns the current count.
If the new count is zero, Release destroys the object by calling Free.

TAutoObject::TAutoObject
TAutoObject
__fastcall virtual TAutoObject(void);
Description
Constructs an instance of an OLE automation object for export from an automation server.
TAutoObject increments the object count for the Automation manager, sets its own reference
count to 1, and constructs its IDispatch interface.

Accessibility
Read-only

Hierarchy

TObject

TAutoObject example
TAutoObject

TBatchMove
Hierarchy Properties Methods See also
TBatchMove enables applications to perform database operations on groups of records or entire
tables.
Header
vcl/dbtables.hpp
Description
Instantiate a TBatchMove object to
• Add the records in a dataset to a database table.
• Delete the records in a dataset from a database table.
• Copy a dataset to create a new database table or overwrite an existing table.
Set the properties of the TBatchMove object to specify the desired operation. Call the Execute
method to perform the actual operation. TTable objects can also perform the same batch
operations, but only with the options specified by the default TBatchMove property values.
TBatchMove has several properties that instruct the Borland Database Engine (BDE) how to
handle problems that occur when executing the batch operation. Additionaly, applications can
use a TBDECallback object to further refine the response to problems that arise.

TBatchMove properties
TBatchMove Alphabetically Legend

In TBatchMove
AbortOnKeyViol
AbortOnProblem

ChangedCount
ChangedTableName
CommitCount
Destination

KeyViolCount
KeyViolTableName
Mappings
Mode

MovedCount
ProblemCount

ProblemTableName
RecordCount
Source
Transliterate

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TBatchMove properties
TBatchMove By object Legend

AbortOnKeyViol
AbortOnProblem

ChangedCount
ChangedTableName
CommitCount

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

DesignInfo
Destination

KeyViolCount
KeyViolTableName
Mappings
Mode

MovedCount
Name

Owner
ProblemCount

ProblemTableName
RecordCount
Source
Tag
Transliterate

TBatchMove::AbortOnKeyViol
TBatchMove See also
AbortOnKeyViol specifies whether the batch operation is terminated immediately when integrity
or key violations occur.
__property bool AbortOnKeyViol;
Description
Set AbortOnKeyViol to true to cancel the batch operation when it causes integrity or key
violations in the destination table. Set AbortOnKeyViol to false to cause records that would
cause integrity or key violations to be posted to a key violations table instead. Provide a
KeyViolTableName when setting AbortOnKeyViol to false. If there is no KeyViolTableName,
AbortOnKeyViol may still be set to false, in which case problem records are counted but not
saved in a table.
Key violations occur when appending records to a table that has a primary key. On a table with a
primary key, no two records may have the same values on all of the key fields. If a record that is
being appended has the same values on all the key fields as a record in the destination table, it
cannot be appended.
Integrity violations occur when deleting, appending or updating records to a table that has a
referential integrity specification. A referential integrity specification requires that certain fields in
one table must have values that exist in a particular field of another table. If a record that is
being added does not match the restrictions imposed by referential integrity, it cannot be added.
If deleting record would cause tighter referential integrity restrictions that another table cannot
meet, it cannot be deleted.

TBatchMove::AbortOnProblem
TBatchMove See also
AbortOnProblem specifies whether the batch operation is terminated immediately when it is
necessary to truncate data to make it fit in the specified Destination.
__property bool AbortOnProblem;
Description
Set AbortOnProblem to true to cancel the batch operation when types of the fields in the Source
table records do not match the types of the fields in the Destination table records. Set
AbortOnProblem to false to cause the mismatched fields to be “trimmed”. When
AbortOnProblem is false, set the ProblemTableName to have all the untrimmed versions of
records that were trimmed saved to a separate table.

Trimming a field means converting its value to a value compatible with the destination field type.
For example, if a field in the destination table holds a string of size 10 characters, and the
corresponding field in the source table holds a string of size 15 characters, any values from the
source table longer than 10 characters must be truncated. Values that cannot be converted will
cause TBatchMove to raise an exception.

Trimming does not occur when the Mode property is set to batCopy. Trimming fields on a delete
operation means that records in the destination table may be deleted that do not exactly match
the values from the source table.
Note
To allow trimming on a field by field basis, use a TBDECallback object.

TBatchMove::ChangedCount
TBatchMove See also
ChangedCount indicates the number of records from the Destination table are altered as a result
of the batch operation.
__property long ChangedCount;
Description
Use ChangedCount to learn the number of records in the Destination table that are updated if
the Mode is batUpdate or batAppendUpdate, or to learn the number that are deleted if the Mode
is batDelete.
Set the ChangedTableName property to save the unchanged versions of the altered records to a
separate table. ChangedCount is then the number of records in that separate table.

TBatchMove::ChangedTableName
TBatchMove See also
ChangedTableName specifies the name of a local Paradox table that is created to hold copies of
all records from the destination table that are changed by the batch operation.
__property System::AnsiString ChangedTableName;
Description
Set ChangedTableName to create a table that saves all unchanged versions of records that are
changed by the batch operation. ChangedTableName must specify the name of a Paradox table.
Setting ChangedTableName ensures that no information in the Destination table gets lost when
the records are altered or deleted.
When the Mode property is batUpdate or batAppendUpdate, the new table will hold all records
that were updated. When the Mode property is batDelete, the new table will hold all records that
were deleted.
The ChangedCount property specifies the number of records in the new table.

TBatchMove::CommitCount
TBatchMove See also
CommitCount specifies how many records are batch moved before a commit occurs.
__property int CommitCount;
Description
Use CommitCount to chunk a batch operations into smaller operations, CommitCount allows an
application to accommodate server transaction logs that are not big enough to handle the entire
batch. Setting CommitCount to 0 will cause chunking into the number of records that will fit in
32K bytes.
Note
If the Execute method is called within an explicit transaction on the database containing the
tables, CommitCount is ignored.

TBatchMove::Destination
TBatchMove See also
Destination specifies the TTable object for the database table that is the destination of the batch
operation.
__property TTable* Destination;
Description
Use Destination to indicate the database table that will be created or altered by the batch
operation. The batch operation affects the Destination differently depending on the Mode:
Mode Effect on Destination

batAppend Records are added to the destination table. No pre-existing records are
altered. Destination table must already exist.

batUpdate Records in the destination table with key fields matching the
corresponding fields in the source are changed to match the source
records. No new records are added. Destination table must already exist
and must have an index defined.

batAppendUpdate Records in the destination table with key fields matching the
corresponding fields in the source are changed to match the source.
Source records that do not match key fields are added to the destination
table. Destination table must already exist and must have an index
defined.

batDelete Records in the destination table that match the records in the source are
deleted. Destination table must already exist and must have an index
defined.

batCopy Destination table is created to match the records in the source. If
Destination already exists, it is replaced by the copy of the source.

TBatchMove::KeyViolCount
TBatchMove See also
KeyViolCount reports the number of records which could not be replaced, added, or deleted from
Destination because of integrity or key violations.
__property long KeyViolCount;
Description
Use KeyViolCount to learn the number of records form the Source table that could not be
applied to the Destination table because of integrity or key violations. To obtain a table of the
offending records from the Source table, specify a KeyViolTableName.
Key violations occur when appending records to a table that has a primary key. On a table with a
primary key, no two records may have the same values on all of the key fields. If a record that is
being appended has the same values on all the key fields as a record in the destination table, it
cannot be appended.
Integrity violations occur when deleting, appending or updating records to a table that has a
referential integrity specification. A referential integrity specification requires that certain fields in
one table must have values that exist in a particular field of another table. If a record that is
being added does not match the restrictions imposed by referential integrity, it cannot be added.
If deleting record would cause tighter referential integrity restrictions that another table cannot
meet, it cannot be deleted.
Note
If AbortOnKeyViol is true, KeyViolCount will never be greater than one, because the first
violation will cause the batch operation to terminate.

TBatchMove::KeyViolTableName
TBatchMove See also
KeyViolTableName specifies the name of a Paradox table that will be created to contain all
records from the Source that cannot participate in the batch operation because of integrity or key
violations.
__property System::AnsiString KeyViolTableName;
Description
Use KeyViolTableName to obtain a table of records that could not be applied to the Destination
table because of integrity or key violations. KeyViolCount has the number of records in the table
that is created.
Key violations occur when appending records to a table that has a primary key. On a table with a
primary key, no two records may have the same values on all of the key fields. If a record that is
being appended has the same values on all the key fields as a record in the destination table, it
cannot be appended.
Integrity violations occur when deleting, appending or updating records to a table that has a
referential integrity specification. A referential integrity specification requires that certain fields in
one table must have values that exist in a particular field of another table. If a record that is
being added does not match the restrictions imposed by referential integrity, it cannot be added.
If deleting record would cause tighter referential integrity restrictions that another table cannot
meet, it cannot be deleted.
Note
If AbortOnKeyViol is true, then there will be at most one record in this table because the
operation aborts with that first record.

TBatchMove::Mappings
TBatchMove See also
Mappings specifies the column mappings for a batch operation.
__property Classes::TStrings* Mappings;
Description
Set Mappings to specify the correspondence between fields in the Source and fields in the
Destination. By default TBatchMove matches fields based on their position in the source and
destination tables. That is, the first column in the source is matched with the first column in the
destination, and so on. Mappings enables an application to override this default.
Mappings is a list of column mappings (one per line) in one of two forms. To map the column
ColName in the source table to the column of the same name in the destination table, use:
ColName
To map the column named SourceColName in the source table to the column named
DestColName in the destination table, use:
DestColName = SourceColName
When adding or appending records, fields in Destination which have no entry in Mappings will be
set to NULL. When copying a dataset, fields in Destination which have no entry in Mappings will
not appear as columns in the copy of the table.
If source and destination column data types are not the same, TBatchMove can either cancel the
batch operation or perform a “best fit”. If AbortOnProblem is true, type mismatches will
terminate the batch move. Otherwise, the field values from the Source will be converted, if
possible, to be compatible with the Destination.

TBatchMove::Mode
TBatchMove See also
Mode specifies what the TBatchMove object does when the Execute method is called.
__property TBatchMode Mode;
Description
Use Mode to indicate whether the TBatchMove object should add records, replace records,
delete records, or copy the Source. These are the possible values for Mode:
Value Meaning

batAppend Append the records in the source to the destination table. The destination
table must already exist. This is the default mode.

batUpdate Replace records in the destination table with matching records from the
source table. The destination table must exist and must have an index
defined to match records.

batAppendUpdate If a matching record exists in the destination table, replace it. Otherwise,
append records to the destination table. The destination table must exist
and must have an index defined to match records.

batCopy Create the destination table based on the structure of the source table. If
the destination already exists, the operation will delete it, and replace it
with the new copy of the source.

batDelete Delete records in the destination table that match records in the source
table. The destination table must already exist and must have an index
defined.

TBatchMove::MovedCount
TBatchMove See also
MovedCount reports the number of records form the Source which were applied to the
destination.
__property long MovedCount;
Description
Read MovedCount to learn the number of records from the Source that were read during the
Execute method. The MovedCount value includes any records which caused key or integrity
violations, or which were trimmed.

TBatchMove::ProblemCount
TBatchMove See also
ProblemCount indicates the number of records which could not be added to Destination without
loss of data due to a field type mismatch.
__property long ProblemCount;
Description
Read ProblemCount to learn the number of records from the Source that had field values which could
not be mapped to destination fields without being “trimmed”. If a ProblemTableName is specified,
ProblemCount is the number of records in that table.

Trimming a field means converting its value to a value compatible with the destination field type.
For example, if a field in the destination table holds a string of size 10 characters, and the
corresponding field in the source table holds a string of size 15 characters, any values from the
source table longer than 10 characters must be truncated. Values that cannot be converted will
cause TBatchMove to raise an exception.

Trimming does not occur when the Mode property is set to batCopy. Trimming fields on a delete
operation means that records in the destination table may be deleted that do not exactly match
the values from the source table.
Note
If AbortOnProblem is true, then ProblemCount will be at most one, because the operation aborts
when the problem occurs.

TBatchMove::ProblemTableName
TBatchMove See also
ProblemTableName specifies the name of a Paradox table that will be created to contain all
records from the Source that contain fields which were trimmed to match the corresponding field
type in the Destination table.
__property System::AnsiString ProblemTableName;
Description
Set ProblemTableName to create a table that holds records from the Source that contain fields
that had to be trimmed to be applied to the Destination. ProblemCount will have the number of
records placed in the new table. If ProblemTableName is not specified, the data in the record is
still trimmed when applied to the destination table, but there will be no easy way to tell which
fields were trimmed.
Trimming a field means converting its value to a value compatible with the destination field type.
For example, if a field in the destination table holds a string of size 10 characters, and the
corresponding field in the source table holds a string of size 15 characters, any values from the
source table longer than 10 characters must be truncated. Values that cannot be converted will
cause TBatchMove to raise an exception.

Trimming does not occur when the Mode property is set to batCopy. Trimming fields on a delete
operation means that records in the destination table may be deleted that do not exactly match
the values from the source table.
Note
If AbortOnProblem is true, then there will be at most one record in this table because the
operation aborts with the first record that has a problem.

TBatchMove::RecordCount
TBatchMove See also
RecordCount specifies the maximum number of records that are applied to the Destination when
Execute is called.
__property long RecordCount;
Description
Use RecordCount to limit the number of Source records that are applied to the Destination. If
zero, all records are added, subtracted, or copied, beginning with the first record in Source. If
RecordCount is greater than zero, up to RecordCount records are applied to the Destination,
starting with the current record in the dataset. If RecordCount exceeds the number of records
remaining in Source, no wraparound occurs; the operation is terminated.

TBatchMove::Source
TBatchMove See also
Source specifies the dataset that is the source of the batch operation.
__property Db::TDataSet* Source;
Description
Use Source to indicate the dataset that contains the records that will be added to, subtracted
from, or copied to the Destination. The Mode affects how the Source records are applied to the
Destination:
Mode Effect on Destination

batAppend Records are added to the destination table.
batUpdate Records in the destination table with key fields matching the

corresponding fields in the source are changed to match the source
records.

batAppendUpdate Records in the destination table with key fields matching the
corresponding fields in the source are changed to match the source.
Source records that do not match key fields are added to the destination
table.

batDelete Records in the destination table that match the records in the source are
deleted.

batCopy Destination table is created to match the records in the source.

TBatchMove::Transliterate
TBatchMove See also
Transliterate specifies whether the data in the Source records should be converted from the
locale of the Source to the locale of the Destination when the Execute method is called.
__property bool Transliterate;
Description
Set Transliterate to true when the Source dataset and the Destination table use different
language drivers and the data may contain extended ascii characters. Set Transliterate to false
to avoid the overhead of the character set conversion when both the Source and the Destination
use the same language driver or the data does not contain extended ascii characters.

TBatchMove methods
TBatchMove Alphabetically

In TBatchMove
~TBatchMove
Execute
TBatchMove

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TBatchMove methods
TBatchMove By object

~TBatchMove
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
Dispatch
Execute
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
TBatchMove

TBatchMove::~TBatchMove
TBatchMove See also
~TCustomRichEdit frees the memory associated with the TCustomRichEdit object. Do not call ~
TCustomRichEdit directly. Instead, use the delete keyword on the object, which causes ~
TCustomRichEdit to be invoked automatically.
__fastcall virtual ~TBatchMove(void);
Description
Before calling the destructor of its parent object, TCustomRichEdit frees the TStringList object
that implements the Mappings property.

TBatchMove::Execute
TBatchMove See also
Execute performs the batch operation specified by Mode.
void __fastcall Execute(void);
Description
After setting properties to indicate what batch operation should be performed and how, call
Execute to perform the operation. At a minimum, the Mode, Source, and Destination properties
must be set.
After calling Execute, the values of the ChangedCount, KeyViolCount, MovedCount,
ProblemCount, and RecordCount properties will become available. These properties will give an
indication of what happened as a result of the call to Execute. Additional information about the
batch operation will be available through the creation of a changed table, a keyviol table, and/or
a problems table if it was requested.

TBatchMove::TBatchMove
TBatchMove See also
TBatchMove creates an instance of TBatchMove.
__fastcall virtual TBatchMove(Classes::TComponent* AOwner);
Description
Call TBatchMove to create an instance of TBatchMove for performing a batch operation.
TBatchMove allocates the memory for the TBatchMove object and
• Sets AbortOnKeyViolation to true.
• Sets AbortOnProblem to true.
• Sets Transliterate to true.
• Creates a TStringList object to hold the Mappings.
The property settings made by TBatchMove are the values used when a TTable object performs
batch operations using its BatchMove method.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent

TBatchMove example
TBatchMove

TBCDField
Hierarchy Properties Methods Events See also
A TBCDField object represents a binary-coded decimal (BCD) field in a dataset.
Header
vcl/dbtables.hpp
Description
BCD values provide greater precision and accuracy than floating-point numbers. BCD fields are
often used for storing and manipulating monetary values. Normally, BCD values are stored and
manipulated in decimal (base ten). However, Borland C++Builder does not have a native binary-
coded decimal type, so TBCDField uses the Currency type to manipulate BCD values. Currency
is a binary (base two) format.
Because TBCDField uses the Currency type to work with data from BCD fields, TBCDField limits
the precision of the BCD values it can support to 4 decimal places and 20 significant digits. The
underlying database table may include values that require greater precision. When it encounters
such values, TBCDField raises an exception.
As a descendant of TNumericField, TBCDField includes many properties, methods, and events
that are useful for managing the value and properties of a numeric field in a database.

TBCDField properties
TBCDField Alphabetically Legend

In TBCDField
Currency
MaxValue
MinValue
Value

Derived from TNumericField
DisplayFormat
EditFormat

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TBCDField properties
TBCDField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

Currency
DataSet

DataSize
DataType

DesignInfo
DisplayFormat
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditFormat

EditMaskPtr
EditMask
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
MaxValue
MinValue
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Value
Visible

TBCDField::Currency
TBCDField See also
Currency determines whether the value in the field should be formatted as a currency value.
__property System::Currency MinValue;
Description
Use the Currency property to influence how the value in the field should be formatted for viewing
and editing in a data-aware control.
For display purposes, the field is formatted using the DisplayFormat property if it is assigned. If
DisplayFormat is not assigned, Currency determines how the field is formatted for display. If
Currency is true, the value is formatted for display using the FloatToText function with the
ffCurrency formatting code. If Currency is false, the value is formatted with the ffGeneral format.
For editing purposes, the field is formatted using the EditFormat (or DisplayFormat) property if it
is assigned. If neither EditFormat nor DisplayFormat is assigned, Currency determines how to
format the field for editing. If Currency is true, the value is formatted for editing using the
FloatToText function with the ffFixed formatting code. If Currency is false, the value is formatted
with the ffGeneral format.

TBCDField::MaxValue
TBCDField See also
MaxValue limits the maximum value in the binary-coded decimal field.
__property System::Currency MaxValue;
Description
Use MaxValue to get or set the maximum value that can be entered into the field. If a value
greater than MaxValue is entered, an EDatabaseError exception is raised.
Newly created BCD fields set MaxValue to the maximum value that can be expressed by the
Currency data type.

TBCDField::MinValue
TBCDField See also
MinValue limits the minimum value in the binary-coded decimal field.
__property System::Currency MinValue;
Description
Use MinValue to get or set the minimum value that can be entered into the field. If a value
smaller than MinValue is entered, an EDatabaseError exception is raised.
Newly created integer fields set MinValue to the minimum value that can be expressed by the
Currency data type.

Size
Size indicates the number of decimal points supported in the binary-coded decimal
representation of the field’s data.
__property Size;
Description
Use Size to determine the number of decimal places in the binary-coded decimal representation
of the field’s data within the physical database tables. The default value for Size for a BCD field
is 4 decimal places.
Note
Don’t confuse the Size property with the DataSize property, which indicates the number of
bytes required to hold the Value of the BCD field.

TBCDField::Value
TBCDField See also
Value is the value of the BCD field as a Currency value.
__property System::Currency Value;
Description
Unlike other field types, the Value of a BCD field does not correspond exactly to the physical
format of the data that is stored in the underlying database table. Borland C++Builder does not
have a native type for binary-coded decimal. Therefore, TBCDField converts the data from a
binary-coded decimal value to a Currency value when it fetches the data from the database
table, and converts it from a Currency value to a binary-coded decimal value when it posts the
data to the database. For BCD fields, Value is the same as the AsCurrency property.
Note
Because TBCDField works with its data as a Currency value, simply getting the value of the field
and posting that value right back to the database table can actually alter the contents of the field.
Thus the line
MyBCDField->SetData(MyBCDField.Value);
can alter the contents of the field in the database table.

TBCDField events
TBCDField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TBCDField events
TBCDField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TBCDField methods
TBCDField Alphabetically

In TBCDField
~TBCDField
IsValidChar
TBCDField

Derived from TField
Assign
AssignValue
Clear
FocusControl
GetData
SetData
SetFieldType

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TBCDField methods
TBCDField By object

~TBCDField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TBCDField

TBCDField::~TBCDField
TBCDField
~TBCDField frees the memory associated with the TBCDField object. Do not call ~TBCDField
directly. Instead, use the delete keyword on the object, which causes ~TBCDField to be invoked
automatically.
__fastcall virtual ~TBCDField(void);

TBCDField::IsValidChar
TBCDField See also
IsValidChar determines if the specified character is valid in a binary-coded decimal field.
virtual bool __fastcall IsValidChar(char Ch);
Description
Call IsValidChar to determine if a character specified as the value of the InputChar is a valid
character in a binary-coded decimal field.
Valid characters for a binary-coded decimal field are +, -, the digits 0 to 9, and the character
specified as the decimal separator by Windows. If InputChar is one of these characters,
IsValidChar returns true. For all other characters, IsValidChar returns false.
IsValidChar is used by many data-aware controls to determine if a particular character entered in
the field is valid.

TBCDField::TBCDField
TBCDField See also
TBCDField creates an instance of TBCDField.
__fastcall virtual TBCDField(Classes::TComponent* AOwner);
Description
Call TBCDField to create and initialize an instance of TBCDField. After calling the inherited
constructor, TBCDField sets the DataType to ftBCD, and initializes the Size to 4.
It is seldom necessary to explicitly call TBCDField because a BCD field component is
instantiated automatically for all BCD fields in a dataset.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField
TNumericField

TBCDField example
TBCDField

TBDECallback
Hierarchy Methods See also
TBDECallback is a wrapper for a Borland Database Engine (BDE) callback function.
Header
vcl/db.hpp
Description
Use a TBDECallback object to register a callback function with the BDE. Callbacks allow an
application to instruct the BDE to take specific actions in response to events that occur during a
BDE function call.
For example, the TBatchMove object may encounter problems when executing the
corresponding BDE batch operation. A callback function can respond to those problems by
instructing the BDE to generate a problems table or to trim the data so that the operation
succeeds.
To use a TBDECallback object, take the following steps:
1 Create an instance of TBDECallback to register the callback with the BDE.
2 Call the BDE function in which the pertinent events take place. For example, create an

instance of TBatchMove, and call its Execute method.
3 When the BDE function returns, destroy the TBDECallback object to unregister the callback

function.

TBDECallback methods
TBDECallback Alphabetically

In TBDECallback
~TBDECallback
TBDECallback

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TBDECallback methods
TBDECallback By object

~TBDECallback
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TBDECallback

TBDECallback::~TBDECallback
TBDECallback See also
~TBDECallback frees the memory associated with the TBDECallback object. Do not call ~
TBDECallback directly. Instead, use the delete keyword on the object, which causes ~
TBDECallback to be invoked automatically.
__fastcall virtual ~TBDECallback(void);
Description
~TBDECallback unregisters the callback before freeing the memory associated with the
TBDECallback object. After unregistering the callback, any previous callback of the same type
will be reinstated.

TBDECallback::TBDECallback
TBDECallback See also
The TBDECallback method creates an instance of TBDECallback and registers the specified
callback with the Borland Database Engine (BDE).
__fastcall TBDECallback(System::TObject* AOwner, Bde::hDBICur Handle,
Bde::CBType CBType, void * CBBuf, int CBBufSize, TBDECallbackEvent
CallbackEvent, bool Chain);

Description
Use TBDECallback to register a callback with the BDE. Create a TBDECallback object before
calling any BDE function that should use the callback to respond to events.
When the BDE encounters the type of event indicated by the CBType parameter, the function
specified by the CallbackEvent parameter is called. The CallbackEvent function receives a
pointer to a callback descriptor. The type of the callback descriptor varies depending on the
CBType. The Borland C++Builder application must allocate the memory for the callback
descriptor. A pointer to this memory is passed in as the CBBuf parameter, and its size is given
by the CBBufSize parameter.
The Chain parameter indicates whether this callback function should replace any other callbacks
of this CBType. When Chain is false, the CallbackEvent function replaces any callbacks
registered for the CBType. When Chain is true, the CallbackEvent function is called in addition to
other registered callbacks.
The Handle parameter is an optional parameter indicating the database cursor associated with
the BDE function that may generate the callback. Provide a Handle to make the callback specific
to function calls for that cursor.
The types of callback descriptors associated with each CBType are given in the following table.
For more information, see the BDE documentation.:
CBType Usage callback descriptor

cbGENPROGRESS Respond to information about progress during large batch operations. For
example, implement a progress bar or cancel
button. Return cbrABORT to cancel,
cbrCONTINUE to continue. CBPROGRESSDesc

cbRESTRUCTURE Instruct BDE on how to proceed with situations encountered during a
table restructure. Return cbrYES, to proceed with
the default handling, cbrNO to proceed without the
default behavior, cbrABORT to cancel the
restructure. CBRESTCbDesc

cbBATCHRESULT Instruct BDE on how to proceed with situations encountered during a
batch operation. Return cbrYES, to proceed with
the default handling, cbrNO to proceed without the
default behavior, cbrABORT to cancel the batch
operation. CBRESTDbDesc

cbTABLECHANGED Respond to notifications that a table has changed. The return value is
ignored. not
used

cbCANCELQRY Return cbrABORT to cancel a long running query, or cbrCONTINUE to
keep going. The callback is called periodically
during the execution of the query. not
used

cbINPUTREQ Instruct BDE on how to respond when a file (such as a lookup table) is
missing. Indicate the chosen behavior in the
CBInputDesc and return cbrCONTINUE. CBInputDesc

cbDBASELOGIN Enter a password for an encrypted dBASE table and return
cbrCONTINUE. CBLoginDesc

cbFIELDRECALC Respond to notifications that fields need to be recalculated. The return
value is ignored. not
used

cbTRACE Respond to trace information about the actions taken by the BDE. The
return value is ignored. TRACEDesc

cbDBLOGIN Log in to a database server. Return cbrCONTINUE.not used.

cbDELAYEDUPD Respond to the notification when cached updates fail to write a modified
record to the database. Return cbrABORT to
cancel all cached updates, cbrSKIP or
cbrCONTINUE to discard the failed update and
continue posting records, cbrRETRY to try the
failed commit again. DELAYUPDCbDesc

Note
Borland C++Builder uses many BDE callback functions. Calling TBDECallback with Chain set to
false may disable the expected behavior of some objects.

Hierarchy

TObject

TBDECallback example
TBDECallback

TBevel
Hierarchy Properties Methods
TBevel represents a beveled outline.
Header
vcl/extctrls.hpp
Description
The TBevel component creates beveled boxes, frames, or lines. The bevel can appear raised or
lowered, depending on the value of the Style property. The Shape property determines whether
the bevel is a box, frame, or line.

TBevel properties
TBevel Alphabetically Legend

In TBevel
Shape
Style

Derived from TControl
Align
BoundsRect
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ControlState
ControlStyle
Cursor
Enabled
Height
Hint
Left
Name
Parent
ParentShowHint
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TBevel properties
TBevel By object Legend

Align
BoundsRect
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

ControlState
ControlStyle
Cursor

DesignInfo
Enabled

Height
Hint
Left
Name

Owner
ParentShowHint
Parent
Shape
ShowHint
Style
Tag
Top
Visible
Width

TBevel::Shape
TBevel
Determines the shape of the bevel.
__property TBevelShape Shape;
Description
These are the possible values of Shape:
Value Meaning

bsBox The bevel assumes a box shape.
bsFrame The bevel assumes a frame shape.
bsTopLine The bevel becomes a line at the top of the bevel control.
bsBottomLine The bevel becomes a line at the bottom of the bevel control.
bsLeftLine The bevel becomes a line at the left side of the bevel control.
bsRightLine The bevel becomes a line at the right side of the bevel control.

TBevel::Style
TBevel
Determines whether the bevel is raised or lowered.
__property TBevelStyle Style;
Description
These are the possible values of Style:
Value Meaning

bsLowered The bevel is lowered.
bsRaised The bevel is raised.

TBevel methods
TBevel Alphabetically

In TBevel
~TBevel
TBevel

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Invalidate
Perform
Refresh
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
Update

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress

MethodName
NewInstance

TBevel methods
TBevel By object

~TBevel
Assign
BeginDrag
BringToFront
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
DefaultHandler
DestroyComponents
Destroying
Dispatch
DragDrop
Dragging
EndDrag
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
GetTextBuf
GetTextLen
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
Perform
Refresh
RemoveComponent
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
TBevel
Update

TBevel::~TBevel
TBevel
~TBevel frees the memory associated with the TBevel object. Do not call ~TBevel directly.
Instead, use the delete keyword on the object, which causes ~TBevel to be invoked
automatically.
__fastcall virtual ~TBevel(void);

TBevel::TBevel
TBevel See also
Creates and initializes a TBevel object.
__fastcall virtual TBevel(Classes::TComponent* AOwner);
Description
TBevel generates a new TBevel instance with Style set to bsLowered and Shape set to bsBox.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent
TControl
TGraphicControl

TBevel example
TBevel

TBinaryField
Hierarchy Properties Methods Events See also
A TBinaryField object represents an untyped binary field in a dataset.
Header
vcl/dbtables.hpp
Description
TBinaryField is an abstract object that encapsulates the fundamental behavior common to
untyped binary fields. In addition to the properties, methods, and events common to all fields that
are introduced by the TField class, TBinaryField reimplements the properties that are needed to
read and write binary data from or to the underlying database table.
Do not create instances of TBinaryField. TBinaryField descendants are created automatically
each time a dataset is activated.

TBinaryField properties
TBinaryField Alphabetically Legend

In TBinaryField
Size

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Text
Value
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TBinaryField properties
TBinaryField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditMaskPtr

EditMask
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Value
Visible

TBinaryField::Size
TBinaryField
Size is the size of the binary field.
__property Size;

TBinaryField events
TBinaryField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TBinaryField events
TBinaryField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TBinaryField methods
TBinaryField Alphabetically

In TBinaryField
~TBinaryField
TBinaryField

Derived from TField
Assign
AssignValue
Clear
FocusControl
GetData
IsValidChar
SetData
SetFieldType

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TBinaryField methods
TBinaryField By object

~TBinaryField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TBinaryField

TBinaryField::~TBinaryField
TBinaryField
~TBinaryField frees the memory associated with the TBinaryField object. Do not call ~
TBinaryField directly. Instead, use the delete keyword on the object, which causes ~
TBinaryField to be invoked automatically.
__fastcall virtual ~TBinaryField(void);

TBinaryField::TBinaryField
TBinaryField See also
TBinaryField is the constructor for a binary field component.
__fastcall virtual TBinaryField(Classes::TComponent* AOwner);
Description
The TBinaryField method creates and initializes an instance of TBinaryField. TBinaryField simply
calls the TField::TField method

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField

TBinaryField example
TBinaryField

TBitBtn
Hierarchy Properties Methods Events See also
TBitBtn is a push button control that can include a bitmap on its button face.
Header
vcl/buttons.hpp
Description
Bitmap buttons have the general behavior of button controls. Use them to initiate actions from
forms and dialog boxes.
Bitmap buttons have additional properties used to specify the bitmap images, their appearance
and placement on the button. You can choose from predefined bitmap buttons styles or use your
own, customized bitmap for the button. Although the button can be associated with only a single
bitmap, the bitmap (glyph property) can be subdivided into four equally sized portions which
display based on the state of the button: up, down, and disabled (note that speed buttons can
make use of the fourth part of the glyph with their fourth state called “stay down”).
The Kind property of TBitBtn lets you easily create buttons that have common behaviors, such
as Ok, Cancel, Help, and so on. These predefined button types have appropriate graphical
images and default behaviors, so you can easily add common button types to your application
without being distracted with the coding overhead.

TBitBtn properties
TBitBtn Alphabetically Legend

In TBitBtn
Glyph
Kind
Layout
Margin
NumGlyphs
Spacing
Style

Derived from TButton
Cancel
Default
ModalResult

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect

Caption
ClientHeight
ClientWidth
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TBitBtn properties
TBitBtn By object Legend

Align
BoundsRect

Brush
Cancel
Caption
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
Default
DesignInfo
DragCursor
DragMode
Enabled
Font
Glyph

Handle
Height
HelpContext
Hint
Kind
Layout
Left
Margin
ModalResult
Name
NumGlyphs

Owner
ParentFont
ParentShowHint
Parent
PopupMenu
ShowHint

Showing
Spacing
Style
TabOrder
TabStop
Tag
Top
Visible
Width

TBitBtn::Glyph
TBitBtn See also Example
Specifies the bitmap that appears on the selected bitmap button.
__property Graphics::TBitmap* Glyph;
Description
Use the Open dialog box that appears as an editor in the Object Inspector to choose a bitmap
file (with a .BMP extension) to use on the button, or specify a bitmap file at runtime.
You can provide up to four images on a bitmap button or speed button with a single bitmap.
Borland C++Builder then displays one of these images depending on the state of the button.
Image position in bitmap Button state Description

First Up This image appears when the button is up; the
normal state of the button This image is also used
when the button has focus (for example, if you tab
to it). In this case, a focus rectangle is drawn
around the button. If no other images exist in the
bitmap, Borland C++Builder also uses this image
for all other images.

Second Disabled This image usually appears dimmed to indicate
that the button can’t be selected.

Third Down This image appears when a button is clicked. The
up state image reappears when the user releases
the mouse button.

If only one image is present, Borland C++Builder attempts to represent the other states by
altering the image slightly for the different states, although the stay down state is always the
same as the up state. If you aren’t satisfied with the results, you can provide one or more
additional images in the bitmap.
If you have multiple images in a bitmap, you must specify the number of images that are in the
bitmap with the NumGlyphs property. All images must be the same size and next to each other
in a horizontal row.
Note
The lower left hand pixel of the bitmap is reserved for the “transparent” color. Any pixel in the
bitmap which matches that lower left hand pixel will be “transparent.”

TBitBtn::Kind
TBitBtn See also Example
Determines the kind of bitmap button.
__property TBitBtnKind Kind;
Description
The TBitBtnKind type contains the values the Kind property of a TBitBtn bitmap button can
assume.
These are the possible values and their meanings:
Value Meaning

bkCustom You indicate which bitmap you want the bitmap button to have by setting
the value of the Glyph property to the bitmap of your choice. Like push
buttons, you can either select a ModalResult for the button, or you can
supply the code to respond to an OnClick event.

bkOK A green check mark and the text “OK” appear on the button face. The
button becomes the default button (the Default property is automatically
set to true). When the user chooses the button, the dialog box closes.
The resulting ModalResult value of the bitmap button is mrOK.

bkCancel A red X and the text “Cancel” appear on the button face. The button
becomes the Cancel button (the Cancel property is automatically set to
true). When the user chooses the button, the dialog box closes. The
resulting ModalResult value of the bitmap button is mrCancel.

bkYes A green check mark and the text “Yes” appear on the button face. The
button becomes the default button (the Default property is automatically
set to true). When the user chooses the button, any changes the user
made in the dialog box are accepted and the dialog box closes. The
resulting ModalResult value of the bitmap button is mrYes.

bkNo A red no symbol and the text “No” appear on the button face. The
button becomes the Cancel button (the Cancel property is automatically
set to true). When the user chooses the button, any changes the user
made in the dialog box are canceled and the dialog box closes. The
resulting ModalResult value of the bitmap button is mrNo.

bkHelp A cyan question mark and the text “Help” appear on the button face.
When the user chooses the button, a Help screen in the application’’s
Help file appears. The Help file that appears is the file specified as the
value of the application’s HelpFile property. The value of the
HelpContext property of the button specifies which Help screen in the
Help file appears.

bkClose A door with a green exit sign over it (use your imagination) and the text
“Close” appear on the button face. When the user chooses the button,
the form closes. The Default property of the button is true.

bkAbort A red X and the text “Abort” appear on the button face.
bkRetry A green circular arrow and the text “Retry” appear on the button face.
bkIgnore A green man walking away and the text “Ignore” appear on the button

face. Use it to allow the user to continue after an error has occurred.
bkAll A double green check mark and the text “Yes to All” appear on the

button face.

TBitBtn::Layout
TBitBtn See also Example
Determines where the image appears on the bitmap button.
__property TButtonLayout Layout;
Description
The TButtonLayout type defines the values the Layout property of a bitmap button (TBitBtn).
These are the possible values:
Value Meaning

blGlyphLeft The image appears at the left side of the text or caption.
blGlyphRight The image appears at the right side of the text or caption.
blGlyphTop The image appears at the top of the text or caption.
blGlyphBottom The image appears at the bottom of the text or caption.

TBitBtn::Margin
TBitBtn See also Example
Determines the number of pixels between the edge of the image (specified in the Glyph
property) and the edge of the button.
__property int Margin;
Description
The edges that the margin separates depends on the layout of the image and text (specified in
the Layout property). For example, if Layout is blGlyphLeft, the margin appears between the left
edge of the image and the left edge of the button. If Margin is 3, three pixels separates the
image and the button edges. If Margin is 0, no distance in pixels separates the image and the
button edges.
If Margin is –1 (which it is by default), then the image and text (specified in the Caption property)
are centered. The number of pixels between the image and button edge is equal to the number
of pixels between the opposite edge of the button and the text.

TBitBtn::NumGlyphs
TBitBtn See also Example
Indicates the number of images that are in the graphic specified in the Glyph property for use on
a bitmap button or speed button.
__property TNumGlyphs NumGlyphs;
Description
If you have multiple images in a bitmap, you must specify the number of images that are in the
bitmap with the NumGlyphs property. All images must be the same size and next to each other
in a row. Valid NumGlyphs values are 1 to 4. The default value is 1.
You can provide up to four images on a bitmap button or speed button with a single bitmap.
Borland C++Builder then displays one of these images depending on the state of the button.
Only one image is required in a bitmap.
Image position in bitmap Speed button stateDescription

First Up This image appears when the button is unselected.
If no other images exist in the bitmap, Borland C+
+Builder uses this image for all other images.

Second Disabled This image usually appears dimmed and indicates
that the button can’t be selected.

Third Down This image appears when a button is clicked. The
up state image then reappears when the user
releases the mouse button.

If only one image is present, Borland C++Builder attempts to represent the other states by
altering the image slightly for the different states, although the stay down state is always the
same as the up state. If you aren’t satisfied with the results, you can provide additional images
in the bitmap.
The TNumGlyphs type defines the range of values (1–4) the NumGlyphs property of a bitmap
button (TBitBtn) can assume.

TBitBtn::Spacing
TBitBtn See also Example
Determines where the image and text appear on a bitmap or speed button.
__property int Spacing;
Description
Spacing determines the number of pixels between the image (specified in the Glyph property)
and the text (specified in the Caption property). The default value is 4 pixels.
If Spacing is a positive number, its value is the number of pixels between the image and text. If
Spacing is 0, no pixels will be between the image and text. If Spacing is –1, the text appears
centered between the image and the button edge. The number of pixels between the image and
text is equal to the number of pixels between the text and the button edge opposite the glyph.

TBitBtn::Style
TBitBtn See also Example
Determines the appearance of a bitmap button.
__property TButtonStyle Style;
Description
The TButtonStyle type contains the values the Style property of bitmap buttons can assume.
These are the possible values:
Value Meaning

bsAutoDetect When you are using Windows 3.x, the bitmap button uses the standard
Windows 3.x look. When you are using a later version of Windows, the
bitmap button uses a newer look.

bsWin31 Uses the standard Windows 3.1 look, regardless of which version of
Windows you are running.

bsNew Uses a new bitmap button look, regardless of which version of Windows
you are running.

TBitBtn events
TBitBtn Alphabetically Legend

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TBitBtn events
TBitBtn By object Legend

OnClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TBitBtn methods
TBitBtn Alphabetically

In TBitBtn
~TBitBtn
Click
TBitBtn

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent

InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TBitBtn methods
TBitBtn By object

~TBitBtn
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Click
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo

Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TBitBtn
UpdateControlState
Update

TBitBtn::~TBitBtn
TBitBtn See also
~TBitBtn is the destructor for the bitmap button object.
__fastcall virtual ~TBitBtn(void);
Description
~TBitBtn frees the TGlyph and TCanvas objects before calling the inherited ~TBitBtn method.

TBitBtn::Click
TBitBtn See also
Simulates a mouse click, as if the user had clicked the button.
virtual void __fastcall Click(void);
Description
When Click is called any code attached to the OnClick event executes.
If the value of the Kind property is bkClose, calling Click closes the form. If the value of Kind is
bkHelp, calling Click displays the Help screen assigned with the HelpContext property to the
bitmap button. If Kind has any other value, the inherited Click method is called.

TBitBtn::TBitBtn
TBitBtn See also
TBitBtn constructs an instance of the button control and initializes its values.
__fastcall virtual TBitBtn(Classes::TComponent* AOwner);
Description
Use TBitBtn to programmatically instantiate a button. For buttons created in the Borland C++
Builder form designer, TBitBtn is called automatically.
TBitBtn
• Calls the constructor of its parent object.
• Creates the button glyph.
• Assigns the GlyphChanged method to the OnChange event.
• Creates a TCanvas object for the bitmap button.
• Sets the Style property value to bsAutoDetect.
• Sets the Kind property value to bkCustom.
• Sets the Layout property value to blGlyphLeft.
• Sets the Spacing property value to 4.
• Sets the Margin property value to –1.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TButtonControl
TButton

TBitBtn example
TBitBtn

TBitmap
Hierarchy Properties Methods Events See also
TBitmap is an encapsulation of a Windows HBITMAP and HPALETTE.
Header
vcl/graphics.hpp
Description
TBitmap contains an internal image of the bitmap graphic and automatically manages realizing
of the palette. A bitmap is a powerful graphics object used to create, manipulate (scale, scroll,
rotate, and paint), and store images as files on a disk.
To draw a bitmap on a canvas, call the Draw or StretchDraw methods of a TCanvas object,
passing a TBitmap as a parameter.
Creating copies of a TBitmap is very fast since the handles is copied not the image. If the image
is modified, and the handle is shared by more than one TBitmap object, the image is copied
before the modification is performed (i.e. copy on write).

TBitmap properties
TBitmap Alphabetically Legend

In TBitmap
Canvas
Empty

Handle
Height
IgnorePalette
Monochrome
Palette

TransparentColor
Width

Derived from TGraphic
Modified

TBitmap properties
TBitmap By object Legend

Canvas
Empty

Handle
Height
IgnorePalette
Modified
Monochrome
Palette

TransparentColor
Width

TBitmap::Canvas
TBitmap See also
Canvas provides access to a drawing surface that represents the bitmap.
__property TCanvas* Canvas;
Description
Canvas allows drawing on the bitmap by providing a TCanvas object for this purpose. Drawing
on the canvas effectively modifies the underlying bitmap. Use the Canvas property by calling the
Draw and StretchDraw methods of the Canvas object represented by the Canvas property. The
bitmap object is passed as a parameter to these methods.
A canvas object is created automatically for the bitmap and the property is read-only.

TBitmap::Empty
TBitmap See also
Empty specifies whether the bitmap object contains a bitmap.
Description
Use Empty to determine if a bitmap has been loaded into the bitmap object.
Empty is true if the bitmap contains a bitmap image, and false if it does not.

TBitmap::Handle
TBitmap Example
Handle provides access to the Windows GDI bitmap handle for accessing the GDI bitmap object.
__property HBITMAP Handle;
Description
Use Handle to call a Windows API function that requires the handle of a bitmap object. Pass
Handle as the bitmap handle parameter to these functions.
Handle is the HBITMAP encapsulated by the bitmap object. Grabbing the handle directly should
be avoided since it causes the HBITMAP to be copied if more than one TBitmap shares the
handle.

TBitmap::Height
TBitmap See also Example
Height specifies the vertical size of the bitmap in pixels.
Description
Use Height to find or set the height of the bitmap image. If the Height property is changed, the
bitmap image is copied to a new image with the new Height.

TBitmap::IgnorePalette
TBitmap See also
IgnorePalette determines whether the bitmap realizes its palette when drawing its image.
__property bool IgnorePalette;
Description
Use IgnorePalette when speed of drawing is a priority. When IgnorePalette is true, the bitmap
does not realize its palette when drawing itself, resulting in lower picture quality on 256 color
video drivers, but faster drawing of the bitmap image.
Note
Borland C++Builder uses IgnorePalette only when a TDBImage is replicated in a TDBCtrlGrid.

TBitmap::Monochrome
TBitmap
Monochrome determines whether the bitmap displays its image in monochrome.
__property bool Monochrome;
Description
If Monochrome is true if the bitmap displays as a monochrome bitmap. Monochrome is false if
the bitmap displays in color.

TBitmap::Palette
TBitmap
Palette controls a bitmap’s color mapping.
__property HPALETTE Palette;
Description
Use Palette to change the palette for the bitmap.
Palette is the HPALETTE realized by the bitmap. Grabbing this handle directly should be
avoided since it causes the HPALETTE to be copied if more than one TBitmap shares the
handle.
Use Palette to assign custom palettes created with CreatePalette to this property. Palette
contains up to 256 colors that can be used to display the bitmap on screen.
When running in a 256 color video mode, and if the bitmap is drawn by an application running in
the foreground, all colors of Palette will be added to the Windows system palette. If the bitmap is
drawn by an application running in the background and another application has loaded the
system palette with its own colors, the bitmap's colors will be mapped to the system palette.
Palette=0 if the bitmap has no palette.

TBitmap::TransparentColor
TBitmap See also
TransparentColor returns the color of the bitmap when it is transparent.
__property TColor TransparentColor;
Description
Use TransparentColor to get the color used to represent the transparent areas of the bitmap.
TransparentColor is read-only and cannot be modified.

TBitmap::Width
TBitmap Example
Width specifies the width of the bitmap in pixels.
Description
Use Width to find or set the width of the bitmap.

TBitmap events
TBitmap Alphabetically

Derived from TGraphic
OnChange

TBitmap events
TBitmap By object

OnChange

TBitmap methods
TBitmap Alphabetically

In TBitmap
~TBitmap
Assign
Dormant
FreeImage
LoadFromClipboardFormat
LoadFromResourceID
LoadFromResourceName
LoadFromStream
ReleaseHandle
ReleasePalette
SaveToClipboardFormat
SaveToStream
TBitmap

Derived from TGraphic
LoadFromFile
SaveToFile

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TBitmap methods
TBitmap By object

~TBitmap
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
Dormant
FieldAddress
FreeImage
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
LoadFromClipboardFormat
LoadFromFile
LoadFromResourceID
LoadFromResourceName
LoadFromStream
MethodAddress
MethodName
NewInstance
ReleaseHandle
ReleasePalette
SaveToClipboardFormat
SaveToFile
SaveToStream
TBitmap

TBitmap::~TBitmap
TBitmap See also
~TBitmap frees the memory associated with the TBitmap object. Do not call ~TBitmap directly.
Instead, use the delete keyword on the object, which causes ~TBitmap to be invoked
automatically.
__fastcall virtual ~TBitmap(void);
Description
~TBitmap releases the internal bitmap image (TBitmapImage object) and frees the canvas
before calling the destructor of its parent object.

TBitmap::Assign
TBitmap See also
Assign copies a new bitmap image to the bitmap object.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
Assign copies the bitmap image contained in Source to the bitmap object.
Assign then calls the inherited Assign.
Note
An object of one type can always be assigned to another object of the same type. Also, the
Source can be of type TPicture if the Graphic property of the picture is a bitmap.

TBitmap::Dormant
TBitmap See also
Dormant creates a memory bitmap image in order to release the bitmap handle and save
resources.
void __fastcall Dormant(void);
Description
Use Dormant to reduce the amount of GDI resources used by the application. Dormant creates a
bitmap image in memory using a memory stream object. This preserves the image so that the
bitmap can then free the HBITMAP (accessed through the Handle property) that was assigned to
it.

TBitmap::FreeImage
TBitmap
FreeImage frees the cached file image stored in memory by the bitmap.
void __fastcall FreeImage(void);
Description
Use FreeImage to reduce the memory requirements of an application when color depth is not an
issue. Freeing the image releases the memory allocated for the bitmap image, at the same time
loosing some of the color depth of the bitmap.
When a bitmap is loaded into a bitmap object, Borland C++Builder creates an image of the
loaded bitmap in memory. If the bitmap isn't changed, the memory image is used when saving
the bitmap, to verify that the bitmap has not lost color depth.

TBitmap::LoadFromClipboardFormat
TBitmap See also
LoadFromClipboardFormat loads a bitmap from the Clipboard into the bitmap object.
virtual void __fastcall LoadFromClipboardFormat(unsigned short AFormat,
int AData, HPALETTE APalette);

Description
LoadFromClipboardFormat is called if the bitmap is registered with the TPicture object using the
RegisterClipboardFormat method.
LoadFromClipboardFormat replaces the current image with the data pointed to by the AData
parameter. The palette for the bitmap is specified by the APalette parameter.

TBitmap::LoadFromResourceID
TBitmap See also
LoadFromResourceID loads a bitmap from a resource into the bitmap object.
void __fastcall LoadFromResourceID(int Instance, int ResID);
Description
Use LoadFromResourceID to load a specified bitmap resource along with palette information
from a module's executable file. The resource ID for the bitmap is specified in the ResID
parameter.

TBitmap::LoadFromResourceName
TBitmap See also
LoadFromResourceName loads a bitmap resource into the bitmap object.
void __fastcall LoadFromResourceName(int Instance, const System::
AnsiString ResName);

Description
LoadFromResourceName loads the specified bitmap resource along with palette information
from a module's executable file. Specify the resource to be loaded as the value of ResName.

TBitmap::LoadFromStream
TBitmap See also
LoadFromStream loads the bitmap from a stream into the bitmap object.
virtual void __fastcall LoadFromStream(Classes::TStream* Stream);
Description
To use LoadFromStream specify the stream from which the bitmap is to be loaded as the value
of Stream.

TBitmap::ReleaseHandle
TBitmap
ReleaseHandle returns the handle to the bitmap so that the TBitmap object no longer knows
about the handle.
HBITMAP __fastcall ReleaseHandle(void);
Description
Use ReleaseHandle to disassociate the bitmap from the bitmap handle.

TBitmap::ReleasePalette
TBitmap
ReleasePalette returns the handle to the bitmap's palette and disassociates the palette from the
TBitmap object.
HPALETTE __fastcall ReleasePalette(void);
Description
Use ReleasePalette to disassociate the palette from the bitmap image.

TBitmap::SaveToClipboardFormat
TBitmap See also
SaveToClipboardFormat saves a bitmap to a Clipboard format.
virtual void __fastcall SaveToClipboardFormat(unsigned short &Format,
int &Data, HPALETTE &APalette);

Description
Use SaveToClipboardFormat to save the bitmap to a Clipboard format by specifying the palette
as the value of the APalette parameter, the format as the value of AFormat, and the data to be
saved as the value of AData. Before the bitmap can be saved, an application must have
registered the format with the TBitmap object using the RegisterClipboardFormat method.

TBitmap::SaveToStream
TBitmap
SaveToStream saves the bitmap to a stream.
virtual void __fastcall SaveToStream(Classes::TStream* Stream);
Description
Use SaveToStream to save the bitmap to the stream specified by the Stream parameter.

TBitmap::TBitmap
TBitmap See also
TBitmap instantiates a bitmap object.
__fastcall virtual TBitmap(void);
Description
Call TBitmap to instantiate a bitmap object at runtime. TBitmap is also called automatically when
a bitmap image is loaded into a TImage.
TBitmap allocates memory for a bitmap object, and calls the constructor of its parent object.
Then it creates a TBitmapImage as the internal image that represents the bitmap.

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TGraphic

TBitmap example
TBitmap

TBits
Hierarchy Properties Methods
TBits stores an array of Boolean values.
Header
vcl/classes.hpp
Description
Use TBits to store and access an indefinite number of Boolean values. TBits can store as many
Boolean values as can fit in available memory, automatically expanding its storage space as
needed. If the number of Boolean values is limited to 32, the same functionality can be achieved
using the bitwise “and” and “or” operators against an integer type variable.

TBits properties
TBits Alphabetically

In TBits
Bits
Size

TBits properties
TBits By object

Bits
Size

TBits::Bits
TBits See also
Bits is the array of Boolean values that the TBits object represents.
__property bool Bits[int Index];
Description
Use Bit to read or set a particular Boolean value, as indexed by the Index parameter. If Index
isn’t in the range 0..Size 1, an EBitsError exception is raised.

TBits::Size
TBits See also
Size is the number of Boolean values the TBits object can hold.
__property int Size;
Description
Set Size to expand or shrink the number of values in the array. When expanding the size, new
entries are set to false. When shrinking the size, values whose indexes are less than or equal to
the new size are preserved; entries whose indexes are greater than the new size are lost.

TBits methods
TBits Alphabetically

In TBits
~TBits
OpenBit
TBits

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TBits methods
TBits By object

~TBits
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
OpenBit
TBits

TBits::~TBits
TBits See also
~TBits frees the memory associated with the TBits object. Do not call ~TBits directly. Instead,
use the delete keyword on the object, which causes ~TBits to be invoked automatically.
__fastcall virtual ~TBits(void);
~TBits frees the memory used to store the array of Boolean values.

TBits::OpenBit
TBits See also
OpenBit returns the index of the first false value.
int __fastcall OpenBit(void);
Description
Use OpenBit to find the first bit in the array that has not been set to true.

TBits::TBits
TBits See also
TBits creates a new TBits object.
__fastcall TBits(void);
Description
Constructs a TBits object.

Hierarchy

TObject

TBits example
TBits

TBlobField
Hierarchy Properties Methods Events See also
The TBlobField object represents a field in a dataset that holds a reference to a binary large
object (BLOB).
Header
vcl/dbtables.hpp
Description
BLOB fields are database fields that contain binary data of arbitrary length. Unlike binary fields,
BLOB fields do not store the binary data directly in the database table. Instead, the field in the
physical database table contains a reference to a separate file that contains the individual BLOB
value for the field.
TBlobField introduces new methods to support streaming of the data in the BLOB field.
As a descendant of TField, TBlobField includes many properties, methods, and events that are
useful for managing the value and properties of a field in a database.
BLOB field components can represent different arbitrarily large data types. These data types are
distinguished in the header of the binary data. In addition to the field types supported directly,
TBlobField is the direct ancestor of two BLOB field components: TMemoField (ftMemo) and
TGraphicField (ftGraphic).

TBlobField properties
TBlobField Alphabetically Legend

In TBlobField
BlobType
Size
Value

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Text
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TBlobField properties
TBlobField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
BlobType
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditMaskPtr

EditMask
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Value
Visible

TBlobField::BlobType
TBlobField See also
BlobType identifies the type of the BLOB field associated with a BLOB field object.
__property TBlobType BlobType;
Description
Use BlobType to set or read the data type for the BLOB data associated with the field
component.
Specify BlobType when using a TBlobField object to represent a BLOB field type that isn’t
directly supported (such as a formatted memo BLOB). The BlobType ensures that the BLOB
type in the table matches the expected field type.
TBlobType is a range of TFieldType values. These are the values in that range:
Value Description

ftBlob Binary Large Object field
ftMemo Text memo field
ftGraphic Bitmap field
ftFmtMemo Formatted text memo field
ftParadoxOle Paradox OLE field
ftDBaseOle dBase OLE field
ftTypedBinary Typed binary field

TBlobField::Size
TBlobField
Size is the size of the blob field.
__property Size;

TBlobField::Value
TBlobField See also
Value is the actual data in the BLOB field.
property System::AnsiString Value;
Description
Use Value to read data directly from and write data directly to a BLOB field component at
runtime. For BLOB fields, the Value property is equivalent to the AsString property.
Note
The string data type can store binary data as well as text. Thus, even BLOB fields for nontextual
BLOB types such as ftGraphic or ftTypedBinary can get or set their data using a string.

TBlobField events
TBlobField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TBlobField events
TBlobField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TBlobField methods
TBlobField Alphabetically

In TBlobField
~TBlobField
Assign
Clear
LoadFromFile
LoadFromStream
SaveToFile
SaveToStream
SetFieldType
SetText
TBlobField

Derived from TField
AssignValue
FocusControl
GetData
IsValidChar
SetData

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TBlobField methods
TBlobField By object

~TBlobField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
LoadFromFile
LoadFromStream
MethodAddress
MethodName
NewInstance
RemoveComponent
SaveToFile
SaveToStream
SetData
SetFieldType
SetText
TBlobField

TBlobField::~TBlobField
TBlobField
~TBlobField frees the memory associated with the TBlobField object. Do not call ~TBlobField
directly. Instead, use the delete keyword on the object, which causes ~TBlobField to be invoked
automatically.
__fastcall virtual ~TBlobField(void);

TBlobField::Assign
TBlobField See also
Assign copies a value to the BLOB field.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
Use Assign to copy data to the BLOB field. Assign copies the Value of a BLOB field from
• Another BLOB field
• A TStrings object
• A TBitmap object, if the BlobType is ftGraphic or ftTypedBinary
• A TPicture object, if the BlobType is ftGraphic or ftTypedBinary
• Any object that supports TBlobField in its AssignTo method

TBlobField::Clear
TBlobField See also
Clear clears the current value in the BLOB field.
virtual void __fastcall Clear(void);
Description
Use Clear to delete the current value in the field and leave the field without a value.

TBlobField::LoadFromFile
TBlobField See also
LoadFromFile loads a BLOB from a file into the field.
void __fastcall LoadFromFile(const System::AnsiString FileName);
Description
Use LoadFromFile to load the contents of a file into a BLOB field. Specify the name of the file to
load into the field as the value of the FileName parameter.

TBlobField::LoadFromStream
TBlobField See also
LoadFromStream loads a BLOB from a stream into the field.
void __fastcall LoadFromStream(Classes::TStream* Stream);
Description
Use LoadFromStream to copy the contents of a stream into the BLOB field. Specify the stream
from which the field’s value is copied as the value of the Stream parameter.

TBlobField::SaveToFile
TBlobField See also
SaveToFile saves the contents of the BLOB field to a file.
void __fastcall SaveToFile(const System::AnsiString FileName);
Description
Use SaveToFile to save the contents of the BLOB field to a file. Specify the name of the file as
the value of the FileName parameter.

TBlobField::SaveToStream
TBlobField See also
SaveToStream saves the contents of the BLOB field to a stream.
void __fastcall SaveToStream(Classes::TStream* Stream);
Description
Use SaveToStream to copy the contents of a BLOB field to a stream. Specify the name of the
stream to which the field’s value is saved as the value of the Stream parameter.

TBlobField::SetFieldType
TBlobField See also
SetFieldType specifies the type of the BLOB field.
virtual void __fastcall SetFieldType(Db::TFieldType Value);
Description
Use SetFieldType to change the field type of a BLOB field, overriding the default type.
Normally, the type of the physical database field is checked and a TFieldType is selected that
matches most closely. BLOB fields can indicate more explicitly what kind of BLOB is in the
database. Specify the BLOB type as the value of the Value parameter.
These following table contains the possible values for BLOB fields. Calling SetFieldType with
any other data type does nothing.
Value Description

ftBlob Binary Large Object field
ftMemo Text memo field
ftGraphic Bitmap field
ftFmtMemo Formatted text memo field
ftParadoxOle Paradox OLE field
ftDBaseOle dBase OLE field
ftTypedBinary Typed binary field
Note
Calling SetFieldType does the same thing as setting the BlobType property.

TBlobField::SetText
TBlobField See also
SetText raises an exception for BLOB field objects.
virtual void __fastcall SetText(const System::AnsiString Value);
Description
SetText prevents data-aware controls from storing the ‘(fieldname)’ string back into the
dataset. To set the value of a BLOB field to textual data, use the AsString property.

TBlobField::TBlobField
TBlobField See also
TBlobField creates an instance of a BLOB field component.
__fastcall virtual TBlobField(Classes::TComponent* AOwner);
Description
Call TBlobField to create and initialize an instance of TBlobField. TBlobField sets the DataType
to ftBlob after calling the inherited constructor.
Explicit calls to TBlobField are seldom needed because the BLOB field component is
instantiated automatically for all BLOB fields in a dataset.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField

TBlobField example
TBlobField

TBlobStream
Hierarchy Properties Methods See also
TBlobStream is a stream object that provides services which allow applications to read from or
write to field objects that represent Binary large object (BLOB) fields.
Header
vcl/dbtables.hpp
Description
Use TBlobStream to access or modify the value of a BLOB field object. BLOB field objects are
TBlobField objects and descendants of TBlobField such as TGraphicField and TMemoField.
BLOB fields use BLOB streams to implement many of their data access properties and methods.
TBlobStream allows objects that have no specialized knowledge of how data is stored in a BLOB
field to read or write such data by employing the uniform stream interface.
To use a BLOB stream, create an instance of TBlobStream, use the methods of the stream to
read or write the data, and then free the BLOB stream.

TBlobStream properties
TBlobStream Alphabetically Legend

Derived from TStream
Position

Size

TBlobStream properties
TBlobStream By object Legend

Position
Size

TBlobStream methods
TBlobStream Alphabetically

In TBlobStream
~TBlobStream
Read
Seek
TBlobStream
Truncate
Write

Derived from TStream
CopyFrom
ReadBuffer
ReadComponent
ReadComponentRes
ReadResHeader
WriteBuffer
WriteComponent
WriteComponentRes
WriteDescendent
WriteDescendentRes

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TBlobStream methods
TBlobStream By object

~TBlobStream
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CopyFrom
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
ReadBuffer
ReadComponentRes
ReadComponent
ReadResHeader
Read
Seek
TBlobStream
Truncate
WriteBuffer
WriteComponentRes
WriteComponent
WriteDescendentRes
WriteDescendent
Write

TBlobStream::~TBlobStream
TBlobStream See also
~TCustomRichEdit frees the memory associated with the TCustomRichEdit object. Do not call ~
TCustomRichEdit directly. Instead, use the delete keyword on the object, which causes ~
TCustomRichEdit to be invoked automatically.
__fastcall virtual ~TBlobStream(void);
Description
~TCustomRichEdit triggers an OnDataChange event if the BLOB stream was used to overwrite
or modify the data in the field. TCustomRichEdit then frees any buffers that were allocated to
handle the data.

TBlobStream::Read
TBlobStream See also
Read reads up to Count bytes from the current position in the field’s data into Buffer.
virtual long __fastcall Read(void *Buffer, long Count);
Description
Call Read to read data from the BLOB field when the number of bytes in the field’s data is not
known. Buffer must have at least Count bytes allocated to hold the data that was read from the
field.
Read transfers up to Count bytes from the BLOB data into Buffer, starting in the current position,
and then advances the current position by the number of bytes actually transferred. Read returns
the number of bytes actually transferred (which may be less than the number requested in
Count.)
If the BLOB field is an instance of TMemoField, Read will check the Transliterate property of the
field, and convert the data into ANSI from the character set specified by the dataset if
Transliterate is true.
All the other data-reading methods of a BLOB stream (ReadBuffer, ReadComponent) call Read
to do their actual reading.
Note
Do not call Read when the TBlobStream was created in bmWrite mode.

TBlobStream::Seek
TBlobStream See also
Seek resets the current position of the TBlobStream.
virtual long __fastcall Seek(long Offset, unsigned short Origin);
Description
Use Seek to move the current position within the BLOB data by the indicated offset. Seek allows
an application to read from or write to a particular location within the BLOB data.
The Origin parameter indicates how to interpret the Offset parameter. Origin should be one of
the following values:
Value Meaning

soFromBeginning Offset is from the beginning of the BLOB data. Seek moves to the
position Offset. Offset must be >= 0.

soFromCurrent Offset is from the current position in the BLOB data. Seek moves to
Position + Offset.

soFromEnd Offset is from the end of the BLOB data. Offset must be <= 0 to indicate a
number of bytes before the end of the BLOB.

Seek returns the new value of the Position property, the new current position in the BLOB data.

TBlobStream::Truncate
TBlobStream See also
Truncate discards all data in the BLOB field from the current position on.
void __fastcall Truncate(void);
Description
Use Truncate to limit the size of the BLOB data. Calling Truncate when the current position is 0
will clear the contents of the BLOB field.
Note
Do not call Truncate when the TBlobStream was created in bmRead mode.

TBlobStream::Write
TBlobStream See also
Write writes Count bytes from Buffer to the current position in the field and updates the current
position by Count bytes.
virtual long __fastcall Write(const void *Buffer, long Count);
Description
Use Write to write Count bytes to the BLOB field, starting at the current position. The Write
method for TBlobStream always writes the entire Count bytes, as BLOB data does not
necessarily include a termination character. Thus, Write is equivalent to the WriteBuffer method.
If the BLOB field is an instance of TMemoField, Write will check the Transliterate property of the
field, and convert the data from ANSI into the character set of the dataset if Transliterate is true.
All the other data-writing methods of a BLOB stream (WriteBuffer, WriteComponent) call Write to
do their actual writing.
Note
Do not call Write when the TBlobStream was created in bmRead mode.

TBlobStream::TBlobStream
TBlobStream See also
TBlobStream creates an instance of TBlobStream.
__fastcall TBlobStream(TBlobField* Field, TBlobStreamMode Mode);
Description
Call TBlobStream to obtain an instance of TBlobStream for reading from or writing to a specific
TBlobField object.
TBlobStream links the TBlobStream to the field object specified by the Field parameter. Mode
specifies how the stream will be used. Mode must be one of the following values:
Value Meaning

bmRead The BLOB stream can read data from the field.
bmWrite The BLOB stream can replace the data in the field.
bmReadWrite The BLOB stream can modify the data in the field.

Accessibility
Read-only

Hierarchy

TObject

TStream

TBlobStream example
TBlobStream

TBitmapImage
Hierarchy Methods See also
TBitmapImage is the internal representation of the bitmap image for a TBitmap object.
Header
vcl/graphics.hpp
Description
TBitmapImage is used only for internal implementation in Borland C++Builder. It represents the
internal image of the bitmap encapsulated by the TBitmap object. All of the data and methods
introduced in TBitmapImage are private. They contain information about the specific HBITMAP,
including pointers to the standard HBITMAP structures defined by Windows. TBitmapImage is
referenced in the constructor of the TBitmap object the bitmap image is created.

TBitmapImage methods
TBitmapImage Alphabetically

In TBitmapImage
~TBitmapImage
TBitmapImage

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TBitmapImage methods
TBitmapImage By object

~TBitmapImage
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TBitmapImage

TBitmapImage::~TBitmapImage
TBitmapImage
~TBitmapImage frees the memory associated with the TBitmapImage object. Do not call ~
TBitmapImage directly. Instead, use the delete keyword on the object, which causes ~
TBitmapImage to be invoked automatically.
__fastcall virtual ~TBitmapImage(void);

TBitmapImage::TBitmapImage
TBitmapImage
TBitmapImage creates a new TBitmapImage object.
__fastcall TBitmapImage(void);

Hierarchy

TObject

TInternalImage

TBitmapImage example
TBitmapImage

TBooleanField
Hierarchy Properties Methods Events See also
A TBooleanField object represents a field containing Boolean values.
Header
vcl/dbtables.hpp
Description
Boolean fields can hold values of true or false.
TBooleanField introduces new properties to convert between boolean values and other data
types, and to provide display strings that represent various interpretations of the data. As a
descendant of TField, TBooleanField includes many properties, methods, and events that are
useful for managing the value and properties of a field in a database.

TBooleanField properties
TBooleanField Alphabetically Legend

In TBooleanField
DisplayValues
Value

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TBooleanField properties
TBooleanField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayLabel

DisplayName
DisplayText

DisplayValues
DisplayWidth

EditMaskPtr
EditMask
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Value
Visible

TBooleanField::DisplayValues
TBooleanField See also
DisplayValues controls how the Boolean field is translated to and from display format.
__property System::AnsiString DisplayValues;
Description
Use DisplayValues to specify strings you want used to represent Boolean values. Use any pair
of phrases, separated by a semicolon. For example, to have the true and false values
correspond to the letters T and F, respectively, set DisplayValues to T;F. Similarly, to set the
values of true and false to the strings Yes and No, set DisplayValues to Yes;No.
The string associated with true or false can be an empty string. To set the value for true to an
empty string, set DisplayValues to a string that begins with a semicolon. For example, to
associate false with the string Fail, and true with an empty string, set DisplayValues to ;Fail. To
associate false with an empty string, set DisplayValues to the string for true, with no semicolon
at all.
The strings associated with true and false by DisplayValues appear in data-aware controls when
they display the data for a Boolean field. If one of the strings is an empty string, Boolean values
associated with that string appear blank in data-aware controls.
These strings are also used when getting or setting the Boolean field’s AsString property.

TBooleanField::Value
TBooleanField See also
Value is the actual data in the Boolean field.
__property bool Value;
Description
Use Value to read data directly from and write data directly to a Boolean field object at runtime.
Using Value is the same as using the AsBoolean property. Use Value when you know the field
component is a Boolean field. Use AsBoolean when working with a generic field component.

TBooleanField events
TBooleanField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TBooleanField events
TBooleanField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TBooleanField methods
TBooleanField Alphabetically

In TBooleanField
~TBooleanField
TBooleanField

Derived from TField
Assign
AssignValue
Clear
FocusControl
GetData
IsValidChar
SetData
SetFieldType

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TBooleanField methods
TBooleanField By object

~TBooleanField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TBooleanField

TBooleanField::~TBooleanField
TBooleanField
~TBooleanField frees the memory associated with the TBooleanField object. Do not call ~
TBooleanField directly. Instead, use the delete keyword on the object, which causes ~
TBooleanField to be invoked automatically.
__fastcall virtual ~TBooleanField(void);

TBooleanField::TBooleanField
TBooleanField See also
TBooleanField instantiates a Boolean field object.
__fastcall virtual TBooleanField(Classes::TComponent* AOwner);
Description
TBooleanField to create and initialize an instance of TBooleanField. After calling the inherited
constructor, TBooleanField sets the DataType to ftBoolean, and initializes the strings associated
with Boolean values to ‘true’ and ‘false’.
It is seldom necessary to explicitly call TBooleanField because a Boolean field object is
instantiated automatically for all Boolean fields in a dataset.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField

TBooleanField example
TBooleanField

TBrush
Hierarchy Properties Methods Events
TBrush fills solid shapes with color or patterns.
Header
vcl/graphics.hpp
Description
TBrush encapsulates the Windows HBRUSH structure and is used to fill solid shapes, such as
rectangles and ellipses, with a color or pattern.

TBrush properties
TBrush Alphabetically Legend

In TBrush
Bitmap

Color
Handle
Style

TBrush properties
TBrush By object Legend

Bitmap
Color
Handle
Style

TBrush::Bitmap
TBrush See also
An external bitmap image that defines a pattern for the brush.
__property TBitmap* Bitmap;
Description
Bitmap points to a TBitmap object that holds a BMP image. If Bitmap is nonempty, the brush’s
pattern is defined by the BMP image (rather than the Style property). The image must be eight
pixels high and eight pixels wide.
Changing the image does not affect the brush until the TBitmap is reassigned to the Bitmap
property. Be sure to free the TBitmap after finishing with the brush, since TBrush will not free it.

TBrush::Color
TBrush See also
The color of the brush.
__property TColor Color;
Description
The Color property determines the color of the brush.

TBrush::Handle
TBrush Example
The Windows handle for the brush.
__property HBRUSH Handle;
Description
The Handle property provides access to the Windows GDI object handle.

TBrush::Style
TBrush See also
The pattern for the brush.
__property TBrushStyle Style;
Description
The Style property determines the pattern painted by the brush, unless a value is assigned to
Bitmap.

TBrush events
TBrush Alphabetically

Derived from TGraphicsObject
OnChange

TBrush events
TBrush By object

OnChange

TBrush methods
TBrush Alphabetically

In TBrush
~TBrush
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TBrush methods
TBrush By object

~TBrush
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TBrush::~TBrush
TBrush
~TBrush frees the memory associated with the TBrush object. Do not call ~TBrush directly.
Instead, use the delete keyword on the object, which causes ~TBrush to be invoked
automatically.
__fastcall virtual ~TBrush(void);

TBrush::Assign
TBrush See also
Copies the contents of the brush to another brush.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
Assign copies the brush’s contents to another TBrush instance.

TBrush
Creates and initializes a TBrush instance.
__fastcall TBrush(void);
Description
TBrush generates a new TBrush instance.

Scope
Published

Hierarchy

TObject

TPersistent
TGraphicsObject

TBrush example
TBrush

TButtonControl
Hierarchy Properties Methods See also
TButtonControl is the base class type for Borland C++Builder button objects that are wrappers
for the Windows button controls.
Header
vcl/stdctrls.hpp
Description
TButtonControl encapsulates behavior common to all button controls, check boxes, and radio
buttons in C++Builder.
TButtonControl overrides the WndProc method to perform special handling of focus changes for
buttons.

TButtonControl properties
TButtonControl Alphabetically Legend

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TButtonControl properties
TButtonControl By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
Left
Name

Owner
Parent
ShowHint

Showing
TabOrder

TabStop
Tag
Top
Visible
Width

TButtonControl methods
TButtonControl Alphabetically Legend

In TButtonControl
~TButtonControl
TButtonControl

WndProc
Derived from TWinControl

Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent

InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TButtonControl methods
TButtonControl By object Legend

~TButtonControl
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TButtonControl
UpdateControlState
Update

WndProc

TButtonControl::~TButtonControl
TButtonControl
~TButtonControl frees the memory associated with the TButtonControl object. Do not call ~
TButtonControl directly. Instead, use the delete keyword on the object, which causes ~
TButtonControl to be invoked automatically.
__fastcall virtual ~TButtonControl(void);

TButtonControl::TButtonControl
TButtonControl
TButtonControl creates a new TButtonControl object.
__fastcall virtual TButtonControl(Classes::TComponent* AOwner);

TButtonControl::WndProc
TButtonControl See also
WndProc overrides the inherited method to handle button messages.
virtual void __fastcall WndProc(Messages::TMessage &Message);
Description
WndProc enables button objects to receive the input focus when WM_LBUTTONDOWN and
WM_LBUTTONDBLCLK messages occur.

Scope
Published

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TButtonControl example
TButtonControl

TButton
Hierarchy Properties Methods Events See also
TButton is a wrapper for a Windows push button control.
Header
vcl/stdctrls.hpp
Users choose button control to initiate actions. Buttons are most commonly used in dialog boxes.
Description
A default button is the button whose OnClick event handler runs whenever the user presses the
Enter key while using the dialog box. To make a button a default button, set the button’s Default
property to true.
A Cancel button is the button whose OnClick event handler runs whenever the user presses the
Esc key while using the dialog box. To make a button a Cancel button, set the button’s Cancel
property to true.
You can have a button close a modal form without writing an event handler that includes code to
specifically close the form. Set the button’s ModalResult property to one of the values other
than 0.

TButton properties
TButton Alphabetically Legend

In TButton
Cancel
Default
ModalResult

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect

Caption
ClientHeight
ClientWidth
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TButton properties
TButton By object Legend

Align
BoundsRect

Brush
Cancel
Caption
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
Default
DesignInfo
DragCursor
DragMode
Enabled
Font

Handle
Height
HelpContext
Hint
Left
ModalResult
Name

Owner
ParentFont
ParentShowHint
Parent
PopupMenu
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Visible
Width

TButton::Cancel
TButton See also Example
Cancel indicates whether a button is a Cancel button.
__property bool Cancel;
Description
If Cancel is true, any time the user presses Esc, the OnClick event handler for the button
executes. Although your application can have more than one button designated as a Cancel
button, the form calls the OnClick event handler only for the first button in the tab order that is
visible.

TButton::Default
TButton See also
Indicates whether a push or bitmap button is the default button.
__property bool Default;
Description
If Default is true, any time the user presses Enter, the OnClick event handler for that button runs.
The only exception to this is if the user selects another button before pressing Enter, in which
case the OnClick event handler for that button runs. Although your application can have more
than one button designated as a default button, the form calls the OnClick event handler for the
first button in the tab order.
Whenever any button has focus, it becomes the default button temporarily. When the focus
moves to a control that isn't a button, the button with its Default property set to true becomes the
default button once again.

TButton::ModalResult
TButton See also Example
Determines whether the choosing of this button ends the modal state of a form.
__property Forms::TModalResult ModalResult;
Description
Use a button's ModalResult property when you want a click of the button to close a modal form.
For example, if you create a dialog box with two buttons, OK and Cancel, set the ModalResult
property to mrOK for the OK button and mrCancel for the Cancel button. When the user chooses
either of these two buttons, the dialog box's modal state ends because ModalResult is greater
than mrNone and the dialog box disappears. Using ModalResult, you don't have to write an
event handler just to close the dialog box.
These constants are possible ModalResult values:
Constant Value

mrNone 0
mrOk idOK
mrCancel idCancel
mrAbort idAbort
mrRetry idRetry
mrIgnore idIgnore
mrYes idYes
mrNo idNo
mrAll mrNo + 1

TButton events
TButton Alphabetically Legend

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TButton events
TButton By object Legend

OnClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TButton methods
TButton Alphabetically

In TButton
~TButton
Click
TButton

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent

InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TButton methods
TButton By object

~TButton
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Click
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo

Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TButton
UpdateControlState
Update

TButton::~TButton
TButton
~TButton frees the memory associated with the TButton object. Do not call ~TButton directly.
Instead, use the delete keyword on the object, which causes ~TButton to be invoked
automatically.
__fastcall virtual ~TButton(void);

TButton::Click
TButton See also
Click simulates a mouse click, as if the user had clicked a button
virtual void __fastcall Click(void);
Description
Calling Click assigns the ModalResult property value of the button to the form, and then calls the
inherited Click method.

TButton::TButton
TButton See also
TButton constructs an instance of the button control and initializes its values.
__fastcall virtual TButton(Classes::TComponent* AOwner);
Description
Use TButton to programmatically instantiate a button. For buttons created in the Borland C++
Builder form designer, TButton is called automatically.
TButton
• Calls the constructor of its parent object.
• Sets the ControlStyle of the button to include the values csSetCaption, csOpaque,

csDoubleClicks.
• Sets the Width to 75 pixels, and the Height to 25 pixels
• Sets the TabStop property to true.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TButtonControl

TButton example
TButton

TBytesField
Hierarchy Properties Methods Events See also
A TBytesField object represents a bytes field in a dataset.
Header
vcl/dbtables.hpp
Description
A bytes field value is a set of unformatted bytes of fixed size.
TBytesField differs from its immediate ancestor TBinaryField only in its TBinaryFields method,
where it sets the data type to ftBytes. As a descendant of TBinaryField, it inherits many
properties, events, and methods useful for managing unformatted binary data fields in a dataset.

TBytesField properties
TBytesField Alphabetically Legend

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Value
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TBytesField properties
TBytesField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditMaskPtr

EditMask
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Value
Visible

TBytesField events
TBytesField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TBytesField events
TBytesField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TBytesField methods
TBytesField Alphabetically

In TBytesField
~TBytesField
TBytesField

Derived from TField
Assign
AssignValue
Clear
FocusControl
GetData
IsValidChar
SetData
SetFieldType

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TBytesField methods
TBytesField By object

~TBytesField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TBytesField

TBytesField::TBytesField
TBytesField
TBytesField creates an instance of TBytesField.

__fastcall virtual TBytesField(Classes::TComponent* AOwner);

Call TBytesField to create and initialize an instance of TBytesField. After calling the inherited
constructor, TBytesField sets the DataType to ftBytes.
It is seldom necessary to explicitly call TBytesField because a bytes field object is instantiated
automatically for all Bytes fields in a dataset.

TBytesField::~TBytesField
TBytesField
~TBytesField frees the memory associated with the TBytesField object. Do not call ~
TBytesField directly. Instead, use the delete keyword on the object, which causes ~TBytesField
to be invoked automatically.
__fastcall virtual ~TBytesField(void);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField
TBinaryField

TBytesField example
TBytesField

TCanvas
Hierarchy Properties Methods Events See also
TCanvas provides an abstract drawing space for objects that must render their own images.
Header
vcl/graphics.hpp
Description
Use TCanvas as a drawing surface for objects that draw an image of themselves. Standard
window controls such as edit controls or list boxes do not require a canvas, as they are drawn by
Windows.
TCanvas provides properties, events and methods that assist in creating an image by
• Specifying the type of brush, pen and font to use.
• Drawing and filling a variety of shapes and lines.
• Writing text.
• Rendering graphic images.
• Enabling a response to changes in the current image.
TCanvas has two descendants, TControlCanvas and TMetafileCanvas, which assist in drawing
images of controls and in creating metafile images for objects.

TCanvas properties
TCanvas Alphabetically Legend

In TCanvas
Brush

ClipRect
CopyMode
Font
Handle
Pen
PenPos
Pixels

TCanvas properties
TCanvas By object Legend

Brush
ClipRect

CopyMode
Font
Handle
PenPos
Pen
Pixels

TCanvas::Brush
TCanvas See also Example
Brush determines the color and pattern the canvas uses for filling graphical shapes and
backgrounds.
__property TBrush* Brush;
Description
Set the Brush property to specify the color and pattern to use when drawing the background or
filling in graphical shapes. The value of Brush is a TBrush object. Set the properties of the
TBrush object to specify the color and pattern or bitmap to use when filling in spaces on the
canvas.
Note
Setting the Brush property assigns the specified TBrush object, rather than replacing the current
TBrush object.

TCanvas::ClipRect
TCanvas See also
ClipRect specifies the boundaries of the clipping rectangle.
__property Windows::TRect ClipRect;
Description
Use ClipRect to limit the drawing region of the canvas. Any drawing that occurs at coordinates
outside the ClipRect is clipped and doesn’t appear in the image. For example, to draw a portion
of a large circle in a smaller box, first draw the box, then set the ClipRect to the rectangle
defined by the inner boundary of the box. Drawing the entire circle will only show the portion that
is within the box.
When handling a form’s OnPaint event, the canvas' ClipRect property is set to the rectangle
that needs to be painted. Portions of the image that do not overlap the ClipRect do not need to
be drawn. Thus, OnPaint routines can use the value of ClipRect to optimize painting and speed
the overall performance of the application.

TCanvas::CopyMode
TCanvas See also
CopyMode specifies how the a graphical image is copied onto the canvas.
__property long CopyMode;
Description
Set CopyMode to affect the way graphical images are drawn onto the canvas. The CopyMode is
used when copying an image from another canvas using the CopyRect method. The CopyMode
is also used by TBitmap objects when they draw themselves to a canvas.
Use CopyMode to achieve a variety of affects when rendering an image. Achieve special effects
like merged images and making parts of a bitmap transparent by combining multiple images with
different CopyModes.
The following table shows possible values of CopyMode and describes each.
Value Meaning

cmBlackness Fills the destination rectangle on the canvas with black.
cmDstInvert Inverts the image on the canvas and ignores the source.
cmMergeCopy Combines the image on the canvas and the source bitmap by using the

Boolean AND operator.
cmMergePaint Combines the inverted source bitmap with the image on the canvas by

using the Boolean OR operator.
cmNotSrcCopy Copies the inverted source bitmap to the canvas.
cmNotSrcErase Combines the image on the canvas and the source bitmap by using the

Boolean OR operator, and inverts the result.
cmPatCopy Copies the source pattern to the canvas.
cmPatInvert Combines the source pattern with the image on the canvas using the

Boolean XOR operator
cmPatPaint Combines the inverted source bitmap with the source pattern by using the

Boolean OR operator. Combines the result of this operation with the
image on the canvas by using the Boolean OR operator.

cmSrcAnd Combines the image on the canvas and source bitmap by using the
Boolean AND operator.

cmSrcCopy Copies the source bitmap to the canvas.
cmSrcErase Inverts the image on the canvas and combines the result with the source

bitmap by using the Boolean AND operator.
cmSrcInvert Combines the image on the canvas and the source bitmap by using the

Boolean XOR operator.
cmSrcPaint Combines the image on the canvas and the source bitmap by using the

Boolean OR operator.
cmWhiteness Fills the destination rectangle on the canvas with white.

TCanvas::Font
TCanvas See also
Font specifies the font to use when writing text on the image.
__property TFont* Font;
Description
Set Font to specify the font to use for writing text on the image. The value of Font is a TFont
object. Set the properties of the TFont object to specify the font face, color, size, and style of the
font.
Note
Setting the Font property assigns the specified TFont object, rather than replacing the current
TFont object.

TCanvas::Handle
TCanvas See also Example
Handle is the Windows GDI handle to the device context for this canvas.
__property HDC Handle;
Description
Set Handle to the HDC for the device context the canvas must draw into. When a windowed
control responds to a Windows paint message, the HDC for drawing is passed in to the
PaintWindow method. In other cases, an HDC can be obtained for a window by calling the
GetDeviceContext method of a control. Additionally, Windows provides API calls to obtain an
HDC for a printer or for a memory image.
Read the Handle property to supplement the drawing services provided by the TCanvas object
with API calls that require a handle to a device context. Most of the Windows GDI calls require
an HDC.

TCanvas does not own the HDC. Applications must create an HDC and set the Handle property.
Applications must release the HDC when it is no longer needed by the canvas. Setting the
Handle property of a canvas that already has a valid HDC will not automatically release the initial
HDC.
Note
Some descendants of TCanvas, such as TControlCanvas, do own the HDC. Do not set the
Handle property for these objects. They fetch and free their own Handle.

TCanvas::Pen
TCanvas See also
Pen specifies the kind of pen the canvas uses for drawing lines and outlining shapes.
__property TPen* Pen;
Description
Set Pen to specify the pen to use for drawing lines and outlining shapes in the image. The value
of Pen is a TPen object. Set the properties of the TPen object to specify the color, style, width,
and mode of the pen.
Note
Setting the Pen property assigns the specified TPen object, rather than replacing the current
TPen object.

TCanvas::PenPos
TCanvas See also
PenPos specifies the current drawing position of the Pen.
__property POINT PenPos;
Description
Read PenPos to learn the current drawing position of the Pen. This is the starting point of a line
drawn by the LineTo method. Setting the PenPos property is equivalent to calling the MoveTo
method.

TCanvas::Pixels
TCanvas See also
Pixels specifies the color of the pixels within the current ClipRect.
__property TColor Pixels[int X][int Y];
Description
Read Pixels to learn the color on the drawing surface at a specific pixel position. Write Pixels to
change the color of individual pixels on the drawing surface. Use Pixels for detailed effects on an
image. Pixels may also be used to determine the color that should be used for the FillRect
method.
The value of Pixels is a TColor. If the device represented by the Handle supports it, this can be
any 4-byte RGB value. If you specify TColor as an RGB value instead of using the constants
defined in the Graphics unit, the low three bytes represent RGB color intensities for blue, green,
and red, respectively. The value 0x00FF0000 represents full-intensity, pure blue, 0x0000FF00 is
pure green, and 0x000000FF is pure red. 0x00000000 is black and 0x00FFFFFF is white.
If the highest-order byte is zero (0x00), the color obtained is the closest matching color in the
system palette. If the highest-order byte is one (0x01), the color obtained is the closest matching
color in the currently realized palette. If the highest-order byte is two (0x02), the value is
matched with the nearest color in the logical palette of the current device context.
The following table lists the constants for color values defined in the Graphics unit.
Value Meaning

clBlack Black
clMaroon Maroon
clGreen Green
clOlive Olive green
clNavy Navy blue
clPurple Purple
clTeal Teal
clGray Gray
clSilver Silver
clRed Red
clLime Lime green
clBlue Blue
clFuchsia Fuchsia
clAqua Aqua
clWhite White
clBackground Current background color of the Windows desktop
clActiveCaption Current color of the title bar of the active window
clInactiveCaption Current color of the title bar of inactive windows
clMenu Current background color of menus
clWindow Current background color of windows
clWindowFrame Current color of window frames
clMenuText Current color of text on menus
clWindowText Current color of text in windows
clCaptionText Current color of the text on the title bar of the active window
clActiveBorder Current border color of the active window
clInactiveBorder Current border color of inactive windows
clAppWorkSpace Current color of the application workspace
clHighlight Current background color of selected text
clHightlightText Current color of selected text
clBtnFace Current color of a button face
clBtnShadow Current color of a shadow cast by a button
clGrayText Current color of text that is dimmed
clBtnText Current color of text on a button

clInactiveCaptionText Current color of the text on the title bar of an inactive window
clBtnHighlight Current color of the highlighting on a button
cl3DDkShadow Windows 95 or NT 4.0 only: Dark shadow for three-dimensional display

elements
cl3DLight Windows 95 or NT 4.0 only: Light color for three-dimensional display

elements (for edges facing the light source)
clInfoText Windows 95 or NT 4.0 only: Text color for tool tip controls
clInfoBk Windows 95 or NT 4.0 only: Background color for tool tip controls
Not every device context supports the Pixels property. Reading the Pixels property for such a
device context will return a value of -1. Setting the Pixels property for such a device context does
nothing.
Note
The Pixels property is only valid for pixels within the current value of ClipRect.

TCanvas events
TCanvas Alphabetically

In TCanvas
OnChange
OnChanging

TCanvas events
TCanvas By object

OnChange
OnChanging

TCanvas::OnChange
TCanvas See also
OnChange occurs when the image has just changed.
__property Classes::TNotifyEvent OnChange;
Description
Write an OnChange event handler to take specific action whenever the image on the canvas
changes. When an application calls one of the drawing methods of TCanvas, the following steps
occur.
1 An OnChanging event occurs.
2 The TCanvas method makes a change to the image.
3 An OnChange event occurs.

OnChange events occur on changes to the image, not changes to the properties of the canvas.
Applications can respond to changes in the Font, Brush, and Pen properties by assigning
OnChange event handlers to the corresponding TFont, TBrush, and TPen objects. However,
TCanvas assigns its own OnChange event handlers for those objects. Before assigning an
OnChange event handler to one of these objects, read the existing event handler. Use that value
to call the TCanvas event handler from the new event handler.

TCanvas::OnChanging
TCanvas See also
OnChanging occurs just before a change is made to the image.
__property Classes::TNotifyEvent OnChanging;
Description
Write an OnChanging event handler to take specific action before the image on the canvas
changes. When an application calls one of the drawing methods of TCanvas, the following steps
occur.
1 An OnChanging event occurs.
2 The TCanvas method makes a change to the image.
3 An OnChange event occurs.

TCanvas methods
TCanvas Alphabetically

In TCanvas
~TCanvas
Arc
BrushCopy
Chord
CopyRect
Draw
DrawFocusRect
Ellipse
FillRect
FloodFill
FrameRect
LineTo
MoveTo
Pie
Polygon
Polyline
Rectangle
Refresh
RoundRect
StretchDraw
TCanvas
TextHeight
TextOut
TextRect
TextWidth

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCanvas methods
TCanvas By object

~TCanvas
Arc
Assign
BrushCopy
Chord
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CopyRect
DefaultHandler
Dispatch
DrawFocusRect
Draw
Ellipse
FieldAddress
FillRect
FloodFill
FrameRect
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
LineTo
MethodAddress
MethodName
MoveTo
NewInstance
Pie
Polygon
Polyline
Rectangle
Refresh
RoundRect
StretchDraw
TCanvas
TextHeight
TextOut
TextRect
TextWidth

TCanvas::~TCanvas
TCanvas See also
~TCanvas frees the memory associated with the TCanvas object. Do not call ~TCanvas directly.
Instead, use the delete keyword on the object, which causes ~TCanvas to be invoked
automatically.
__fastcall virtual ~TCanvas(void);
Description
~TCanvas frees the TBrush, TFont, and TPen objects that were created for the Brush, Font, and
Pen properties. TCanvas then frees the memory for the TCanvas object.

TCanvas::Arc
TCanvas See also
Arc draws an arc on the image along the perimeter of the ellipse bounded by the specified
rectangle.
void __fastcall Arc(int X1, int Y1, int X2, int Y2, int X3, int Y3, int
X4, int Y4);

Description
Use Arc to draw an elliptically curved line with the current Pen. The arc traverses the perimeter
of an ellipse that is bounded by the points (X1,Y1) and (X2,Y2). The arc is drawn following the
perimeter of the ellipse, counterclockwise, from the starting point to the ending point. The
starting point is defined by the intersection of the ellipse and a line defined by the center of the
ellipse and (X3,Y3). The ending point is defined by the intersection of the ellipse and a line
defined by the center of the ellipse and (X4, Y4).
Note
On Windows 95, the sums X1 + X2 and Y1 + Y2 cannot exceed 32768. Also, the sum X1 + X2 +
Y1 + Y2 cannot exceed 32768.
On NT, the drawing direction can be changed to clockwise using the Windows API call
SetArcDirection.

TCanvas::BrushCopy
TCanvas See also
BrushCopy copies a portion of a bitmap onto a rectangle on the canvas, replacing one of the
colors of the bitmap with the brush of the canvas.
void __fastcall BrushCopy(const Windows::TRect &Dest, TBitmap* Bitmap,
const Windows::TRect &Source, TColor Color);

Description
Use BrushCopy to achieve special effects such as making the copied image partially
transparent. BrushCopy is provided mainly for backwards compatibility. Use a TImageList
instead of BrushCopy.
Dest specifies the rectangular portion of the canvas that will receive the copy of the bitmap.
Bitmap specifies the graphic to copy from. Source specifies the rectangular area of Bitmap to
copy. Color specifies the color in Bitmap to replace with the Brush of the canvas.
To use BrushCopy to make the copied image partially transparent, specify the color of the
surface of the canvas (clBackground for example) as the Color of the Brush property, then call
BrushCopy.
For information about the possible values of the Color parameter, see the Pixels property.

TCanvas::Chord
TCanvas See also
Chord draws a closed figure represented by the intersection of a line and an ellipse.
void __fastcall Chord(int X1, int Y1, int X2, int Y2, int X3, int Y3,
int X4, int Y4);

Description
Use Chord to create a shape that is defined by an arc and a line that joins the endpoints of the
arc. The chord consists of a portion of an ellipse that is bounded by the points (X1,Y1) and (X2,
Y2). The ellipse is bisected by a line that runs between the points (X3,Y3) and (X4,Y4).
The perimeter of the chord runs counter clockwise from (X3, Y3), counterclockwise along the
ellipse to (X4,Y4), and straight back to (X3,Y3). If (X3,Y3) and (X4,Y4) are not on the surface of
the ellipse, the corresponding corners on the chord are the closest points on the perimeter that
intersect the line. The outline of the chord is drawn using the value of Pen, and the shape is filled
using the value of Brush.
Note
On Windows 95, the sums X1 + X2 and Y1 + Y2 cannot exceed 32768. Also, the sum X1 + X2 +
Y1 + Y2 cannot exceed 32768.
On NT, the drawing direction can be changed to clockwise using the Windows API call
SetArcDirection.

TCanvas::CopyRect
TCanvas See also
CopyRect copies part of an image from another canvas into the canvas.
void __fastcall CopyRect(const Windows::TRect &Dest, TCanvas* Canvas,
const Windows::TRect &Source);

Description
Use CopyRect to transfer part of the image on another canvas to the image of the TCanvas
object. Dest specifies the rectangle on the canvas where the source image will be copied. The
Canvas parameter specifies the canvas with the source image. Source specifies a rectangle
bounding the portion of the source canvas that will be copied.
The portion of the source canvas is copied using the mode specified by CopyMode.

TCanvas::Draw
TCanvas See also
Draw renders the graphic specified by the Graphic parameter on the canvas at the location given
by the coordinates (X, Y).
void __fastcall Draw(int X, int Y, TGraphic* Graphic);
Description
Call Draw to draw a graphic on the canvas. Draw calls the Draw method of the graphic. The
image is rendered into a rectangle determined by the size of the graphic, with the upper left
corner at the point (X, Y).
Graphics can be bitmaps, icons, or metafiles. If the graphic is a TBitmap object, the bitmap is
rendered using the value of CopyMode.

TCanvas::DrawFocusRect
TCanvas See also
DrawFocusRect draws a rectangle in the style used to indicate that the object inside the
rectangle has focus.
void __fastcall DrawFocusRect(const Windows::TRect &Rect);
Description
Call DrawFocusRect for the perimeter of the image of a control when the control gets or loses
input focus. Because DrawFocusRect uses an XOR function, calling it a second time while
specifying the same rectangle removes the rectangle from the screen.
The rectangle this function draws cannot be scrolled. To scroll an area containing a rectangle
drawn by DrawFocusRect, call DrawFocusRect to remove the rectangle from the screen, scroll
the area, and then call DrawFocusRect to draw the rectangle in the new position.

TCanvas::Ellipse
TCanvas See also
Ellipse draws the ellipse defined by a bounding rectangle on the canvas.
void __fastcall Ellipse(int X1, int Y1, int X2, int Y2);
Description
Call Ellipse to draw a circle or ellipse on the canvas. The top left point of the bounding rectangle
is at pixel coordinates (X1, Y1) and the bottom right point is at (X2, Y2). If the points of the
rectangle form a square, a circle is drawn.
The ellipse is outlined using the value of Pen, and filled using the value of Brush.
Note
On Windows 95, the sums X1 + X2 and Y1 + Y2 cannot exceed 32768. Also, the sum X1 + X2 +
Y1 + Y2 cannot exceed 32768.

TCanvas::FillRect
TCanvas See also
FillRect fills the specified rectangle on the canvas using the current brush.
void __fastcall FillRect(const Windows::TRect &Rect);
Description
Use FillRect to fill a rectangular region using the current brush. The region is filled including the
top and left sides of the rectangle, but excluding the bottom and left edges.

TCanvas::FloodFill
TCanvas See also
FloodFill fills an area of the canvas using the current brush.
void __fastcall FloodFill(int X, int Y, TColor Color, TFillStyle
FillStyle);

Description
Use FloodFill to fill a possibly non-rectangular region of the image with the value of Brush. The
boundaries of the region to be filled are determined by moving outward from the point (X,Y) until
a color boundary involving the Color parameter is encountered.
FillStyle determines what type of color changes define the boundaries, as indicated in the
following table.
Value Meaning

fsSurface Fill all area that has the color indicated by the Color parameter. Stop
when another color is encountered.

fsBorder Fill all area that does not have the color indicated by the Color parameter.
Stop when Color is encountered.

Use the Pixels property to get the exact value of the color at the point (X,Y) when using a
FillStyle of fsSurface. Similarly, when FillStyle is fsBorder, use Pixels to get the exact value of
the boundary color if a point on the boundary is known.

TCanvas::FrameRect
TCanvas See also
FrameRect draws a rectangle using the Brush of the canvas to draw the border.
void __fastcall FrameRect(const Windows::TRect &Rect);
Description
Use FrameRect to draw a 1 pixel wide border around a rectangular region. FrameRect does not
fill the interior of the rectangle with the Brush pattern.
To draw a boundary using the Pen instead, use the Polygon method.

TCanvas::LineTo
TCanvas See also
LineTo draws a line on the canvas from PenPos to the point specified by X and Y, and sets the
pen position to (X, Y).
void __fastcall LineTo(int X, int Y);
Description
Use LineTo to draw a line from PenPos up to, but not including the point (X,Y). LineTo changes
the value of PenPos to (X,Y).
The line is drawn using Pen.

TCanvas::MoveTo
TCanvas See also
MoveTo changes the current drawing position to the point (X,Y).
void __fastcall MoveTo(int X, int Y);
Description
Use MoveTo to set the value of PenPos before calling LineTo. Calling MoveTo is equivalent to
setting the PenPos property.

TCanvas::Pie
TCanvas See also
Pie draws a pie-shaped the section of the ellipse bounded by the rectangle (X1, Y1) and (X2,
Y2) on the canvas.
void __fastcall Pie(int X1, int Y1, int X2, int Y2, int X3, int Y3, int
X4, int Y4);

Description
Use Pie to draw a pie-shaped wedge on the image. The wedge is defined by the ellipse bounded
by the rectangle determined by the points (X1, Y1) and X2, Y2). The section drawn is
determined by two lines radiating from the center of the ellipse through the points (X3, Y3) and
(X4, Y4).
The wedge is outlined using Pen, and filled using Brush.
Note
On Windows 95, the sums X1 + X2 and Y1 + Y2 cannot exceed 32768. Also, the sum X1 + X2 +
Y1 + Y2 cannot exceed 32768.

TCanvas::Polygon
TCanvas See also
Polygon draws a series of lines on the canvas connecting the points passed in and closing the
shape by drawing a line from the last point to the first point.
void __fastcall Polygon(const POINT *Points, const int Points_Size);
Description
Use Polygon to draw a closed, many-sided shape on the canvas, using the value of Pen. After
drawing the complete shape, Polygon fills the shape using the value of Brush.
Points is a pointer to an array of points.
Points_Size is the index of the last element of the array of points.
To draw a polygon on the canvas, without filling it, use the Polyline method, specifying the first
point a second time at the end.
Use the Slice function to pass a portion of an array of points to the Polygon method.

TCanvas::Polyline
TCanvas See also
Polyline draws a series of lines on the canvas with the current pen, connecting each of the points
passed to it in Points.
void __fastcall Polyline(const POINT *Points, const int Points_Size);
Description
Use Polyline to connect a set of points on the canvas. If there are only two points, Polyline draws
a single line.
Calling the MoveTo function with the value of the first point, and then repeatedly calling LineTo
with all subsequent points will draw the same image on the canvas. However, unlike LineTo,
Polyline does not change the value of PenPos.
Use the Slice function to pass a portion of an array of points to the Polyline method. For
example, to connect the first ten points in an array of 100 points, use the Slice function as
follows:

TCanvas::Rectangle
TCanvas See also
Rectangle draws a rectangle on the canvas with its upper left corner at the point (X1, Y1) and its
lower right corner at the point (X2, Y2).
void __fastcall Rectangle(int X1, int Y1, int X2, int Y2);
Description
Use Rectangle to draw a rectangle using Pen and fill it with Brush. To fill a rectangular region
without drawing the boundary in the current pen, use FillRect. To outline a rectangular region
without filling it, use FrameRect or Polygon. To draw a rectangle with rounded corners, use
RoundRect.

TCanvas::Refresh
TCanvas See also
Refresh deselects the Pen, Brush, and Font from the device context.
void __fastcall Refresh(void);
Description
Call Refresh to return the HDC used by the canvas to a default state. Refresh does not change
the values of the Font, Brush, or Pen properties. Calling any of the drawing methods of the
canvas after calling Refresh will re-select the Font, Brush, or Pen into the HDC if it is used by the
drawing method.

TCanvas::RoundRect
TCanvas See also
RoundRect draws a rectangle with rounded corners on the canvas.
void __fastcall RoundRect(int X1, int Y1, int X2, int Y2, int X3, int
Y3);

Description
Use RoundRect to draw a rounded rectangle using Pen and fill it with Brush. The rectangle will
have edges defined by the points (X1,Y1), (X2,Y1), (X2,Y2), (X1,Y2), but the corners will be
shaved to create a rounded appearance.
To draw an ellipse instead, use Ellipse. To draw a true rectangle, use Rectangle.

TCanvas::StretchDraw
TCanvas See also
StretchDraw draws the graphic specified by the Graphic parameter in the rectangle specified by
the Rect parameter.
void __fastcall StretchDraw(const Windows::TRect &Rect, TGraphic*
Graphic);

Description
Call StretchDraw to draw a graphic on the canvas so that the image fits in the specified
rectangle. StretchDraw calls the Draw method of the graphic. The graphic object determines how
to fit into the rectangle. This may involve changing magnification and/or aspect ratio.
To render the graphic in its natural size, use the Draw method, instead.
Graphics can be bitmaps, icons, or metafiles. If the graphic is a TBitmap object, the bitmap is
rendered using the value of CopyMode.

TCanvas::TCanvas
TCanvas See also
TCanvas creates an instance of TCanvas.
__fastcall TCanvas(void);
Description
Call TCanvas to instantiate a TCanvas object. TCanvas allocates memory for the instance of
TCanvas and creates the TFont, TBrush and TPen objects for the Font, Brush, and Pen
properties. TCanvas also initializes the CopyMode to cmSrcCopy.

TCanvas::TextHeight
TCanvas See also
TextHeight returns the height, in pixels, of a string rendered in the current font.
int __fastcall TextHeight(const System::AnsiString Text);
Description
Use TextHeight to determine the height a string will occupy in the image. Other elements in the
image such as lines, boxes, or additional lines of text can be positioned to accommodate the
height of the text.

TCanvas::TextOut
TCanvas See also
TextOut writes a string on the canvas, starting at the point (X,Y), and then updates the PenPos
to the end of the string.
void __fastcall TextOut(int X, int Y, const System::AnsiString Text);
Description
Use TextOut to write a string onto the canvas. The string will be written using the current value of
Font. Use the TextHeight and TextWidth methods to determine the space occupied by the text in
the image. To write only the text that fits within a clipping rectangle, use TextRect instead.

TCanvas::TextRect
TCanvas See also
TextRect writes a string inside a clipping rectangle.
void __fastcall TextRect(const Windows::TRect &Rect, int X, int Y,
const System::AnsiString Text);

Description
Use TextRect to write a string within a limited rectangular region. Any portions of the string that
fall outside the rectangle passed in the Rect parameter are clipped and don't appear. The upper
left corner of the text is placed at the point (X, Y).

TCanvas::TextWidth
TCanvas See also
TextWidth returns the width, in pixels, of a string rendered in the current font.
int __fastcall TextWidth(const System::AnsiString Text);
Description
Use TextWdith to determine the length a string will occupy in the image. TextWidth indicates
whether a given string will fit in the available space. Other graphical elements in the image such
as lines, or additional strings can be positioned to accommodate the width of the text.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent

TCanvas example
TCanvas

TCheckBox
Hierarchy Properties Methods Events See also
TCheckBox represents a Windows check box.
Header
vcl/stdctrls.hpp
Description
A TCheckBox component presents an option for the user. The user can check the box to select
the option, or uncheck it to deselect the option.

TCheckBox properties
TCheckBox Alphabetically Legend

Derived from TCustomCheckBox
Alignment
AllowGrayed
Checked
State

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect

Caption
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCheckBox properties
TCheckBox By object Legend

Alignment
Align
AllowGrayed
BoundsRect

Brush
Caption
Checked
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
Enabled
Font

Handle
Height
HelpContext
Hint
Left
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu
ShowHint

Showing
State
TabOrder
TabStop
Tag
Top
Visible
Width

TCheckBox events
TCheckBox Alphabetically Legend

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TCheckBox events
TCheckBox By object Legend

OnClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TCheckBox methods
TCheckBox Alphabetically

In TCheckBox
~TCheckBox
TCheckBox

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCheckBox methods
TCheckBox By object

~TCheckBox
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TCheckBox
UpdateControlState
Update

TCheckBox::~TCheckBox
TCheckBox
~TCheckBox frees the memory associated with the TCheckBox object. Do not call ~TCheckBox
directly. Instead, use the delete keyword on the object, which causes ~TCheckBox to be invoked
automatically.
__fastcall virtual ~TCheckBox(void);

TCheckBox::TCheckBox
TCheckBox
TCheckBox creates a new TCheckBox object.
__fastcall virtual TCheckBox(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TButtonControl
TCustomCheckBox

TCheckBox example
TCheckBox

TChangeLink
Hierarchy Properties Methods Events See also
The TChangeLink object is used internally by the TImageList component to notify other objects
when changes are made to the image list.
Header
vcl/controls.hpp
Description
A TImageList keeps a list of its TChangeLink objects. Each is associated with a particular
component, such as a tree view or list view control. A component can register its change link
with an image list by calling the image list’s RegisterChanges method. Before destruction, the
component should then call the UnregisterChanges method.
Component writers can use the change link object to receive notification when changes are
made to an image list that a control uses. Use the OnChange event of the change link to
execute some code when the image list changes. For example, the tree view control uses a
change link object to know when its image list has changed.

TChangeLink properties
TChangeLink Alphabetically

In TChangeLink
Sender

TChangeLink properties
TChangeLink By object

Sender

TChangeLink::Sender
TChangeLink See also
The Sender property specifies which image list component notifies the change link object of
changes.
__property TCustomImageList* Sender;
Description
The TImageList automatically sets this property when a call to RegisterChanges is made.

TChangeLink events
TChangeLink Alphabetically

In TChangeLink
OnChange

TChangeLink events
TChangeLink By object

OnChange

TChangeLink::OnChange
TChangeLink See also
The OnChange event occurs when there's a change in any of the images stored in the
associated image list component.
__property Classes::TNotifyEvent OnChange;
Description
Use the OnChange event to notify a control when the image list that it’s using has changed.
Specify any special processing to occur at that time in the OnChange event handler.
The TNotifyEvent type is the type for events that have no parameters. These events simply
notify the object that a specific event occurred, in this case an OnChange event.

TChangeLink methods
TChangeLink Alphabetically

In TChangeLink
~TChangeLink
Change
TChangeLink

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TChangeLink methods
TChangeLink By object

~TChangeLink
Change
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TChangeLink

TChangeLink::~TChangeLink
TChangeLink See also
The ~TChangeLink method destroys the change link object and releases the memory allocated
to it.
__fastcall virtual ~TChangeLink(void);
Description
Before calling Free, ~TChangeLink first calls the image lists UnRegisterChanges to unregister
itself from receiving notification when the image list changes.
~TChangeLink seldom needs to be called. When a change link object is constructed by calling
the TChangeLink constructor, Free should be called to release memory and dispose of the
object. Free checks to see if the pointer is NULL before calling ~TChangeLink.

TChangeLink::Change
TChangeLink See also
The Change method calls the OnChange event handler, if one has been defined.
virtual void __fastcall Change(void);
Description
Use the Change method to trigger the OnChange event handler of the change link object.

TChangeLink::TChangeLink
TChangeLink
TChangeLink creates a new TChangeLink object.
__fastcall TChangeLink(void);

Hierarchy

TObject

TChangeLink example
TChangeLink

TClipboard
Hierarchy Properties Methods See also
TClipboard encapsulates the Windows Clipboard.
Header
vcl/clipbrd.hpp
Description
The Windows Clipboard represents the container for any text or graphics that are cut, copied or
pasted from or to an application. TClipboard is a Borland C++Builder object wrapper for the
Windows Clipboard.
The Clipboard unit declares the variable for Clipboard as an instance of TClipboard. This
variable is accessed by calling the Clipboard function. Use a clipboard object in the manner
rather than by instantiating it by calling the Create constructor. The Clipboard function
safeguards accidently deleting the clipboard.
The properties of the Clipboard provide information about the formats that the Clipboard is
“registered” to handle.
The methods of the Clipboard
• Get and retrieve data according to the appropriate format.
• Handle reference counting, and opening and closing the Clipboard
• Manage and manipulate formats for objects in the Clipboard.
Place text in and retrieve text from the Clipboard using the AsText property. If you want to place
pictures in and retrieve pictures from the Clipboard, use the Assign property. To add or retrieve a
component object to the Clipboard, call the GetComponent and SetComponent methods.
The list of all the current formats on the Clipboard is found in the Formats property. The number
of formats is the value of the FormatCount property. To find out if a specific format is on the
Clipboard, call the HasFormat method.
Each time you add an item to the Clipboard, the previous contents are cleared automatically. To
add multiple items, you should use the Open method to prevent the contents from being
overwritten or being changed by another application. Call Close when you are finished adding
items to the Clipboard.
You can add and other formats to the Clipboard using Windows handles with the GetAsHandle
and SetAsHandle methods.

TClipboard properties
TClipboard Alphabetically Legend

In TClipboard
AsText

FormatCount
Formats

TClipboard properties
TClipboard By object Legend

AsText
FormatCount
Formats

TClipboard::AsText
TClipboard See also
AsText returns the current contents of the Clipboard as a string.
__property System::AnsiString AsText;
Description
Use the AsText property to place a copy of a string on the Clipboard. Assign a string as the
value of AsText.
The string value of the AsText property is limited to 255 characters. To set and retrieve more
than 255 characters, use the SetTextBuf and GetTextBuf Clipboard methods.
The Clipboard must contain a string or an exception occurs. To determine if the Clipboard
contains a string type use the HasFormat method.

TClipboard::FormatCount
TClipboard See also
FormatCount contains the number of formats in the Formats array property.
__property int FormatCount;
Description
Use FormatCount to find the number of different format types the Clipboard has registered.
FormatCount is read-only.
To find all of the types of formats that the Clipboard has currently registered, use the Formats
property. To find out if a particular format is available on the Clipboard use the HasFormat
method.

TClipboard::Formats
TClipboard See also
Formats is a list of all the formats the Clipboard contains.
__property unsigned short Formats[int Index];
Description
Use Formats to access a format by its position in the array using the Index parameter.
Usually when an application copies or cuts something to the Clipboard, it places it there in
multiple formats.
An application can place items of a particular format on the Clipboard and retrieve items with a
particular format from the Clipboard if the format is in the Formats array. To find out if a particular
format is available on the Clipboard use the HasFormat method.

TClipboard methods
TClipboard Alphabetically

In TClipboard
~TClipboard
Assign
Clear
Close
GetAsHandle
GetComponent
GetTextBuf
HasFormat
Open
SetAsHandle
SetComponent
SetTextBuf
TClipboard

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TClipboard methods
TClipboard By object

~TClipboard
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
Close
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
GetAsHandle
GetComponent
GetTextBuf
HasFormat
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
Open
SetAsHandle
SetComponent
SetTextBuf
TClipboard

TClipboard::~TClipboard
TClipboard See also
~TClipboard frees the memory associated with the TClipboard object. Do not call ~TClipboard
directly. Instead, use the delete keyword on the object, which causes ~TClipboard to be invoked
automatically.
__fastcall virtual ~TClipboard(void);

TClipboard::Assign
TClipboard See also
Assign assigns the object specified by the Source parameter to the Clipboard.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
Use Assign to retrieve an object from the Clipboard or to copy an object to the Clipboard. The
object specified by the Source parameter is the object being copied. For example, the following
code copies the bitmap from a bitmap object named Bitmap1 to the Clipboard:
To retrieve an object from the Clipboard, Assign (the object that is in) the Clipboard to the new
object, that is, to the object that is calling its own Assign method. For example, if a bitmap is on
the Clipboard, the following code copies it to a bitmap object named Bitmap1:
The HasFormat method lists the types of formats used to copy an object to the Clipboard.
Graphic objects such as bitmaps and metafiles have their own corresponding formats. Most
other objects use a standard format, as does text.

TClipboard::Clear
TClipboard
Clear deletes the contents of the Clipboard.
void __fastcall Clear(void);
Description
This happens automatically each time data is added to the Clipboard (cut and copy operations).

TClipboard::Close
TClipboard See also
Close closes the Clipboard if it is open.
void __fastcall Close(void);
Description
The Clipboard can be opened with a call to Open multiple times before being closed. Because
the Clipboard object counts each time it is opened, your application must close it the same
number of times it was opened before the Clipboard is actually closed.

TClipboard::GetAsHandle
TClipboard See also
GetAsHandle returns the data from the Clipboard in a windows handle for the format specified in
the Format parameter. See the Windows API Help file for information about the available
formats.
int __fastcall GetAsHandle(unsigned short Format);
Description
Your application doesn’t own the handle, so it should copy the data before using it.
Note
The handle returned by GetAsHandle is only valid as long as the Clipboard is open. As soon as
the Clipboard is closed, the handle is deallocated by Windows and is no longer accessible. It is
recommended that if data associated with the handle is needed for a long period of time you
should copy the data to another handle.

TClipboard::GetComponent
TClipboard See also
GetComponent retrieves a component from the Clipboard and places it according to the value of
the Owner and Parent parameters.
Classes::TComponent* __fastcall GetComponent(Classes::TComponent*
Owner, Classes::TComponent* Parent);

Description
With Owner, specify the component that becomes the owner of the retrieved component--
usually this is a form. With Parent, specify the component that becomes the parent of the
component. Both Owner and Parent can be NULL.
Before a class can be read in from the Clipboard, it must first be registered with the Classes unit
by calling RegisterClasses. If you attempt to read in a class that has not been registered, you will
receive an EClassNotFound exception.

TClipboard::GetTextBuf
TClipboard See also Example
GetTextBuf retrieves the control’s text and copies it into the buffer pointed to by Buffer, up to
the number of characters given by BufSize, and returns the number of characters copied.
int __fastcall GetTextBuf(char * Buffer, int BufSize);
Description
Use GetTextBuf to
The resulting text in Buffer is a null-terminated string.
To find out how many characters the buffer needs to hold the entire text call the GetTextLen
method before calling GetTextBuf.

TClipboard::HasFormat
TClipboard
HasFormat determines if the Clipboard object contains a particular format.
bool __fastcall HasFormat(unsigned short Format);
Description
If HasFormat is true, the format is present; if false, the format is absent. The Clipboard object
keeps a list of available formats in the Formats array property.
Some of the possible values of the Format parameter follow. There are many more Clipboard
formats provided by Windows, and custom formats can be registered. All are supported by
HasFormat.
Value Meaning

CF_TEXT Text with each line ending with a CR-LF combination. A null character
identifies the end of the text.

CF_BITMAP A Windows bitmap graphic.
CF_METAFILE A Windows metafile graphic.
CF_PICTURE An object of type TPicture.
CF_OBJECT Any persistent object.

TClipboard::Open
TClipboard See also
Open opens the Clipboard and prevents other applications from changing its contents until the
Clipboard is closed.
void __fastcall Open(void);
Description
When adding a single item to the Clipboard, an application doesn’t have to call Open.To add a
series of items to the Clipboard, however, calling Open prevents the contents from being
overwritten with each addition.
When an application has added all items to the Clipboard, it should call the Close method.

TClipboard::SetAsHandle
TClipboard
SetAsHandle places the data in the given format as a Windows handle.
void __fastcall SetAsHandle(unsigned short Format, int Value);
Description
Once an application gives the handle to the Clipboard, it should not delete the handle Value.
Instead, the Clipboard will delete the handle.
See the Windows API Help file for information about the available formats for Format parameter.

TClipboard::SetComponent
TClipboard See also
SetComponent copies a component to the Clipboard.
void __fastcall SetComponent(Classes::TComponent* Component);
Description
Use SetComponent to
Specify the component you want copied as the value of the Component parameter.

TClipboard::SetTextBuf
TClipboard See also Example
SetTextBuf sets the control’s text to the text in the buffer pointed to by Buffer.
void __fastcall SetTextBuf(char * Buffer);
Description
Use SetTextBuf to
Buffer must point to a null-terminated string.

TClipboard::TClipboard
TClipboard See also
TClipboard creates a new TClipboard object.
__fastcall TClipboard(void);

Accessibility
Read-only

Hierarchy

TObject

TPersistent

TClipboard example
TClipboard

TComponent
Hierarchy Properties Methods See also
TComponent is the common ancestor of all component objects in Borland C++Builder.
Header
vcl/classes.hpp
Description
TComponent encapsulates the fundamental behavior common to all components in Borland C+
+Builder by introducing methods and properties that provide:
• The ability to appear on Component palette and be manipulated in the form designer.
• The ability to own and manage other components.
• Enhanced streaming and filing capabilities.
Do not create instances of TComponent. Use TComponent as a base class when declaring non-
visual components that can appear on the component palette and be used in the form designer.
Properties and methods of TComponent provide basic behavior that descendent classes inherit
as well as behavior that components can override to customize their behavior.
To create visual components, use TControl or its descendents as a base. To create visual
windowed controls use TWinControl or its descendents as a base.

TComponent properties
TComponent Alphabetically Legend

In TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TComponent properties
TComponent By object Legend

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

DesignInfo
Name

Owner
Tag

TComponent::ComponentCount
TComponent See also Example
ComponentCount indicates the number of components owned by the component as listed in the
Components array property list.
__property int ComponentCount;
Description
Use ComponentCount to find or verify the number of components owned by a component, or
when iterating through the Components list to perform some action on all owned components.
ComponentCount is used internally in Borland C++Builder for such iterative procedures.
Note
The ComponentCount of a component contains the same number of items as in the
Components list for that component, and is always 1 more than the highest Components index,
because the first Components index is always 0.

TComponent::ComponentIndex
TComponent See also Example
ComponentIndex indicates the position of the component in its owner’s Components array
property list.
__property int ComponentIndex;
Description
Use ComponentIndex when iterating through the Components list to perform some action on
owned components. For convenience it can be used in conjunction with ComponentCount.
ComponentIndex is used internally in Borland C++Builder for iterative assignment procedures.
Note
The first component in the list has a ComponentIndex value of 0, the second has a value of 1,
and so on. Therefore, when using ComponentIndex with ComponentCount, note that
ComponentCount is always 1 more than the highest Components index.

TComponent::Components
TComponent See also Example
Components lists of all components owned by the component.
__property TComponent* Components[int Index];
Description
Use Components to access any of these owned components, such as the controls owned by a
form. The Components property is most useful when needing to refer to owned components by
number rather than name. It is also used internally in Borland C++Builder for iterative processing
on all owned components.
Note
For convenience use Components with ComponentCount for iterative processing. However, be
aware that while the ComponentCount of a component contains the same number of items as in
the Components list for that component, ComponentCount is always 1 more than the highest
Components index, because the first Components index is always 0.

TComponent::ComponentState
TComponent See also
ComponentState describes the current state of the component, indicating when a component
needs to avoid certain actions.
__property TComponentState ComponentState;
Description
Components use the ComponentState property to detect states in which certain kinds of actions
are allowed or disallowed. For example, if a component needs to avoid certain behaviors at
design time that it will perform at runtime, it can check for the csDesigning flag. ComponentState
is read-only and its flags are set automatically by various methods, each for its own purpose.
The TComponentState type defines the set of possible state flags for the ComponentState
property. The following table lists the possible values for the TComponentState type and the
meaning corresponding to each flag:
Table Part 0.1

Flag Component state
csAncestor Set if the component was introduced in an ancestor form. Only set if

csDesigning is also set.
csDesigning Design mode, meaning it is in a form being manipulated by a form

designer.
csDestroying The component is about to be destroyed.
csFixups Set if the component is linked to a component in another form that has

not yet been loaded. This flag is cleared when all pending fixups are
resolved.

csLoading Loading from a filer object.
csReading Reading its property values from a stream.
csUpdating The component is being updated to reflect changes in an ancestor form.

Only set if csAncestor is also set.
csWriting Writing its property values to a stream.

TComponent::ComponentStyle
TComponent
ComponentStyle sets a a flag for a style that governs the behavior of the component.
__property TComponentStyle ComponentStyle;
Description
ComponentStyle determines whether a component (and therefore the forms that contain it) is
inheritable, and whether it needs to check its properties for readability.
The TComponentStyle type defines a set of values for the ComponentStyle property.
TComponent sets the csInheritable style by default in the constructor, and most of the standard
components are inheritable.
The csInheritable style indicates that the component can be inherited by a descendant form type.
If any of the components in a form do not have the csInheritable style, the form cannot be used
as the ancestor of an inherited form.
The csCheckPropAvail style indicates that a component needs to check its properties for
readability. This is only used for OLE controls, where the Object Inspector cannot tell directly that
a property is readable, and therefore displayable. Native Borland C++Builder components should
not use this style.

TComponent::DesignInfo
TComponent See also
DesignInfo contains information used by the Form Designer.
__property long DesignInfo;
Description
DesignInfo is used internally by the Borland C++Builder environment. Do not call it directly.

TComponent::Name
TComponent See also Example
Name contains the name of the component as referenced by other components.
__property System::AnsiString Name;
Description
Use Name to change the name of a component to reflect its purpose in the current application.
By default, Borland C++Builder assigns sequential names based on the type of the component,
such as ’Button1’, ’Button2’, and so on.

TComponent::Owner
TComponent See also
Owner indicates which component owns the component.
__property TComponent* Owner;
Description
Use Owner to find the owner of a component. When one component is owned by another, the
memory for the owned component is freed when its owner’s memory is freed. This means that
when a form is destroyed, all the components on the form are also destroyed.
In Borland C++Builder, a form owns all components that are on it. In turn, the form is owned by
the application. Thus when the memory for the application itself is freed, the memory for the form
(and all its owned components) is also freed.
The owner of a component is determined by the parameter passed to the TComponent method
when the component is constructed. For components created in the Borland C++Builder form
designer, the owner is passed automatically to the constructor.

TComponent::Tag
TComponent
Tag stores an integer value as part of a component.
__property long Tag;
Description
Tag has no predefined meaning to Borland C++Builder. The Tag property is provided for the
convenience of storing additional integer value or pointer information for special needs in an
application. For example, use the Tag property when implementing case statements with a
component.

TComponent methods
TComponent Alphabetically Legend

In TComponent
~TComponent

ChangeName
DefineProperties
DestroyComponents
Destroying
FindComponent
FreeNotification
GetChildOwner
GetChildParent
GetChildren
GetParentComponent
HasParent
InsertComponent
Loaded
Notification
ReadState
RemoveComponent
SetAncestor
SetChildOrder
SetDesigning
SetName
SetParentComponent
TComponent
Updated
Updating
ValidateRename
WriteState

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TComponent methods
TComponent By object Legend

~TComponent
Assign

ChangeName
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DefineProperties
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent

FreeInstance
FreeNotification
Free

GetChildOwner
GetChildParent
GetChildren
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
Loaded
MethodAddress
MethodName

NewInstance
Notification
ReadState
RemoveComponent
SetAncestor
SetChildOrder
SetDesigning
SetName
SetParentComponent
TComponent
Updated
Updating
ValidateRename
WriteState

TComponent::~TComponent
TComponent See also
~TComponent disposes of the component and its owned components.
__fastcall virtual ~TComponent(void);
Description
TComponent overrides ~TComponent to dispose of the component where the method is
executed as well as any components that it owns.
Note
It is not advisable to call ~TComponent directly. Instead, use the delete keyword on the object,
which causes ~TComponent to be invoked automatically.
Never explicitly free a component within one of its own event handlers, nor free a component
from an event handler of a component that the component owns or contains.
To free the form, call the Release method, which destroys the form and releases the memory
allocated for it after all its event handlers and those of the components it contains are through
executing.

TComponent::ChangeName
TComponent See also
ChangeName sets the private, internal storage for the Name property to the string passed in
NewName.
void __fastcall ChangeName(const System::AnsiString NewName);
Description
ChangeName is used by the SetName method to actually change the component’s name.
ChangeName is not virtual; do not override it. When overriding SetName be sure to call the
inherited SetName.

TComponent::DefineProperties
TComponent See also
DefineProperties designates methods for storing an object’s unpublished data on a stream
such as a form file.
virtual void __fastcall DefineProperties(TFiler* Filer);
Description
TComponent overrides the DefineProperties method defined in TPersistent to define “fake”
Top and Left properties. These are defined so that a non-visual component can be manipulated
at design-time. However, the Top and Left properties are hidden, that is, they are not published
because non-visual components do not appear at runtime.
DefineProperties is virtual, so descendent classes can override it. When writing or overriding a
DefineProperties method, be aware that the Ancestor property of TFiler might be set, and that it
might be necessary to write or not write properties, as appropriate.
DefineProperties is called automatically as part of the streaming system; do not call it directly.

TComponent::DestroyComponents
TComponent See also
DestroyComponents iterates through the components owned by the component, removing each
from the list of owned components and destroying it.
void __fastcall DestroyComponents(void);
Description
DestroyComponents ensures that owned components are automatically destroyed by their
owner.
It is not necessary to call DestroyComponents directly. DestroyComponents is automatically
called by ~TComponent in the destructor sequence that begins with a call to Free and ends with
the object destroying itself.

TComponent::Destroying
TComponent See also
Destroying sets the csDestroying flag for the component and all owned components, indicating
that the components are about to be destroyed.
void __fastcall Destroying(void);
Description
Destroying sets the csDestroying flag in the ComponentState property, then calls the Destroying
method for each owned component so that their csDestroying flags will also be set. If
csDestroying is already set, Destroying does nothing.
It is not necessary to call Destroying directly. Destroying is automatically called by ~
TComponent in the destructor sequence that begins with a call to Free and ends with the object
destroying itself.

TComponent::FindComponent
TComponent See also Example
FindComponent indicates whether or not a given component, AName, is owned by the
component.
TComponent* __fastcall FindComponent(const System::AnsiString AName);
Description
FindComponent returns the component in the Components array property with the name that
matches the string in the AName parameter. Use to find whether a given component is owned by
another.
FindComponent is not case sensitive.

TComponent::FreeNotification
TComponent See also
FreeNotification ensures that AComponent is notified that the component is going to be
destroyed.
void __fastcall FreeNotification(TComponent* AComponent);
Description
Use FreeNotification when a component is assigned to a property of another component.
It is necessary to call FreeNotification for components in other forms that have references to the
component. But for components in the same form with the component, the Notification method
will be called automatically.

TComponent::GetChildOwner
TComponent See also
GetChildOwner returns the owner of a child component being read from a stream.
virtual TComponent* __fastcall GetChildOwner(void);
Description
In TComponent GetChildOwner returns NULL by default, meaning that the owner is assumed to
be the root component currently being read (that is usually a form). The Owner of a component
is responsible for destroying it.
GetChildOwner is used internally by the streaming system in Borland C++Builder. It is rarely
necessary to call it directly.

TComponent::GetChildParent
TComponent See also
GetChildParent returns the parent, or if there is no parent, returns the owner of a child
component being read from a stream.
virtual TComponent* __fastcall GetChildParent(void);
Description
By default GetChildParent for TComponent returns Self. If GetChildParent returns NULL, the
parent is assumed to be the root component currently being read (that is usually a form).
GetChildParent is used internally in the Borland C++Builder streaming system. It is not
necessary to call it directly.

TComponent::GetChildren
TComponent See also
The GetChildren method defined by TComponent does nothing other than provide an interface
for a method that windowed controls use to return their child components.
virtual void __fastcall GetChildren(TGetChildProc Proc);
Description
The GetChildren method is introduced in TComponent for convenience for the Borland C++
Builder streaming system. Descendent classes override GetChildren to return the “child”
components of the component; that is, those who return the component from their
GetParentComponent method.

TComponent::GetParentComponent
TComponent See also
GetParentComponent returns NULL for TComponent.
virtual TComponent* __fastcall GetParentComponent(void);
Description
The GetParentComponent method is introduced in TComponent for convenience for the Borland
C++Builder streaming system. Descendent classes can override GetParentComponent to return
the appropriate parent for their particular type of component.

TComponent::HasParent
TComponent See also
HasParent returns false for TComponent.
virtual bool __fastcall HasParent(void);
Description
The HasParent method is introduced in TComponent for the streaming system to determine
whether the component has a parent to handle its filing for it.
A return value of true indicates that some other object (a parent) is responsible for writing the
object to a stream. Most commonly the parent other object is a form or panel component that
contains a control.
It is rarely necessary to override HasParent. Any child component that returns true from
HasParent must now also implement the GetParentComponent and SetParentComponent
methods.

TComponent::InsertComponent
TComponent See also
InsertComponent establishes the component as the owner of the component passed in the
AComponent parameter.
void __fastcall InsertComponent(TComponent* AComponent);
Description
InsertComponet adds the component to the end of the Components array property. The inserted
component must have no name (no specified Name property value), or the name must be
unique among all others in the Components list.
When the owning component is destroyed, AComponent is destroyed also.
Components are automatically inserted and removed when visually manipulating them in the
Borland C++Builder form designer. Use InsertComponent when manually adding components to
another Owner component’s Components list.

TComponent::Loaded
TComponent See also
Loaded clears the csLoading flag in the ComponentState property indicating that the component
has been loaded from a stream.
virtual void __fastcall Loaded(void);
Description
The Loaded method provides an opportunity for a component to initialize itself after all its parts
have loaded from a stream.
When a Borland C++Builder application loads a form from its form file, for example, it first
constructs the form component by calling its constructor, then reading its property values from
the form file, which is a stream. After reading all the property values for all the components,
Borland C++Builder calls the Loaded methods of each component in the order the components
were created. This gives the components a chance to initialize any data that depends on the
values of other components or other parts of itself.
Note
All references to sibling components are resolved by the time Loaded is called. Loaded is the
first place that sibling pointers can be used after being streamed in.

TComponent::Notification
TComponent See also
Notification forwards notification messages to all owned components.
virtual void __fastcall Notification(TComponent* AComponent, TOperation
Operation);

Description
The Notification method notifies the component that the component specified by AComponent is
about to be inserted or removed, as specified by Operation. By default, components pass along
the notification to their owned components, if any.
A component can, if needed, act on the notification that a component is being inserted or
removed. In particular, if a component has object fields or properties that contain references to
other components, it might check the notifications of component removals and invalidate those
references as needed.

TComponent::ReadState
TComponent See also
ReadState is a method used by the streaming system to read the component’s data from a
stream.
virtual void __fastcall ReadState(TReader* Reader);
Description
ReadState is a method that communicates with a reader object, passed in Reader, to assure
that the component is properly read in from a stream.
The ReadState method is part of a sequence of calls used by the Borland C++Builder streaming
system to read the values of all the component’s published properties, other stored data from a
stream. It is not necessary to call ReadState directly.
Although ReadState is virtual, it is rarely overridden. Nevertheless, any descendent classes
overriding ReadState should end with a call to the inherited ReadState method of TComponent.
ReadState reads the value of the component’s published properties, stored data, and owned
components from the reader object passed in Reader.

TComponent::RemoveComponent
TComponent See also Example
RemoveComponent removes the component specified in the AComponent parameter from the
component’s Components list.
void __fastcall RemoveComponent(TComponent* AComponent);
Description
Components are automatically inserted and removed when visually manipulating them in the
Borland C++Builder form designer. Use RemoveComponent when manually deleting
components from an Owner component.

TComponent::SetAncestor
TComponent See also
SetAncestor sets or clears the ComponentState property’s csAncestor flag for the component
where the method is executed and all components it owns.
void __fastcall SetAncestor(bool Value);
Description
SetAncestor is used internally for the Borland C++Builder streaming system. It is not necessary
to call SetAncestor directly.
SetAncestor sets or clears the csAncestor flag which is used to determine whether or not the
component was introduced in an ancestor form. SetAncestor then calls the SetAncestor methods
of any owned components, passing Value, so that the owned components’ ComponentState
properties will be synchronized with the owner’s.

TComponent::SetChildOrder
TComponent See also
SetChildOrder does nothing in TComponent.
virtual void __fastcall SetChildOrder(TComponent* Child, int Order);
Description
SetChildOrder is introduced in TComponent for convenience for the Borland C++Builder
streaming system. Descendent classes override SetChildOrder to change the order in which the
child appears in the child component list returned by GetChildren.

TComponent::SetDesigning
TComponent See also
SetDesigning ensures that components inserted at design time have their design-mode flag set.
void __fastcall SetDesigning(bool Value);
Description
SetDesigning is used internally for the Borland C++Builder Form Designer. It is not necessary to
call SetDesigning directly.
SetDesigning sets the csDesigning option in the ComponentState property if Value is true,
otherwise, it removes csDesigning. SetDesigning then calls the SetDesigning methods of any
owned components, passing Value, so that the owned components’ ComponentState
properties will be synchronized with the owner’s.
The InsertComponent and RemoveComponent methods call SetDesigning for inserted or
removed components to ensure that their design-mode flags are set properly.

TComponent::SetName
TComponent See also
SetName is the property-access method for setting the value of the Name property.
virtual void __fastcall SetName(const System::AnsiString NewName);
Description
SetName is the virtual method used as the write part of the Name property. It calls the
ChangeName method, which performs the actual name change. ChangeName is not virtual;
override SetName instead when modifying the behavior of the Name property.

TComponent::SetParentComponent
TComponent See also
SetParentComponent does nothing in TComponent.
virtual void __fastcall SetParentComponent(TComponent* Value);
Description
SetParentComponent was introduced in TComponent for convenience in the Borland C++
Builder streaming system. Descendent classes override SetParentComponent to change the
value that GetParentComponent returns to match Value.

TComponent::TComponent
TComponent See also
TComponent automatically allocates enough memory and constructs a safely initialized instance
of a component.
__fastcall virtual TComponent(TComponent* AOwner);
Description
All objects in Borland C++Builder have a constructor method that constructs the object.
TComponent redefines the constructor so that, for components, TComponent also:
• establishes the relationship of a component and its Owner, as indicated by the AOwner

parameter
• sets the ComponentStyle property to csInheritable, meaning that the component can be

inherited by a descendant form type
It is not necessary to call TComponent manually for components created in the Borland C++
Builder form designer. These components are created automatically when the application is run,
and they are destroyed when the application is closed.
For components created manually, that is, not created in the form designer, call TComponent
and pass in an owner component as the AOwner parameter. The owner will dispose of the
component when the owner is destroyed. If the component is not owned, then call Free so that it
is destroyed.
Note
When passing in Self, consider what Self references. If a component creates another component
in one of its methods, then Self refers to the first component and not the component being
created, which will be owned by the first component.
Note
TComponent::TComponent is virtual in part to allow polymorphic instantiation of class
references. This is critical to the streaming system and to the form designer. Do not forget to use
the override directive when declaring a new component’s constructor.

TComponent::Updated
TComponent See also
Updated clears the csUpdating state in the component’s ComponentState property to indicate
that the component has finished updating.
virtual void __fastcall Updated(void);
Description
Updated is used internally in Borland C++Builder to modify the ComponentState property. It is
not necessary to call Updated directly. A call to Updated always follows a call to Updating, which
sets the flag.

TComponent::Updating
TComponent See also
Updating sets the csUpdating state in the component’s ComponentState property to indicate
that the component is about to be updated.
virtual void __fastcall Updating(void);
Description
Updating is used internally in Borland C++Builder to modify the ComponentState property. It is
not necessary to call Updating directly. A call to Updating should always be followed by a call to
Updated, which clears the flag.

TComponent::ValidateRename
TComponent See also
ValidateRename ensures that renaming an owned component does not create name conflict.
virtual void __fastcall ValidateRename(TComponent* AComponent, const
System::AnsiString CurName, const System::AnsiString NewName);

Description
ValidateRename checks to see if a component can rename one of its owned components,
passed in AComponent, from its current name (CurName) to the string passed in NewName. If
AComponent is NULL or NewName is already the name of a component in the Components list,
ValidateRename raises an EComponentError exception.
ValidateRename is used internally by Borland C++Builder when the Name property is modified.
It is not necessary to call it directly.

TComponent::WriteState
TComponent See also
WriteState is a method used by the streaming system to write the component’s data to a
stream.
virtual void __fastcall WriteState(TWriter* Writer);
Description
WriteState is an interactive method that communicates with a writer object, passed in Writer, to
assure that the component is properly written out.
The WriteState method is part of a sequence of calls used by the Borland C++Builder streaming
system to write the values of all the component’s published properties, other stored data to a
stream. It is not necessary to call WriteState directly.
Although WriteState is virtual, it is rarely overridden. Nevertheless, any descendent classes
overriding WriteState should end with a call to the inherited WriteState method of TComponent.

Scope
Published

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent

TComponent example
TComponent

TCollection
Hierarchy Properties Methods See also
TCollection is a container for TCollectionItem objects.
Header
vcl/classes.hpp
Description
Each TCollection holds a group of TCollectionItem objects. TCollection maintains an index of the
collection items in its Items array. The Count property contains the number of items in the
collection. Use the Add and Clear methods to add items to the collection and delete items from
the collection.
Objects descended from TCollection can contain objects descended from TCollectionItem. For
example, a TDBGridColumns object contains TColumn objects; these two classes are used by
TDBGrid to represent grid columns. The following table lists each descendant of TCollection with
the corresponding descendant TCollectionItem and the control component (descended from
TWinControl) that uses each pair:
TCollection descendantTCollectionItem descendant Control component

TDBGridColumns TColumn TDBGrid
THeaderSections THeaderSection THeaderControl
TListColumns TListColumn TListView
TStatusPanels TStatusPanel TStatusBar

TCollection properties
TCollection Alphabetically Legend

In TCollection
Count

Items

TCollection properties
TCollection By object Legend

Count
Items

TCollection::Count
TCollection See also
Returns the number of items in the collection.
__property int Count;
Description
Count contains the number of items in the Items array. Since Items is indexed starting with 0, the
value of Count is always one greater than the index of the last member of Items.

TCollection::Items
TCollection See also
Items is an index of the items in the collection.
__property TCollectionItem* Items[int Index];
Description
The value of the Index parameter corresponds to the Index property of TCollectionItem. It
represents the position of the item in the collection.

TCollection methods
TCollection Alphabetically

In TCollection
~TCollection
Add
Assign
BeginUpdate
Clear
EndUpdate
TCollection

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCollection methods
TCollection By object

~TCollection
Add
Assign
BeginUpdate
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
Dispatch
EndUpdate
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TCollection

TCollection::~TCollection
TCollection See also
Destroys the collection and each item in it.
__fastcall virtual ~TCollection(void);
Description
~TCollection calls the Clear method to free each item referenced in the Items array, then
destroys the collection itself.

TCollection::Add
TCollection See also
Creates a new TCollectionItem instance and adds it to the Items array.
TCollectionItem* __fastcall Add(void);
Description
Add returns the new collection item.

TCollection::Assign
TCollection See also
Copies the contents of another collection to the object where the method is executed.
virtual void __fastcall Assign(TPersistent* Source);
Description
Use Assign to copy the contents of one TCollection instance to another. The Assign method
deletes all items from the destination collection (the object where it is executed), then adds a
copy of each item in the Source collection’s Items array.

TCollection::BeginUpdate
TCollection See also
Suspends screen repainting.
void __fastcall BeginUpdate(void);
Description
The BeginUpdate method suspends screen repainting until the EndUpdate method is called. Use
BeginUpdate to speed processing while items are added to or deleted from a collection.

TCollection::Clear
TCollection See also
Deletes all items from the collection.
void __fastcall Clear(void);
Description
Clear empties the Items array and destroys each TCollectionItem.

TCollection::EndUpdate
TCollection See also
Re-enables screen repainting.
void __fastcall EndUpdate(void);
Description
Use EndUpdate to re-enable screen repainting that was turned off with the BeginUpdate method.

TCollection::TCollection
TCollection See also
Creates and initializes a collection.
__fastcall TCollection(System::TMetaClass* ItemClass);
Description
The TCollection method takes the name of a TCollectionItem descendent class as a parameter.
This parameter determines the class of the items created by the Add method.

Accessibility
Read-only

Hierarchy

TObject

TPersistent

TCollection example
TCollection

TCollectionItem
Hierarchy Properties Methods See also
TCollectionItem represents an item in a collection.
Header
vcl/classes.hpp
Description
A TCollection holds a group of TCollectionItem objects. TCollectionItems are created and
destroyed by TCollection’s Add and Clear methods. Each TCollectionItem has a Collection
property that points to the TCollection object to which the item belongs.
Objects descended from TCollection can contain objects descended from TCollectionItem. For
example, a TDBGridColumns object contains TColumn objects; these two classes are used by
TDBGrid to represent grid columns. For a complete list of TCollection and TCollectionItem
descendants, see TCollection.

TCollectionItem properties
TCollectionItem Alphabetically

In TCollectionItem
Collection
Index

TCollectionItem properties
TCollectionItem By object

Collection
Index

TCollectionItem::Collection
TCollectionItem
Specifies the TCollection instance to which the TCollectionItem belongs.
__property TCollection* Collection;
Description
Each TCollectionItem belongs to the TCollection which creates it. The Collection property points
to the collection object to which the item belongs.

TCollectionItem::Index
TCollectionItem See also
Returns the item’s position in the Items array of TCollection.
__property int Index;
Description
Each TCollectionItem is indexed in the Items array of the TCollection to which it belongs. The
Index property of the TCollectionItem contains the item’s index value in that array.
Items is a zero-based array. The first member of the collection has an index value of 0, the
second member has an index value of 1, and so forth.

TCollectionItem methods
TCollectionItem Alphabetically

In TCollectionItem
~TCollectionItem
TCollectionItem

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCollectionItem methods
TCollectionItem By object

~TCollectionItem
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TCollectionItem

TCollectionItem::~TCollectionItem
TCollectionItem See also
Destroys the TCollectionItem instance and frees its memory.
__fastcall virtual ~TCollectionItem(void);
Description
~TCollectionItem is called indirectly by TCollection’s Clear method.

TCollectionItem::TCollectionItem
TCollectionItem See also
Creates and initializes a TCollectionItem instance.
__fastcall virtual TCollectionItem(TCollection* Collection);
Description
The TCollectionItem method takes as a parameter the name of a TCollection instance.
TCollectionItem is called by TCollection’s Add method.

Hierarchy

TObject

TPersistent

TCollectionItem example
TCollectionItem

TColorDialog
Hierarchy Properties Methods
TColorDialog generates a color-selection dialog.
Header
vcl/dialogs.hpp
Description
The TColorDialog component displays a Windows dialog box for selecting colors. The dialog
does not appear at runtime until it is activated by a call to the Execute method. When the user
selects a color and clicks OK, the dialog closes and the selected color is stored in the Color
property.

TColorDialog properties
TColorDialog Alphabetically Legend

In TColorDialog
Color
CustomColors
Options

Derived from TCommonDialog
Ctl3D
HelpContext

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TColorDialog properties
TColorDialog By object Legend

Color
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

Ctl3D
CustomColors
DesignInfo
HelpContext
Name
Options

Owner
Tag

TColorDialog::Color
TColorDialog See also
Returns the selected color.
__property Graphics::TColor Color;
Description
When the user selects a color in the dialog box and clicks OK, the selected color becomes the
value of the Color property. To make a default color appear in the dialog when it opens, assign a
value to Color in the Object Inspector or in program code.

TColorDialog::CustomColors
TColorDialog
Determines which custom colors are available in the dialog box.
__property Classes::TStrings* CustomColors;
Description
Each custom color is represented as a string of the form ColorX=HexValue. For example, the
following string sets the first custom color.
ColorA=808022

Up to 16 custom colors (ColorA through ColorP) can be set.

TColorDialog::Options
TColorDialog
Specifies options and default appearance for the dialog.
__property TColorDialogOptions Options;
Description
Use the Options property to customize the appearance and functionality of the dialog. The
possible values of Options are
Value Meaning

cdFullOpen Displays the custom color options when the dialog opens.
cdPreventFullOpen Disables the Define Custom Colors button in the dialog, so that the user

cannot define new colors.
cdShowHelp Adds a Help button to the dialog.
cdSolidColor Directs Windows to use the nearest solid color to the color chosen.
cdAnyColor Allows the user to select non-VGA colors (if implemented).
By default, all of these options are off.

TColorDialog methods
TColorDialog Alphabetically

In TColorDialog
~TColorDialog
Execute
TColorDialog

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TColorDialog methods
TColorDialog By object

~TColorDialog
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
Dispatch
Execute
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
TColorDialog

TColorDialog::~TColorDialog
TColorDialog See also
~TColorDialog frees the memory associated with the TColorDialog object. Do not call ~
TColorDialog directly. Instead, use the delete keyword on the object, which causes ~
TColorDialog to be invoked automatically.
__fastcall virtual ~TColorDialog(void);

TColorDialog::Execute
TColorDialog
Displays the color-selection dialog.
bool __fastcall Execute(void);
Description
Execute opens the color-selection dialog, returning true when the user selects a color and clicks
OK.

TColorDialog::TColorDialog
TColorDialog See also
Creates and initializes a color-selection dialog.
__fastcall virtual TColorDialog(Classes::TComponent* AOwner);
Description
TColorDialog generates a TColorDialog instance and initializes the CustomColors property.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent
TCommonDialog

TColorDialog example
TColorDialog

TColumnTitle
Hierarchy Properties Methods See also
TColumnTitle represents the title of a data-grid column (TColumn).
Header
vcl/dbgrids.hpp
Description
TDBGrid uses a TDBGridColumns to maintain a collection of TColumn objects. Each TColumn
has an associated TColumnTitle that holds information about its title. The TColumnTitle instance
is stored in the column’s Title property.

TColumnTitle properties
TColumnTitle Alphabetically Legend

In TColumnTitle
Alignment
Caption
Color
Font

TColumnTitle properties
TColumnTitle By object Legend

Alignment
Caption
Color
Font

TColumnTitle::Alignment
TColumnTitle See also Example
Specifies how text is aligned within the column title.
__property Classes::TAlignment Alignment;
Description
These are the possible values of Alignment:
Value Meaning

taLeftJustify Align text on the left side of the column.
taCenter Center text in the column.
taRightJustify Align text on the right side of the column.

TColumnTitle::Caption
TColumnTitle See also Example
The text that appears at the top of the column.
__property System::AnsiString Caption;
Description
The Caption property contains a text string that identifies the column. If the dgTitles flag is set in
the data grid’s Options property, the title appears on the form at runtime.
If the FieldName property is set in TColumn, it becomes the default value of TColumnTitle.
Caption.

TColumnTitle::Color
TColumnTitle See also
The background color for the column title.
__property Graphics::TColor Color;
Description
The Color property determines the background color of the column title. You can set Color to
one of the constants defined in the Graphics unit (such as clBlue), or to an explicit four-byte
hexadecimal value.

TColumnTitle::Font
TColumnTitle See also
Controls the font in which the column title displays its caption.
__property Graphics::TFont* Font;
Description
The Font property points to a TFont object that determines typographic attributes of text
displayed in the column title.

TColumnTitle methods
TColumnTitle Alphabetically

In TColumnTitle
~TColumnTitle
Assign
DefaultAlignment
DefaultCaption
DefaultColor
DefaultFont
RestoreDefaults
TColumnTitle

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TColumnTitle methods
TColumnTitle By object

~TColumnTitle
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultAlignment
DefaultCaption
DefaultColor
DefaultFont
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
RestoreDefaults
TColumnTitle

TColumnTitle::~TColumnTitle
TColumnTitle See also
~TColumnTitle frees the memory associated with the TColumnTitle object. Do not call ~
TColumnTitle directly. Instead, use the delete keyword on the object, which causes ~
TColumnTitle to be invoked automatically.
__fastcall virtual ~TColumnTitle(void);
Description
TColumnTitle eliminates the TColumnTitle instance along with its associated font (TFont).

TColumnTitle::Assign
TColumnTitle See also
Copies the contents of the source column title to a new column title.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
Assign creates a new column title with the same Alignment, Color, Caption, and Font values as
the source object.

TColumnTitle::DefaultAlignment
TColumnTitle See also
Returns the default alignment of the column title.
Classes::TAlignment __fastcall DefaultAlignment(void);
Description
DefaultAlignment always returns taLeftJustify.

TColumnTitle::DefaultCaption
TColumnTitle See also
Returns the default caption of the column title.
System::AnsiString __fastcall DefaultCaption(void);
Description
DefaultCaption returns the DisplayName of the TField object associated with the column. If there
is no dataset field associated with the column (that is, if the column’s Field property is empty), it
returns the column’s FieldName.

TColumnTitle::DefaultColor
TColumnTitle See also
Returns the default background color for the column title.
Graphics::TColor __fastcall DefaultColor(void);
Description
DefaultColor returns the FixedColor of the data grid to which the column belongs. If the column
has no associated data grid, DefaultColor returns clBtnFace.

TColumnTitle::DefaultFont
TColumnTitle See also
Returns the default font for the column title.
Graphics::TFont* __fastcall DefaultFont(void);
Description
DefaultFont returns the TitleFont of the data grid to which the column belongs. If the column has
no associated data grid, DefaultFont returns the current value of the column’s Font property.

TColumnTitle::RestoreDefaults
TColumnTitle See also
Restores the column title’s default settings.
virtual void __fastcall RestoreDefaults(void);
Description
RestoreDefaults reinitializes the Caption and Font properties.

TColumnTitle::TColumnTitle
TColumnTitle See also
Creates and initializes a column title.
__fastcall TColumnTitle(TColumn* Column);
Description
TColumnTitle takes a TColumn instance as its argument.

Scope
Published

Hierarchy

TObject

TPersistent

TColumnTitle example
TColumnTitle

TColumn
Hierarchy Properties Methods See also
TColumn represents a column in a data grid (TDBGrid).
Header
vcl/dbgrids.hpp
Description
Each TDBGrid uses a TDBGridColumns to maintain a collection of TColumn objects.

TColumn properties
TColumn Alphabetically Legend

In TColumn
Alignment

AssignedValues
ButtonStyle
Color
DropDownRows
Field
FieldName
Font
PickList
ReadOnly
Title
Width

Derived from TCollectionItem
Collection
Index

TColumn properties
TColumn By object Legend

Alignment
AssignedValues

ButtonStyle
Collection
Color
DropDownRows
FieldName
Field
Font
Index
PickList
ReadOnly
Title
Width

TColumn::Alignment
TColumn See also Example
Specifies how text is aligned within the column.
__property Classes::TAlignment Alignment;
Description
These are the possible values of Alignment:
Value Meaning

taLeftJustify Align text on the left side of the column.
taCenter Center text in the column.
taRightJustify Align text on the right side of the column.

TColumn::AssignedValues
TColumn See also
Indicates which TColumn and TColumnTitle properties have been set.
__property TColumnValues AssignedValues;
Description
The read-only AssignedValues lists properties of the column and its title (TColumnTitle) which
have been set or whose default values have been changed. AssignedValues is a set of zero or
more of the following:
Value Meaning

cvColor The column’s Color property has been changed.
cvWidth The column’s Width property has been changed.
cvFont The column’s Font property has been changed.
cvAlignment The column’s Alignment property has been changed.
cvReadOnly The column’s ReadOnly property has been changed.
cvTitleColor The column title’s Color property has been changed.
cvTitleCaption The column title’s Caption property has been changed.
cvTitleAlignment The column title’s Alignment property has been changed.
cvTitleFont The column title’s Font property has been changed.
For example, if AssignedValues returns [cvColor, cvTitleCaption], then the column’s font and
title caption have been changed.

TColumn::ButtonStyle
TColumn See also
Determines whether and how the user can select values for the column from a list.
__property TColumnButtonStyle ButtonStyle;
Description
The ButtonStyle property determines how users can choose the content of a data-grid column.
These are the possible values of ButtonStyle:
Value Meaning

cbsAuto If the column is associated with a lookup field or has a value assigned to
its PickList property, the grid displays a combo box in the column. The
user can choose a value from the drop-down list.

cbsEllipsis The column displays an ellipsis button that the user can click to choose a
value. Clicking the ellipsis button triggers an OnEditButtonClick event.

cbsNone No combo box or ellipsis button is provided. The user cannot select the
column’s content from a list.

TColumn::Color
TColumn See also
The background color for the column.
__property Graphics::TColor Color;
Description
The Color property determines the background color of the data-grid column. You can set Color
to one of the constants defined in the Graphics unit (such as clBlue), or to an explicit four-byte
hexadecimal value.

TColumn::DropDownRows
TColumn See also
The number of lines displayed in the column’s drop-down list.
__property int DropDownRows;
Description
DropDownRows determines the number of lines of text displayed in the drop-down list
associated with the column. This property is operative only if ButtonStyle is set to cbsAuto and
the column has a lookup field or pick list associated with it.

TColumn::Field
TColumn See also
The TField instance represented by the column.
__property Db::TField* Field;
Description
The Field property points to the TField object corresponding to the dataset field displayed in the
column.

TColumn::FieldName
TColumn See also
The name of the field represented by the column.
__property System::AnsiString FieldName;
Description
Setting FieldName changes the Field property so that it points to the dataset field with the same
name. If the dataset does not have a field with the same name, Field is set to NULL.

TColumn::Font
TColumn See also
Controls the font in which the column displays its data.
__property Graphics::TFont* Font;
Description
The Font property points to a TFont object that determines typographic attributes of text
displayed in the column.

TColumn::PickList
TColumn See also
A list of values that the user can select for the column.
__property Classes::TStrings* PickList;
Description
The PickList property points to a TStrings object. If ButtonStyle is set to cbsAuto, these strings
appear in the drop-down list associated with the column.

TColumn::ReadOnly
TColumn See also
Determines whether data displayed in the column is editable.
__property bool ReadOnly;
Description
If ReadOnly is set to true, data displayed in the column cannot be changed by the user at
runtime. If ReadOnly is set to false (and the data grid’s Options property includes the dgEditing
flag), users can edit data directly from the grid.

TColumn::Title
TColumn See also
The TColumnTitle that represents the column’s title.
__property TColumnTitle* Title;
Description
The Title property points to a TColumnTitle object that determines attributes of the column’s
title. If FieldName is set, the value of FieldName becomes the default column title (TColumnTitle.
Caption).
The title (TColumnTitle.Caption) appears at runtime only if the dgTitles flag is set in the data
grid’s Options property.

TColumn::Width
TColumn See also Example
The width of the column.
__property int Width;
Description
The Width property determines the width of the column, in pixels. If the dgColumnResize flag is
set in the data grid’s Options property, users can resize the column at runtime.

TColumn methods
TColumn Alphabetically

In TColumn
~TColumn
Assign
DefaultAlignment
DefaultColor
DefaultFont
DefaultReadOnly
DefaultWidth
RestoreDefaults
TColumn

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TColumn methods
TColumn By object

~TColumn
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultAlignment
DefaultColor
DefaultFont
DefaultHandler
DefaultReadOnly
DefaultWidth
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
RestoreDefaults
TColumn

TColumn::~TColumn
TColumn See also
~TColumn frees the memory associated with the TColumn object. Do not call ~TColumn directly.
Instead, use the delete keyword on the object, which causes ~TColumn to be invoked
automatically.
__fastcall virtual ~TColumn(void);
Description
~TColumn eliminates the TColumn instance along with its title (TColumnTitle), font (TFont), and
pick list (TStrings).

TColumn::Assign
TColumn See also
Copies the contents of the source column to a new column.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
Assign creates a new column with the same FieldName, Title, DropDownRows, ButtonStyle, and
PickList values as the source object. Color, Width, Font, Alignment, and ReadOnly are also
copied if AssignedValues indicates that they have been changed.

TColumn::DefaultAlignment
TColumn See also
Returns the default alignment for the column.
Classes::TAlignment __fastcall DefaultAlignment(void);
Description
DefaultAlignment returns the Alignment of the TField associated with the column. If the column
has no dataset field associated with it, DefaultAlignment returns taLeftJustify.

TColumn::DefaultColor
TColumn See also
Returns the default background color for the column.
Graphics::TColor __fastcall DefaultColor(void);
Description
DefaultColor returns the Color of the data grid to which the column belongs. If the column has no
associated data grid, DefaultColor returns clWindow.

TColumn::DefaultFont
TColumn See also
Returns the default font for data displayed in the column.
Graphics::TFont* __fastcall DefaultFont(void);
Description
DefaultFont returns the Font of the data grid to which the column belongs. If the column has no
associated data grid, DefaultFont returns the current value of the column’s Font property.

TColumn::DefaultReadOnly
TColumn See also
Returns the default ReadOnly setting for the column.
bool __fastcall DefaultReadOnly(void);
Description
DefaultReadOnly always returns false.

TColumn::DefaultWidth
TColumn See also
Returns the default width for the column.
int __fastcall DefaultWidth(void);
Description
The value of DefaultWidth is determined as follows:
• If the column has no data grid associated with it, DefaultWidth returns 64.
• If the column has an associated data grid but the Field property is empty, DefaultWidth returns

data grid’s protected DefaultColWidth property. Usually, this value is 64.
• If the column has an associated data field, DefaultWidth is calculated from the TField object’s

DisplayWidth property.
• If the dgTitles flag is set in the data grid’s Options property, DefaultWidth is increased
(as necessary) to accommodate the column’s title caption.

TColumn::RestoreDefaults
TColumn See also
Restores the column’s default settings.
virtual void __fastcall RestoreDefaults(void);
Description
RestoreDefaults reinitializes the AssignedValues, ButtonStyle, Font, and PickList properties,
freeing the pick list (TStrings) object if there is one, and calls the RestoreDefaults method in the
column’s title (TColumnTitle). If the Font property has been changed previously, its current
value is preserved. [Is this correct?]

TColumn::TColumn
TColumn See also
Creates and initializes a data-grid column.
__fastcall virtual TColumn(Classes::TCollection* Collection);
Description
TColumn should take a TDBGridColumns instance as its argument. It creates a data-grid column
along with its title (TColumnTitle) and font (TFont).

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TCollectionItem

TColumn example
TColumn

TComboBox
Hierarchy Properties Methods Events See also
TComboBox combines an edit box with a scrollable list.
Header
vcl/stdctrls.hpp
Description
A TComboBox component is an edit box with a scrollable drop-down list attached to it. Users
can select an item from the list or type directly into the edit box.

TComboBox properties
TComboBox Alphabetically Legend

Derived from TCustomComboBox
Canvas

DropDownCount
DroppedDown
ItemHeight
ItemIndex
Items
MaxLength
SelLength
SelStart
SelText
Sorted
Style

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth

Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name

Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Text
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TComboBox properties
TComboBox By object Legend

Align
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
DropDownCount
DroppedDown
Enabled
Font

Handle
Height
HelpContext
Hint
ItemHeight
ItemIndex
Items
Left
MaxLength
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu
SelLength
SelStart
SelText
ShowHint

Showing
Sorted
Style
TabOrder
TabStop
Tag
Text
Top
Visible
Width

TComboBox events
TComboBox Alphabetically Legend

Derived from TCustomComboBox
OnChange
OnDrawItem
OnDropDown
OnMeasureItem

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnStartDrag

TComboBox events
TComboBox By object Legend

OnChange
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnDrawItem
OnDropDown
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMeasureItem
OnStartDrag

TComboBox methods
TComboBox Alphabetically

In TComboBox
~TComboBox
TComboBox

Derived from TCustomComboBox
Clear
SelectAll

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification

GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TComboBox methods
TComboBox By object

~TComboBox
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo

Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SelectAll
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TComboBox
UpdateControlState
Update

TComboBox::~TComboBox
TComboBox
~TComboBox frees the memory associated with the TComboBox object. Do not call ~
TComboBox directly. Instead, use the delete keyword on the object, which causes ~
TComboBox to be invoked automatically.
__fastcall virtual ~TComboBox(void);

TComboBox::TComboBox
TComboBox
TComboBox creates a new TComboBox object.
__fastcall virtual TComboBox(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomComboBox

TComboBox example
TComboBox

TCommonDialog
Hierarchy Properties Methods See also
TCommonDialog is the ancestor of all components that represent Windows common dialog
boxes.
Header
vcl/dialogs.hpp
Description
TCommonDialog is an abstract class that represents Windows common dialog boxes. Its
descendants include visual components that handle such tasks as finding and opening files,
setting fonts and colors, and printing. Except for TFindDialog and TReplaceDialog, these dialogs
are all modal.
New components that encapsulate common-dialog functions should descend from
TCommonDialog. Most other dialog boxes should descend from TForm.

TCommonDialog properties
TCommonDialog Alphabetically Legend

In TCommonDialog
Ctl3D

Handle
HelpContext

StaticRect
Template

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TCommonDialog properties
TCommonDialog By object Legend

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

Ctl3D
DesignInfo

Handle
HelpContext
Name

Owner
StaticRect

Tag
Template

TCommonDialog::Ctl3D
TCommonDialog See also Example
Determines whether the dialog has a three-dimensional look.
__property bool Ctl3D;
Description
If Ctl3D is set to true, the dialog box and the controls in it appear three-dimensional. If Ctl3D is
set to false, the dialog and its controls appear flat.
Note
For dialogs to appear three-dimensional under Windows NT 3.51, CTL3D32.DLL must be
installed in the System32 directory.

TCommonDialog::Handle
TCommonDialog Example
The window handle of the dialog.
Description
Handle provides access to the dialog’s window handle.

TCommonDialog::HelpContext
TCommonDialog See also
A context number for online Help.
__property Classes::THelpContext HelpContext;
Description
The HelpContext property is an integer value that determines which Help screen appears when
the user requests context-sensitive online Help. If HelpContext is set to the default value of 0,
the dialog inherits the Help context of its parent.

TCommonDialog::StaticRect
TCommonDialog See also
The screen coordinates of the dialog box.
Description
StaticRect represents the size and location of the common dialog on the screen.

TCommonDialog::Template
TCommonDialog
Points to a custom template for the dialog.
Description
Template is a pointer to a Windows resource that customizes the appearance of the common
dialog.

TCommonDialog methods
TCommonDialog Alphabetically

In TCommonDialog
~TCommonDialog
TCommonDialog

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCommonDialog methods
TCommonDialog By object

~TCommonDialog
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
TCommonDialog

TCommonDialog::~TCommonDialog
TCommonDialog
~TCommonDialog frees the memory associated with the TCommonDialog object. Do not call ~
TCommonDialog directly. Instead, use the delete keyword on the object, which causes ~
TCommonDialog to be invoked automatically.
__fastcall virtual ~TCommonDialog(void);

TCommonDialog::TCommonDialog
TCommonDialog See also
Creates and initializes a TCommonDialog instance.
__fastcall virtual TCommonDialog(Classes::TComponent* AOwner);
Description
TCommonDialog calls the constructor of its parent object and initializes the Ctl3D property to
true.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent

TCommonDialog example
TCommonDialog

TControl
Hierarchy Properties Methods Events See also
TControl is the abstract base class for all controls.
Header
vcl/controls.hpp
Description
Controls are visual components, meaning the user can see them and manipulate them at
runtime. All controls have properties, methods, and events in common that are specific to the
visual aspect of controls, such as the position of the control, the cursor or hint associated with
the control’s window, methods to paint or move the control, and events to respond to mouse
actions.
TControl has many protected properties and methods that are published by its descendants.

TControl properties
TControl Alphabetically Legend

In TControl
Align
BoundsRect

Caption
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
IsControl
Left
MouseCapture
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ScalingFlags
ShowHint
Text
Top
Visible
Width
WindowProc
WindowText

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TControl properties
TControl By object Legend

Align
BoundsRect

Caption
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

ControlState
ControlStyle

Cursor
DesignInfo
DragCursor
DragMode
Enabled
Font
Height
Hint
IsControl
Left
MouseCapture
Name

Owner
ParentColor
ParentFont
ParentShowHint
Parent
PopupMenu
ScalingFlags
ShowHint
Tag
Text
Top
Visible
Width
WindowProc
WindowText

TControl::Align
TControl See also
The Align property determines how the control aligns within its container (or parent control).
__property TAlign Align;
Description
Use Align to align a control to the top, bottom, left, or right of a form or panel and have it remain
there even if the size of the form, panel, or component that contains the control changes.
For example, to use a panel component with various controls on it as a tool palette, change the
panel’s Align value to alLeft. The value of alLeft for the Align property of the panel guarantees
that the tool palette remains on the left side of the form and always equals the client height of the
form.
The default value of Align is alNone, which means a control remains where it is positioned on a
form or panel. Specify another value to align the control. Use one of these possible values:
Value Meaning

alNone The component remains where it was placed on the form or panel. This is the default
value.

alTop The component moves to the top of the form and resizes to fill the width of the form.
The height of the component is not affected.

alBottom The component moves to the bottom of the form and resizes to fill the width of the
form. The height of the component is not affected.

alLeft The component moves to the left side of the form and resizes to fill the height of the
form. The width of the component is not affected.

alRight The component moves to the right side of the form and resizes to fill the height of the
form. The width of the component is not affected.

alClient The component resizes to fill the client area of a form. If a component already occupies
part of the client area, the component resizes to fit within the remaining client area.

Note
If Align is set to alClient, the control fills the entire client area so that it is impossible to select the
parent form by clicking on it. In this case, select the parent by selecting the control on the form
and pressing Esc, or by using the Object Inspector.
Any number of child components within a single parent can have the same Align value, in which
case they stack up along the edge of the parent form or panel. To adjust the order in which the
controls stack up, drag the controls into their desired positions.

TControl::BoundsRect
TControl See also Example
The BoundsRect method returns the bounding rectangle of the control, expressed in the
coordinate system of the parent control.
__property Windows::TRect BoundsRect;
Description
Use BoundsRect as a quick way to return the corners of a control in pixel locations all at once.
For example, the statement
R = Control->BoundsRect;
corresponds to
R.Left = Control->Left;
R.Top = Control->Top
R.Right = Control->Left + Control->Width;
R.Bottom = Control->Top + Control->Height;
The TRect type defines a rectangle. The coordinates are specified both as four separate integers
representing the pixel locations of the left, top, right, and bottom sides, and as two points
representing the pixel locations of the top left and bottom right corners. The origin of the pixel
coordinate system is in the top left corner of the screen.

TControl::Caption
TControl See also Example
The Caption property specifies a text string that identifies the control to the user.
__property System::AnsiString Caption;
Description
Use Caption to associate the control with a text string that identifies the control.
For most controls, the Caption is the window title and it appears as a label for the control. Some
objects interpret Caption differently, however. For example, the Caption of a button is the button
name until a new value is entered.
To underline a character in a Caption that labels a component, include an ampersand (&) before
the character. This type of character is called an accelerator character. The user can then select
the component by pressing Alt while typing the underlined character.

TControl::ClientHeight
TControl See also Example
The ClientHeight property is the height of the control's client area in pixels.
__property int ClientHeight;
Description
Use ClientHeight to read or change the height of the control’s client area.
For TControl, ClientHeight is the same as Height. Derived classes may implement a ClientHeight
property that differs from Height. For example, the ClientHeight of a form is the same as the
Height minus the height of the Titlebar, resize border, and scrollbars.

TControl::ClientOrigin
TControl See also Example
The ClientOrigin determines the screen coordinates (in pixels) of the top left corner of a
control’s client area.
__property POINT ClientOrigin;
Description
Read ClientOrigin to locate the top-left corner of the control’s client area. ClientOrigin returns X
and Y coordinates in a record of type TPoint, with the origin in the top left corner. X specifies the
horizontal coordinate of the point, Y specifies the vertical coordinate.
The screen coordinates of a control descended from TControl and not TWinControl are actually
the screen coordinates of the control’s parent added to its Left and Top properties. If the control
doesn’t have a parent, an EInvalidOperation exception is raised when ClientOrigin is read.

TControl::ClientRect
TControl See also Example
The ClientRect property returns the size (in pixels) of a control client area.
__property Windows::TRect ClientRect;
Description
Read ClientRect when you need to find the size of the client area of a control. ClientRect returns
a rectangle with its Top and Left fields set to zero, and its Bottom and Right fields set to the
control's Height and Width, respectively. ClientRect is equivalent to Rect(0, 0, ClientWidth,
ClientHeight).
The TRect type defines a rectangle. The coordinates are specified both as four separate integers
representing the pixel locations of the left, top, right, and bottom sides, and as two points
representing the pixel locations of the top left and bottom right corners.

TControl::ClientWidth
TControl See also Example
The ClientWidth property is the horizontal size of the control's client area in pixels.
__property int ClientWidth;
Description
Use ClientWidth to read or change the width of the control’s client area. ClientWidth is
equivalent to ClientRect.Right.

TControl::Color
TControl See also
The Color property is the background color of the control.
__property Graphics::TColor Color;
Description
Use Color to read or change the background color of the control.
These are the possible values of Color:
Value Meaning

clBlackclBlack Black
clMaroon Maroon
clGreen Green
clOlive Olive green
clNavy Navy blue
clPurple Purple
clTeal Teal
clGray Gray
clSilver Silver
clRed Red
clLime Lime green
clBlue Blue
clFuchsia Fuchsia
clAqua Aqua
clWhite White
clBackground Current background color of the Windows desktop
clActiveCaption Current color of the title bar of the active window
clInactiveCaption Current color of the title bar of inactive windows
clMenu Current background color of menus
clWindow Current background color of windows
clWindowFrame Current color of window frames
clMenuText Current color of text on menus
clWindowText Current color of text in windows
clCaptionText Current color of the text on the title bar of the active window
clActiveBorder Current border color of the active window
clInactiveBorder Current border color of inactive windows
clAppWorkSpace Current color of the application workspace
clHighlight Current background color of selected text
clHightlightText Current color of selected text
clBtnFace Current color of a button face
clBtnShadow Current color of a shadow cast by a button
clGrayText Current color of text that is dimmed
clBtnText Current color of text on a button
clInactiveCaptionText Current color of the text on the title bar of an inactive window
clBtnHighlight Current color of the highlighting on a button
cl3DDkShadow Windows 95 or NT 4.0 only: Dark shadow for three-dimensional display

elements
cl3DLight Windows 95 or NT 4.0 only: Light color for three-dimensional display

elements (for edges facing the light source)
clInfoText Windows 95 or NT 4.0 only: Text color for tool tip controls
clInfoBk Windows 95 or NT 4.0 only: Background color for tool tip controls
The second half of the colors listed here are Windows system colors. The color that appears
depends on the color scheme users are using for Windows. Users can change these colors
using the Control Panel. The actual color that appears will vary from system to system. For

example, the clBtnFace system color might be gray in one user’s color scheme, and tan in
another user’s color scheme.
Note
If a control's ParentColor property is true, then changing the Color property of the control's
parent automatically changes the Color property of the control. When you assign a value to a
control's Color property, the control's ParentColor property is automatically set to false.

TControl::ControlState
TControl See also
The ControlState property holds a set of values indicating the current state of a control at
runtime.
__property TControlState ControlState;
Description
Read ControlState to find out various conditions that affect the control such as whether it has
been clicked or needs alignment. ControlState reflects transient conditions of an instance of the
control, as opposed to attributes of the control class as a whole. ControlState consists of a set of
flags drawn from the following values:
Flag Meaning

csLButtonDown The left mouse button was clicked and not yet released. This is set for all
mouse-down events.

csClicked The same as csLButtonDown, but only set if ControlStyle contains
csClickEvents, meaning that mouse-down events are interpreted as
clicks.

csPalette A WM_PALETTCHANGED message was received by the control or one
of its parents.

csReadingState The control is reading its state from a stream.
csAlignmentNeeded The control needs to realign itself when alignment is re-enabled.
csFocusing The application is processing messages intended to give the control

focus. This does not guarantee the control will receive focus, but prevents
recursive calls.

csCreating The control and/or its owner and subcontrols is being created. This flag
clears when all have finished creating.

csPaintCopy The control is being replicated, meaning a copy of the control is being
painted. The ControlStyle flag csReplicatable must be set for this state to
occur.

The flags in ControlState are specific to controls, and are in addition to the state flags in the
ComponentState property, which apply to all components.
ControlState is primarily used by component writers in the implementation of components
derived from TControl.

TControl::ControlStyle
TControl See also
The ControlStyle property holds a set of values that determine style characteristics of the control.
__property TControlStyle ControlStyle;
Description
Use ControlStyle to find out various attributes of the control, such as whether the control can
capture the mouse or has a fixed size. The ControlStyle property contains a set of style flags
indicating these attributes. The following table lists the flags and their meanings:.
Flag Meaning

csAcceptsControls The control becomes the parent of any controls dropped on it at design
time.

csCaptureMouse The control captures mouse events when it is clicked.
csDesignInteractive The control maps right mouse-button clicks at design time into left-button

clicks to manipulate the control.
csClickEvents The control can receive and respond to mouse clicks.
csFramed The control has a 3D frame.
csSetCaption The control should change its caption to match the Name property if the

caption has not been explicitly set to something else.
csOpaque The control completely fills its client area.
csDoubleClicks The control can receive and respond to double-click messages.

Otherwise, map double-clicks into clicks.
csFixedWidth The width of the control does not vary.
csFixedHeight The height of the control does not vary.
csNoDesignVisible The control is not visible at design time.
csReplicatable The control can be copied using the PaintTo method to draw its image to

an arbitrary canvas.
csNoStdEvents Standard events such as mouse, key, and click events are ignored. Use

this setting if your code doesn’t need to respond to these events and
your application will run faster.

csDisplayDragImage The control can display an image from an image list when the control is
dragged over. Use this setting if your control correctly handles an image
list being dragged over it.

ControlStyle generally describes an entire class, which all instances reflect. The flags do not
change among different instances of a type of control, nor do they vary at runtime. Such
transient conditions are indicated by the ControlState property.
The TControl method of TControl initializes ControlStyle to [csCaptureMouse, csClickEvents,
csSetCaption, csDoubleClicks].
ControlStyle is primarily used by component writers in the implementation of components
derived from TControl.

TControl::Cursor
TControl See also
The Cursor property specifies the image used to represent the mouse pointer when it passes
into the region covered by the control.
__property TCursor Cursor;
Description
Change the value of Cursor to provide feedback to the user about what action is appropriate
when the mouse pointer enters the control.
The value of Cursor is the index of the cursor in the list of cursors maintained by the global
variable, Screen. In addition to the built-in cursors provided by TScreen, applications can add
custom cursors to the list. These are the built-in values provided by TScreen:
Value Image

crNone
crArrow
crCross
crIBeam
crSize
crSizeNESW
crSizeNS
crSizeNWSE
crSizeWE
crUpArrow
crHourGlass
crDrag
crNoDrop
crHSplit
crVSplit
crMultiDrag
crSQLWait
crNo
crAppStart
crHelp
Note:
To learn how to make a custom cursor available for the Cursor property, see the Cursors
property of the TScreen object.

TControl::DragCursor
TControl See also Example
The DragCursor property contains the image used to represent the mouse pointer when the
control is being dragged.
__property TCursor DragCursor;
Description
Use the DragCursor property to change the cursor image presented when the control is being
dragged. The possible values for the DragCursor property are the same as those for the Cursor
property. See the table in the Cursor property entry.
Note:
To learn how to make a custom cursor available for the DragCursor property, see the Cursors
property of the TScreen component.

TControl::DragMode
TControl See also Example
The DragMode property determines the drag and drop behavior of a control.
__property TDragMode DragMode;
Description
Use the DragMode property to control when the user is able to drag the control. If the control's
DragMode property value is dmAutomatic, the application can disable the drag and drop
capability at runtime by changing the DragMode property value to dmManual.
These are the possible values:
Value Meaning

dmAutomatic If dmAutomatic is selected, the control is ready to be dragged; the user
just clicks and drags it.

dmManual If dmManual is selected, the control can't be dragged until the application
calls the BeginDrag method.

TControl::Enabled
TControl See also Example
The Enabled property controls whether the control responds to mouse, keyboard, and timer
events.
__property bool Enabled;
Description
Use Enabled to change the availability of the control to the user. To disable a control, set
Enabled to false. Disabled controls appear dimmed. If Enabled is false, the control ignores
mouse and keyboard events, and in the case of a timer control, the OnTimer event.
To re-enable a control, set Enabled to true. The control is no longer dimmed, and the user can
use the control.

TControl::Font
TControl See also
The Font property controls the attributes of text written on or in the control.
__property Graphics::TFont* Font;
Description
To change to a new font, specify a new TFont object. To modify a font, change the value of the
Color, Height, Name, Pitch, Size, or Style of the TFont object.

TControl::Height
TControl See also Example
The Height property of a control is the vertical size of the control in pixels.
__property int Height;
Description
Use the Height property to read or change the height of the control.

TControl::Hint
TControl See also Example
The Hint property contains the text string that can appear when the user moves the mouse
pointer over the control.
__property System::AnsiString Hint;
Description
Use the Hint property to provide a string of help text either as a Help Hint, or as help text on a
particular location such as a status bar.
A Help Hint is a box containing help text that appears for a control when the user moves the
mouse pointer over the control and pauses momentarily. To set up Help Hints:
1 Specify a Hint value for each control that a Help Hint should appear for.
2 Set the ShowHint property of each control to true.
3 At runtime, set the value of the application's ShowHint property to true.
To show the Hint on a status bar or other location, use the OnHint event handle of the
application. When the mouse pointer moves over the control, the application’s OnHint event
occurs. Write an OnHint event handler to display the hint as the caption of a panel component
that is being used as a status bar.
Specify a hint to be used for both for a Help Hint box and by an OnHint handler by specifying two
values separated by a | character (the "or" or "pipe" symbol). For example,
Edit1->Hint = AnsiString("Name|Enter Name in the edit box");
The 'Name' string appears in the Help Hint box, and the 'Enter full name' string appears as
specified in the OnHint event handler.
If you specify just one value, it can be used as both a Help Hint and as the Hint property of the
application. If the application's ShowHint property is false, the Help Hint won't appear, but the
OnHint event handler will still be called.
If a control has no Hint value specified, but its parent control does, the control uses the Hint
value of the parent control as long as the control's ShowHint property is true.

TControl::IsControl
TControl See also
The IsControl property determines whether a form stores its form-specific properties to a stream.
__property bool IsControl;
Description
Use IsControl to use a form as a complex control, rather than as a desktop form. IsControl
affects the way the form gets saved. When IsControl is true, form-specific properties do not get
saved with the form. When IsControl is false, the form-specific properties get saved along with
the other properties.
IsControl permits you to use the forms designer to create complex controls such as panels, by
creating those controls as forms, placing and naming their contained controls, and attaching
code to events. After saving the form, edit the form as text, and in the text version set IsControl
to true. The next time the form is reloaded and saved, only those form properties appropriate to
use as a control are stored, not the properties specific to TForm. Next, edit the form file as text,
changing the type of the component from TForm to the desired control type, such as TPanel.

TControl::Left
TControl See also Example
The Left property determines the horizontal coordinate of the left edge of a component relative to
the form in pixels.
__property int Left;
Description
Use the Left property to determine where the left side of the control begins or reposition the left
side of the control.
If the control is contained in another control, such as a TPanel, the Left and Top properties are
relative to the parent control. If the control is contained directly by the form, the properties values
are relative to the form. For forms, the value of the Left property is relative to the screen in
pixels.

TControl::MouseCapture
TControl See also
The MouseCapture property indicates whether the control has "captured" mouse events.
__property bool MouseCapture;
Description
Use MouseCapture to determine whether a control has captured the mouse. The capture control
is the control to which all subsequent mouse events go until the user releases the mouse button.
A control becomes the capture control when the user drags an item from it. In addition, if the
control has the csCaptureMouse flag set in its ControlStyle property, it becomes the capture
control when the user presses the left mouse button over it, until the user releases the mouse
button.

TControl::Name
TControl See also Example
The Name property is the name of the control as referenced in the application’s code.
Description
Use the Name property to assign a new name to the control or to find out what the name of the
control is.
By default, the IDE assigns sequential names based on the type of the control, such as 'Button1',
'Button2', and so on. Change these to more meaningful names that make the application’s code
more readable. The Name must be a valid Object Pascal identifier. If the control‘s Caption has
not already been modified, the Caption is changed to match the new control name.
Note:
Change control names only at design time.

TControl::Parent
TControl See also Example
The Parent property refers to the parent of the control and determines where the control is
displayed.
__property TWinControl* Parent;
Description
Use the Parent property to determine the parent of this control or to assign a control to be the
parent of this control. When creating a new control, always assign a Parent property value for
the new control. Usually, this is a form, panel, group box, or some control that is designed to
contain another. Changing the parent of a control moves the control onscreen so that it is
displayed within the parent.
The parent of a control is the windowed control that contains the control. If one control (parent)
contains others, the contained controls are child controls of the parent. For example, if an
application includes three radio buttons in a group box, the group box is the parent of the three
radio buttons, and the radio buttons are the child controls of the group box.
Don't confuse the Parent property declared in TControl with the Owner property declared in
TComponent. A form is the Owner of all the components on it, whether or not they are windowed
controls. A child control is always a visible control contained within another windowed control (its
parent). If you put three radio buttons in a group box on a form, the Owner of the radio buttons is
still the form, while the parent is the group box.
When the parent of a control is destroyed, all controls that are its children are also destroyed.

TControl::ParentColor
TControl See also Example
The ParentColor property determines where a control looks for its color information.
__property bool ParentColor;
Description
To have a control use the same color as its parent control, set ParentColor to true. For example,
if the ParentColor of a list box on a panel is true, the list box has the same color as the panel. If
ParentColor is false, the control uses its own Color property.
Set ParentColor to true for all controls in order to ensure that all the controls on a form have a
uniform appearance. For example, if ParentColor is true for all controls in a form, changing the
background color of the form to gray causes all the controls on the form to also have a gray
background.
To specify a different color for a particular control, specify the desired color as the value of that
control's Color property, and ParentColor becomes false automatically.

TControl::ParentFont
TControl See also Example
The ParentFont property determines where a control looks for its font information.
__property bool ParentFont;
Description
To have a control use the same font as its parent control, set ParentFont to true. For example, if
the ParentFont of a list box on a panel is true, the list box uses the same font as the panel. If
ParentFont is false, the control uses its own Font property.
Set ParentFont to true for all controls in order to ensure that all the controls on a form have a
uniform appearance. For example, if ParentFont is true for all controls in a form, changing the
form’s Font property to 12-point Courier causes all controls on the form to use that font.
To specify a different font for a particular control, specify the desired font as the value of the
control's Font property, and ParentFont becomes false automatically.
When the ParentFont is true for a form, the form uses the value of the application's Font
property.

TControl::ParentShowHint
TControl See also Example
The ParentShowHint property determines where a control looks to find out if the Help Hint,
specified as the value of the Hint property for the control, should be shown.
__property bool ParentShowHint;
Description
Use ParentShowHint to ensure that all the controls on a form either uniformly show their Help
Hints or uniformly don't show them.
If ParentShowHint is true, the control uses the ShowHint property value of its parent. If
ParentShowHint is false, the control uses the value of its own ShowHint property.
To provide Help Hints for only selected controls on a form, set the ShowHint property for those
controls that should have Help Hints to true, and ParentShowHint becomes false automatically.
Note
Enable or disable all Help Hints for the entire application using the ShowHint property of the
application.

TControl::PopupMenu
TControl See also Example
The PopupMenu property identifies the pop-up menu associated with the control.
__property Menus::TPopupMenu* PopupMenu;
Description
Assign a value to PopupMenu to make a pop-up menu appear when the user selects the control
and clicks the right mouse button. If the TPopupMenu’s AutoPopup property is true, the pop-up
menu appears automatically. If the menu’s AutoPopup property is false, display the menu with
a call to its Popup method.

TControl::ScalingFlags
TControl See also
The ScalingFlags property reflects which attributes of the control have not yet been scaled.
__property TScalingFlags ScalingFlags;
Description
ScalingFlags is an internal set of flags used primarily in scaling inherited forms and their
controls. Applications should not use this property without a serious need. These are the flags
and their meanings:
Flag Meaning

sfLeft Left side of control not yet scaled.
sfTop Top of control not yet scaled.
sfWidth Width of control not yet scaled.
sfHeight Height of control not yet scaled.
sfFont Font of control not yet scaled.

TControl::ShowHint
TControl See also Example
The ShowHint property determines if the control should display a Help Hint when the mouse
pointer rests momentarily on the control.
__property bool ShowHint;
Description
The Help Hint is the value of the Hint property, which is displayed in a box just beneath the
control. Use ShowHint to determine whether a Help Hin appears for the control.
To enable Help Hint for a particular control, the application ShowHint must be true and either:
• the control’s own ShowHint property must be true
• the control’s ParentShowHint property must be true and its parent's ShowHint property must

be true
For example, imagine a check box within a group box. If the ShowHint property of the group box
is true and the ParentShowHint property of the check box is true, but the ShowHint property of
the check box is false, the check box will still display its Help Hint.
Changing the ShowHint value automatically sets the ParentShowHint property to false.

TControl::Text
TControl See also Example
The Text property contains a text string associated with the control.
__property System::AnsiString Text;
Description
Use the Text property to
• Read the Text value of the control.
• Specify a new string for the Text value.
By default, Text is the control name until you assign a new Text value. For edit controls and
memos, the Text appears within the control. For combo boxes, the Text is the content of the edit
control portion of the combo box.

TControl::Top
TControl See also Example
The Top property determines the Y coordinate of the top left corner of a control, relative to its
parent or containing control in pixels.
__property int Top;
Description
Use the Left property to locate the top of the control or reposition the control to a different Y
coordinate. The Top property, like the Left property, is the position of the control relative to its
container. Thus, if a control is contained in a TPanel, the Left and Top properties are relative to
the panel. If the control is contained directly by the form, it is relative to the form. For forms, the
value of the Left property is relative to the screen in pixels.

TControl::Visible
TControl See also Example
The Visible property determines whether the component appears onscreen.
__property bool Visible;
Description
Use the Visible property to control the visibility of the control at runtime. If Visible is true, the
control appears. If Visible is false, the control is not visible.
Calling the Show method sets the control's Visible property to true. Calling the Hide method sets
it to false.

TControl::Width
TControl See also Example
The Width property determines the horizontal size of the control or form in pixels.
__property int Width;
Description
Use the Width property to read or change the width of the control.
Note:
For tab sheets controls, changing this property at runtime has no effect.

TControl::WindowProc
TControl
The WindowProc property contains the window procedure for the control.
typedef void __fastcall (__closure *TWndMethod)(Messages::TMessage
&Message);

__property TWndMethod WindowProc;

TControl::WindowText
TControl See also
The WindowText property contains the text string of the control.
__property char * WindowText;
Description
Use WindowText to determine the text associated with the control.
For an edit box, the WindowText is the content of the control. For a combo box, the text string is
the content of the edit box part of the combo box. For a button, the string is the button name.
For all other controls, the string is the window title.

TControl events
TControl Alphabetically Legend

In TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TControl events
TControl By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TControl::OnClick
TControl See also Example
The OnClick event occurs when the user clicks the control.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnClick;
Description
Use the OnClick event handler to write code that responds to the click event.
Usually OnClick occurs because the user presses and releases the primary mouse button with
the mouse pointer over the control. This event can also occur when
• The user selects an item in a grid, outline, list, or combo box by pressing an arrow key.
• The user presses Spacebar while a button or check box has focus.
• The user presses Enter when the active form has a default button (specified by the Default

property).
• The user presses Esc when the active form has a cancel button (specified by the Cancel

property).
• The user presses the accelerator key for a button or check box. For example, if the value of

the Caption property of a check box is '&Bold', the B is underlined at runtime and the OnClick
event of the check box is triggered when the user presses Alt+B.

• The Checked property of a radio button is set to true.
• The value of the Checked property of a check box is changed.
• The Click method of a menu item is called.
For a form, an OnClick event occurs when the user clicks a blank area of the form or on a
disabled component.

TControl::OnDblClick
TControl See also Example
The OnDblClick event occurs when the user double-clicks the primary mouse button when the
mouse pointer is over the control.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnDblClick;
Description
Use the OnDblClick event to write code that responds to the double-click event.

TControl::OnDragDrop
TControl See also
The OnDragDrop event occurs when the user drops an object being dragged.
typedef void __fastcall (__closure *TDragDropEvent)(System::TObject*
Sender, System::TObject* Source, int X, int Y);

__property TDragDropEvent OnDragDrop;
Description
Use the OnDragDrop event handler to specify what you want to happen when the user drops an
object. The Source parameter of the OnDragDrop event is the object being dropped, and the
Sender is the control the object is being dropped on. The X and Y parameters are the
coordinates of the mouse positioned over the control.

TControl::OnDragOver
TControl See also
The OnDragOver event occurs when the user drags an object over a control.
enum TDragState { dsDragEnter, dsDragLeave, dsDragMove };
typedef void __fastcall (__closure *TDragOverEvent)(System::TObject*
Sender, System::TObject* Source, int X, int Y, TDragState State, bool
&Accept);

__property TDragOverEvent OnDragOver;
Description
Use an OnDragOver event to signal that the control can accept the dragged object so the user
can drop it.
Within the OnDragOver event handler, set the Accept parameter to true to accept the dragged
object. Set Accept to false to prevent the user from being able to drop the dragged object on the
control.
To change the shape of the cursor, indicating that the control can accept the dragged object if
the user drops it, change the value of the DragCursor property for the control before the
OnDragOver event occurs.
The Source is the object being dragged, the Sender is self, the potential drop site, and X and Y
are screen coordinates in pixels. The TDragState type specifies the drag state of a dragged
control in relationship to another control. These are the possible states:
Value Meaning

dsDragEnter The mouse is entering the control.
dsDragMove The mouse moved while over the control.
dsDragLeave The mouse is leaving the control.

TControl::OnEndDrag
TControl See also
The OnEndDrag event occurs whenever the dragging of an object ends, either by dropping the
object or by canceling the dragging.
typedef void __fastcall (__closure *TEndDragEvent)(System::TObject*
Sender, System::TObject* Target, int X, int Y);

__property TEndDragEvent OnEndDrag;
Description
Use the OnEndDrag event handler to specify any special processing that occurs when dragging
stops. The Sender is the object being dragged, Target is the object Sender is dragged to, and X
and Y are screen coordinates in pixels.
The OnEndDrag event is received by the Sender. If the dragged object was dropped and
accepted by a control, the Target parameter of the OnEndDrag event is set to the object that
accepted the drop. If the object was not dropped successfully, the value of Target is NULL.

TControl::OnMouseDown
TControl See also
The OnMouseDown event occurs when the user presses a mouse button with the mouse pointer
over a control.
enum TMouseButton { mbLeft, mbRight, mbMiddle };
typedef void __fastcall (__closure *TMouseEvent)(System::TObject*
Sender, TMouseButton Button, Classes::TShiftState Shift, int X, int
Y);

__property TMouseEvent OnMouseDown;
Description
Use the OnMouseDown event handler to implement any special processing that should occur as
a result of pressing a mouse button.
The OnMouseDown event handler can respond to left, right, or center mouse button presses and
shift key plus mouse-button combinations. Shift keys are the Shift, Ctrl, and Alt keys. X and Y
are the pixel coordinates of the mouse pointer in the client area of the Sender.

TControl::OnMouseMove
TControl See also Example
The OnMouseMove event occurs when the user moves the mouse pointer while the mouse
pointer is over a control.
enum TMouseButton { mbLeft, mbRight, mbMiddle };
typedef void __fastcall (__closure *TMouseEvent)(System::TObject*
Sender, TMouseButton Button, Classes::TShiftState Shift, int X, int
Y);

__property TMouseMoveEvent OnMouseMove;
Description
Use the OnMouseMove event handler to make something happen when the mouse pointer
moves within the control.
Use the Shift parameter of the OnMouseDown event handler, to respond to the state of the shift
keys and mouse buttons. Shift keys are the Shift, Ctrl, and Alt keys or shift key-mouse button
combinations. X and Y are pixel coordinates of the new location of the mouse pointer in the
client area of the Sender.

TControl::OnMouseUp
TControl See also Example
The OnMouseUp event occurs when the user releases a mouse button that was pressed with
the mouse pointer over a component.
enum TMouseButton { mbLeft, mbRight, mbMiddle };
typedef void __fastcall (__closure *TMouseEvent)(System::TObject*
Sender, TMouseButton Button, Classes::TShiftState Shift, int X, int
Y);

__property TMouseEvent OnMouseUp;
Description
Use the OnMouseUp event handler to implement special processing when the user releases a
mouse button.
The OnMouseUp event handler can respond to left, right, or center mouse button presses and
shift key plus mouse-button combinations. Shift keys are the Shift, Ctrl, and Alt keys. X and Y
are the pixel coordinates of the mouse pointer in the client area of the Sender.

TControl::OnStartDrag
TControl See also
The OnStartDrag event occurs when the user has begun to drag the control or an object it
contains by left-clicking on the control and holding the mouse button down.
typedef void __fastcall (__closure *TStartDragEvent)(System::TObject*
Sender, TDragObject* &DragObject);

__property TStartDragEvent OnStartDrag;
Description
Use the OnStartDrag event handler to implement special processing when the user starts to
drag the control or an object it contains. Sender is self, the control that is about to be dragged, or
that contains the object about to be dragged.
The OnStartDrag event handler can create a TDragObject object for the DragObject parameter
to specify the drag cursor, or, optionally, a drag image list. There is no need to call the Free
method for the DragObject when dragging is over.
If the OnStartDrag event handler sets the DragObject parameter to NULL, a TDragControlObject
object is automatically created and dragging begins on the control itself.

TControl methods
TControl Alphabetically Legend

In TControl
~TControl
BeginDrag
BringToFront

ChangeScale
Click
ClientToScreen
DblClick
DefaultHandler
DefineProperties
DoEndDrag
DoStartDrag
DragCanceled
DragDrop
Dragging
DragOver
EndDrag
GetClientOrigin
GetClientRect
GetDeviceContext
GetDragImages
GetPalette
GetParentComponent
GetPopupMenu
GetTextBuf
GetTextLen
HasParent
Hide
Invalidate
MouseDown
MouseMove
MouseUp
Notification
PaletteChanged
Perform
ReadState
Refresh
Repaint
ScreenToClient
SendCancelMode
SendToBack
SetBounds
SetDragMode
SetName
SetParent
SetParentComponent
SetTextBuf
SetZOrder
Show
TControl
Update
UpdateBoundsRect
VisibleChanging
WndProc

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification

InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TControl methods
TControl By object Legend

~TControl
Assign
BeginDrag
BringToFront

ChangeScale
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Click
ClientToScreen
DblClick
DefaultHandler
DefineProperties

DestroyComponents
Destroying
Dispatch

DoEndDrag
DoStartDrag
DragCanceled
DragDrop
Dragging
DragOver
EndDrag
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetClientOrigin
GetClientRect
GetDeviceContext
GetDragImages
GetPalette
GetParentComponent
GetPopupMenu
GetTextBuf
GetTextLen
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InstanceSize

Invalidate
MethodAddress
MethodName

MouseDown
MouseMove
MouseUp
NewInstance
Notification
PaletteChanged
Perform
ReadState
Refresh

RemoveComponent
Repaint
ScreenToClient
SendCancelMode
SendToBack
SetBounds
SetDragMode
SetName
SetParentComponent
SetParent
SetTextBuf
SetZOrder
Show
TControl
UpdateBoundsRect
Update
VisibleChanging
WndProc

TControl::~TControl
TControl See also
~TControl frees the memory associated with the TControl object. Do not call ~TControl directly.
Instead, use the delete keyword on the object, which causes ~TControl to be invoked
automatically.
__fastcall virtual ~TControl(void);

TControl::BeginDrag
TControl See also
The BeginDrag method starts the dragging of a control.
void __fastcall BeginDrag(bool Immediate);
Description
Call BeginDrag to control the start of a drag operation. An application needs to call the
BeginDrag method to begin dragging only when the DragMode property value for the control is
dmManual.
If the Immediate parameter is true, the mouse pointer changes to the value of the DragCursor
property and dragging begins immediately. If Immediate is false, the mouse pointer doesn't
change to the value of the DragCursor property and dragging doesn't begin until the user moves
the mouse pointer a short distance (5 pixels). This allows the control to accept mouse clicks
without beginning a drag operation.

TControl::BringToFront
TControl See also
The BringToFront method puts the control in front of all other controls within its parent control.
void __fastcall BringToFront(void);
Description
BringToFront is especially useful for making certain that a form is visible. It is also used to
reorder overlapping controls within a form.
The order in which controls stack on top of each order (also called the Z order) depends on the
order the controls are placed on the form. For example, if you put a label and an image on a
form so that one is on top of the other, the one that was placed first on the form becomes the
one on the bottom. Because both the label and the image are non-windowed controls, they
"stack" as you would expect them to. Call the BringToFront method for the bottom object to
make it appear on top.
The stacking order of two windowed controls is the same as the stacking of two non-windowed
controls. For example, if you put a memo on a form, then put a check box on top of it, the check
box remains on top. Calling BringToFront for the memo moves the memo so that it appears on
top.
The stacking order of windowed and non-windowed controls cannot be mingled. For example, if
you put a memo, a windowed control, on a form, and then put a label, a non-windowed control,
on top of it, the label disappears behind the memo. Windowed controls always stack on top of
non-windowed controls. In this example, calling the BringToFront method of the label does
nothing, the label remains behind the memo.

TControl::ChangeScale
TControl See also
The ChangeScale method repositions and resizes the control by a specified ratio.
virtual void __fastcall ChangeScale(int M, int D);
Description
Use ChangeScale to rescale a control. ChangeScale modifies the position as well as the size of
a control. Thus, ChangeScale modifies the control’s Top, Left, Width, and Height properties.
The M and D parameters define a fraction by which to scale the control. The M parameter is the
multiplier and the D parameter is the divisor. For example, to make a control 75% of its original
size, specify the value of M as 75, and the value of D as 100 (75/100). Alternately, the same
results are achieved by specifying the value of M as 3, and the value of D as 4 (3/4). Both
fractions are equal and result in the control being scaled by the same amount, 75%.
To scale the control to be 33% larger than its previous size, specify the value of M as 133, and
the value of D as 100 (133/100). Alternately, specify the value of M as 4, and the value of D as 3
(4/3), as the fraction 133/100 is approximately equal to 4/3.
Controls derived from TControl might want to override ChangeScale. For example, a control
which defines additional font properties should scale the heights of these fonts by the M/D ratio
so that all the control’s fonts scale uniformly. Similarly, any control which subdivides its client
area into display regions and displays text in those regions might want to override ChangeScale
to ensure those regions resize when the font does.
Note
Because control sizes and coordinates are integers, scaling them by the M/D ratio incurs some
degree of roundoff error. Calling ChangeScale repeatedly means that at some point the control
may disappear (when the roundoff errors make the control smaller), or creep off the form (when
the roundoff errors move the location of control). When rescaling a control repeatedly, consider
destroying and reloading the form after several rescalings so that the coordinates are rescaled
without most of the accumulating roundoff error.

TControl::Click
TControl See also
The Click method calls the event handler attached to the control’s OnClick event.
virtual void __fastcall Click(void);
Description
The Click method defined in TControl does nothing except call any event handler attached to the
OnClick event. It is the protected implementation method for a control's OnClick event. Override
Click to provide other responses in addition to the inherited event-handler call.
A control calls Click whenever it receives a left-button mouse-up message (WM_LBUTTONUP)

if that message indicates that the mouse up occurred near the corresponding mouse-down.
Many specific controls call Click in other circumstances, such as when a user types the shortcut
key for a button or menu item.
See the OnClick event for a description of all occurrences that trigger click events.

TControl::ClientToScreen
TControl See also Example
The ClientToScreen method translates the given point from client area coordinates to global
screen coordinates.
POINT __fastcall ClientToScreen(const POINT &Point);
Description
Use ClientToScreen to convert a point whose coordinates are expressed locally to the control to
the corresponding point in screen coordinates. In client area coordinates (0, 0) corresponds to
the upper left corner of the control's client area. In screen coordinates (0, 0) corresponds to the
upper left corner of the screen.
Use ScreenToClient along with ClientToScreen to convert from one control's coordinate system
to another control's coordinate system. For example,
converts P from coordinates in SourceControl to coordinates in TargetControl.

TControl::DblClick
TControl See also
The DblClick method calls the event handler attached to the control’s OnClick event.
virtual void __fastcall DblClick(void);
Description
The DblClick method as implemented in TControl does nothing except call any event handler
attached to the OnDblClick event. It is the protected implementation method for a control's
OnDblClick event. Override DblClick to provide other responses in addition to the inherited
event-handler call.
The DblClick method is triggered by a left-button double-click message
(WM_LBUTTONDBLCLICK) from Windows.

TControl::DefaultHandler
TControl See also
The DefaultHandler method provides message handling for all messages that a control does not
have specific handlers for.
virtual void __fastcall DefaultHandler(void *Message);
Description
Override DefaultHandler to extend the behavior default handling of messages. DefaultHandler
handles the messages Windows sends to manage the control's text: WM_GETTEXT,
WM_SETTEXT, and WM_GETTEXTLENGTH.

TControl::DefineProperties
TControl See also
The DefineProperties method makes the IsControl protected property persistent, providing
methods to read and write IsControl to a stream, such as a form file.
virtual void __fastcall DefineProperties(Classes::TFiler* Filer);
Description
Override DefineProperties to define new properties or publish unpublished properties. When
overriding this method, call the inherited DefineProperties method first.

TControl::DoEndDrag
TControl See also
The DoEndDrag method is the protected implementation method for a windowed control's
OnEnter event.
virtual void __fastcall DoEndDrag(System::TObject* Target, int X, int
Y);

Description
The DoEndDrag method does nothing except call any event handler attached to the OnEndDrag
event. When creating a component that descends from TControl, override DoEndDrag to provide
other responses in addition to the inherited event-handler call.

TControl::DoStartDrag
TControl See also
The DoStartDrag method is the protected implementation method for a windowed control's
OnEnter event.
virtual void __fastcall DoStartDrag(TDragObject* &DragObject);
Description
The DoStartDrag method does nothing except call any event handler attached to the
OnStartDrag event. When creating a component that descends from TControl, override
DoStartDrag to provide other responses in addition to the inherited event-handler call.

TControl::DragCanceled
TControl See also
The DragCanceled method does nothing except provide an interface for a method to respond to
the cancellation of a drag.
virtual void __fastcall DragCanceled(void);
Description
When creating a component that descends from TControl, override DragCanceled to provide
code that executes when a drag operation is canceled.

TControl::DragDrop
TControl See also
The DragDrop method calls the OnDragDrop event handler, if one exists.
virtual void __fastcall DragDrop(System::TObject* Source, int X, int Y)
;

Description
When creating a component that descends from TControl, override DragDrop to add additional
code that executes before the OnDragDrop event handler is called.
The Source parameter of the DragDrop method is the object to be considered dropped by the
handler. The X and Y parameters are the coordinates of the mouse positioned where the object
is to be considered dropped.

TControl::Dragging
TControl See also Example
The Dragging method specifies whether a control is being dragged.
bool __fastcall Dragging(void);
Description
Use Dragging to determine the drag state of the control. If Dragging returns true, the control is
being dragged. If Dragging is false, the control is not being dragged.

TControl::DragOver
TControl See also
The DragOver method calls the OnDragOver event handler, if one exists.
virtual void __fastcall DragOver(System::TObject* Source, int X, int Y,
TDragState State, bool &Accept);

Description
Override DragOver to add additional code that executes before the OnDragOver event handler is
called.
Set the Accept parameter to true, to indicate that the user can drop the dragged object on the
control. Set Accept to false, to indicate that the user can’t drop the dragged object on the
control.
The Source parameter is the object being dragged. These are the possible values of the State
parameter:
Value Meaning

dsDragEnter The mouse is entering the control.
dsDragMove The mouse moved while over the control.
dsDragLeave The mouse is leaving the control.

TControl::EndDrag
TControl See also Example
The EndDrag method stops a control from being dragged any further.
void __fastcall EndDrag(bool Drop);
Description
Use EndDrag to stop a dragging operation that began with a call to the BeginDrag method.
If the Drop parameter is true, the control being dragged is dropped. If the Drop parameter is
false, the control is not dropped and dragging is canceled.

TControl::GetClientOrigin
TControl See also
The GetClientOrigin method obtains the screen coordinates of the top-left corner of the
control’s client area.
virtual POINT __fastcall GetClientOrigin(void);
Description
Override GetClientOrigin to change how the ClientOrigin is calculated.
The GetClientOrigin method is a protected method for the ClientOrigin property. GetClientOrigin
calculates the ClientOrigin by adding the control’s Left and Top values to the ClientOrigin
coordinates of its parent.

TControl::GetClientRect
TControl See also
The GetClientRect method returns a rectangle defining the client area of the control.
virtual Windows::TRect __fastcall GetClientRect(void);
Description
Override GetClientRect to change how the client area is calculated.
The GetClientRect method is a protected method for the ClientRect property. GetClientRect
returns a rectangle with the rectangle’s Top and Left fields set to zero, and its Bottom and Right
fields set to the control's ClientHeight and ClientWidth, respectively.

TControl::GetDeviceContext
TControl See also
The GetDeviceContext method returns a device context for the control.
virtual HDC __fastcall GetDeviceContext(HWND &WindowHandle);
Description
Call GetDeviceContext to obtain a device context. Override GetDeviceContext to change how
the device context is obtained.
Pass the window handle of the control in the WindowHandle parameter. GetDeviceContext
returns the device context returned from its parent control's GetDeviceContext.

TControl::GetDragImages
TControl See also
The GetDragImages method returns the control's image list containing the image to be displayed
while dragging.
virtual TCustomImageList* __fastcall GetDragImages(void);
Description
Override GetDragImages to provide a custom image list for the control. The GetDragImages
method for TControl returns NULL.

TControl::GetPalette
TControl See also
The GetPalette method returns the handle to a palette for use by the control.
virtual HPALETTE __fastcall GetPalette(void);
Description
The GetPalette for TControl returns a null handle, indicating that the control does not need to
specify a palette. Override GetPalette to implement derived objects that use a palette. Create a
palette handle for the control by a call to the Windows API function CreatePalette. GetPalette
should return the palette handle for the control.
Specifying the palette for a control does two things for your application:
• It tells the application that your control's palette needs to be realized.
• It designates the palette to use for realization.
GetPalette is called only if the run-time video mode requires color palette support, for example,
in 256-color mode.

TControl::GetParentComponent
TControl See also
The GetParentComponent method returns the parent component of the control.
virtual Classes::TComponent* __fastcall GetParentComponent(void);
Description
Call GetParentComponent to find the parent component of the control. GetParentComponent is
a protected access method of the control’s Parent property.

TControl::GetPopupMenu
TControl See also
The GetPopupMenu returns the pop-up menu associated with the control.
virtual Menus::TPopupMenu* __fastcall GetPopupMenu(void);
Description
Call GetPopupMenu to find the popup menu associated with the control. Override
GetPopupMenu to change which popup menu is associated with the control or to specify
different popup menus depending on the state of the control.
GetPopupMenu returns the value of the Popup property.

TControl::GetTextBuf
TControl See also Example
The GetTextBuf method retrieves the control's text and copies it into a buffer and returns the
number of characters copied.
int __fastcall GetTextBuf(char * Buffer, int BufSize);
Description
Call GetTextBuf to retrieve the text of a control into a fixed size buffer. The text copied is the
value of the Text property. GetTextBuf returns the number of characters that were actually
copied, which is either the length of the Text property, or BufSize - 1, whichever is smaller.
To find out how many characters the buffer needs to hold the entire text, call the GetTextLen
method before allocating a buffer for GetTextBuf.
GetTextBuf is available for compatibility with 16-bit code. Where backward compatibility is not an
issue, use the Text property.

TControl::GetTextLen
TControl See also Example
The GetTextLen method returns the length of the control's text.
int __fastcall GetTextLen(void);
Description
Call GetTextLen is to find the length of the control’s text. This is the size needed for a text
buffer to be used by the GetTextBuf method.

TControl::HasParent
TControl See also
The HasParent method indicates whether the control has a parent.
virtual bool __fastcall HasParent(void);
Description
Call HasParent to find out if a control has a parent.
The parent of the control is responsible for writing the control to a stream. By default, HasParent
for a control returns true. The parent that writes the control to a stream is usually a form or panel
control that contains this control.
Note
A child control that returns true from HasParent must implement the GetParentComponent and
SetParentComponent methods.

TControl::Hide
TControl See also Example
The Hide method makes the control invisible.
void __fastcall Hide(void);
Description
Call Hide to hide a control. Hide sets the Visible property of the control to false.
Although a control that is hidden is not visible, its properties and methods are still available.

TControl::Invalidate
TControl See also Example
The Invalidate method tells Windows to repaint the control after other important Windows
messages are handled.
virtual void __fastcall Invalidate(void);
Description
Use Invalidate when the entire control needs to be repainted. When more than one region within
the control needs repainting, Invalidate will cause the entire window to be repainted, avoiding
flicker. There is no performance penalty for calling Invalidate multiple times before the control is
actually repainted.

TControl::MouseDown
TControl See also
The MouseDown method calls the OnMouseDown event handler, if one exists.
virtual void __fastcall MouseDown(TMouseButton Button, Classes::
TShiftState Shift, int X, int Y);

Description
Override the protected MouseDown method to provide other responses in addition to calling the
OnMouseDown event handler.
The Button parameter determines which mouse button the user pressed. Shift indicates which
shift keys (Shift, Ctrl, or Alt) were down when the user pressed or released the mouse button
that generated the mouse-button event. X and Y are the pixel coordinates of the mouse pointer
within the client area of the control.
A control calls MouseDown in response to any of the Windows mouse-down messages
(WM_LBUTTONDOWN, WM_MBUTTONDOWN, WM_RBUTTONDOWN), decoding the
message parameters into the shift-key state and position, which it passes in the Shift, X, and Y
parameters, respectively. The value of the Button parameter depends on which of the Windows
messages triggered the event.

TControl::MouseMove
TControl See also
The MouseMove method calls the event handler attached to the OnMouseMove event.
virtual void __fastcall MouseMove(Classes::TShiftState Shift, int X,
int Y);

Description
Override the protected MouseMove method to provide other responses in addition to calling the
OnMouseMove event handler.
A control calls MouseMove in response to any of the Windows mouse-move messages
(WM_MOUSEMOVE), decoding the message parameters into the shift-key state and position,
which it passes in the Shift, X, and Y parameters, respectively.

TControl::MouseUp
TControl See also
The MouseUp event calls the OnMouseUp event handler.
virtual void __fastcall MouseUp(TMouseButton Button, Classes::
TShiftState Shift, int X, int Y);

Description
Override the protected MouseUp method to provide other responses in addition to calling the
OnMouseUp event handler.
A control calls MouseUp in response to any of the Windows mouse-up messages
(WM_LBUTTONUP, WM_MBUTTONUP, WM_RBUTTONUP), decoding the message
parameters into the shift-key state and position, which it passes in the Shift, X, and Y
parameters, respectively. The value of the Button parameter depends on which of the Windows
messages triggered the event.

TControl::Notification
TControl See also
The Notification method allows TControl to update its Popupmenu property when the pop-up
menu it refers to is destroyed.
virtual void __fastcall Notification(Classes::TComponent* AComponent,
Classes::TOperation Operation);
TOperation = (opInsert, opRemove);

Description
Override the Notification method to update controls that rely on other system resources so that
they will not contain references to objects that have been removed. For example, data-aware
objects should override the Notification method to update themselves when their data source is
removed.
By default, components pass along the notification to their owned components, if any.

TControl::PaletteChanged
TControl See also
The PaletteChanged method responds to changes in the system's palette by realizing the
control's palette.
virtual bool __fastcall PaletteChanged(bool Foreground);
Description
Override PaletteChanged to change how the control responds to Windows notifications that the
system palette is changing. TControl responds to these notifications by trying to realize the
control’s palette, if any, into the current device context. If the change in the system palette
causes the actual value of the control’s palette to change, PaletteChanged will invalidate the
control so that it can repaint with the new palette.
Windows paints the topmost window with a foreground palette, while other windows employ
background palettes. Background palettes are approximate matches to the colors specified by
the control’s logical palette, given the limitations imposed by implementing the foreground
palette. Windows only allows a single foreground palette.
PaletteChanged allows the control to obtain a new realization of its palette when the system
palette changes. When ForeGround is true, the form has been activated and controls is
specifying the new foreground palette. When ForeGround is false, another application has
changed the foreground palette, and controls that are sensitive to the available palette should
realize new background palettes to best match their logical palettes.
If the control does not have a logical palette to be realized into the current device context,
GetPalette will return false, and PaletteChanged will return false, indicating that no palette was
realized. If GetPalette returns the handle to a logical palette, PaletteChanged will realize this
palette into the current device context, and return true.
Note
PaletteChanged is called only when the run-time video mode requires palette support, such as
for 256 color mode, but not 16 million color mode.

TControl::Perform
TControl See also
The Perform method enables a control to send itself a Windows message.
long __fastcall Perform(unsigned int Msg, long WParam, long LParam);
Description
Call Perform to bypass the Windows message queue and send a message directly to the
control’s window procedure.
Perform fills a message record (of type TMessage) with the message ID passed in the Msg
parameter, the message parameters passed in WParam and LParam, and a result field of zero.
Perform then passes the message record to the WndProc method for processing.

TControl::ReadState
TControl See also
The ReadState method prepares the control for having its properties assigned values read from
a stream.
virtual void __fastcall ReadState(Classes::TReader* Reader);
Description
Override ReadState to change the preparations the control makes as it readies itself to have the
values of its properties assigned from a stream. For example, a control might destroy temporary
internal data structures or objects before new instances are loaded from the stream. Remember
to include a call to the inherited ReadState property when overriding ReadState.
TControl.ReadState assigns the TReader object’s Parent property to this control’s own Parent
property before calling the inherited ReadState method of TComponent. Finally, ReadState
synchronizes the Font, Color, and ShowHint properties with the parent control, as indicated by
the ParentFont, ParentColor, and ParentShowHint properties, respectively.

TControl::Refresh
TControl See also
The Refresh method repaints the control on the screen.
void __fastcall Refresh(void);
Description
Call Refresh method to repaint the control immediately. Refresh calls the Repaint method. Use
the Refresh and Repaint methods interchangeably.

TControl::Repaint
TControl See also
The Repaint method forces the control to repaint its image on the screen.
virtual void __fastcall Repaint(void);
Description
Call Repaint to force the control to repaint its image immediately. If the ControlStyle includes
csOpaque, as does a control derived from TGraphicControl, the control is repainted into the
parent’s device context. Otherwise, the Repaint method calls the Invalidate method and then
the Update method to repaint the control immediately.

TControl::ScreenToClient
TControl See also Example
The ScreenToClient method converts the screen coordinates of a specified point on the screen
to client coordinates.
POINT __fastcall ScreenToClient(const POINT &Point);
Description
Use ScreenToClient to convert a point in screen coordinates to local, or client area, coordinates.
In client area coordinates (0, 0) corresponds to the upper left corner of the control's client area.
In screen coordinates (0, 0) corresponds to the upper left corner of the screen.
Use ScreenToClient along with ClientToScreen to convert from one control's coordinate system
to another control's coordinate system. For example,
converts P from coordinates in SourceControl to coordinates in TargetControl.

TControl::SendCancelMode
TControl See also
The SendCancelMode method cancels the modal state of the control.
void __fastcall SendCancelMode(TControl* Sender);
Description
Call SendCancelMode to cancel the modal state of the control. Various controls implemented in
the Visual Component Library support a model state where the user must respond to the control
before interacting with any other object on the form. An example would be the dropped-down
state of a combo box when the drop-down list is showing. For these controls, specific user
actions send a windows message to the control to end the model state. SendCancelMode allows
an application to end the modal state of the control in the absence of a user action, or in order to
implement a new user interface response.

TControl::SendToBack
TControl See also Example
The SendToBack method puts a windowed control behind all other windowed controls within its
parent component or form, or it puts a non-windowed control behind all other non-windowed
control within its parent component or form.
void __fastcall SendToBack(void);
Description
Use SendToBack to change the order of overlapping controls or forms.
The order in which controls stack on top of each order (also called the Z order) depends on the
order the controls are placed on the form. For example, if you put a label and an image on a
form so that one is on top of the other, the one that was placed first on the form becomes the
one on the bottom. Because both the label and the image are non-windowed controls, they
"stack" as you would expect them to. Call the SendToBack method for the top object to move it
below the other object.
The stacking order of two windowed controls is the same as the stacking of two non-windowed
controls. For example, if you put a memo on a form, then put a check box on top of it, the check
box remains on top. Calling SendToBack for the check box makes the memo appear on top.
The stacking order of windowed and non-windowed controls cannot be mingled. For example, if
you put a memo, a windowed control, on a form, and then put a label, a non-windowed control,
on top of it, the label disappears behind the memo. Windowed controls always stack on top of
non-windowed controls. In this example, calling the SendToBack method of the memo does
nothing, the label remains behind the memo.
If the control has the input focus when the SendToBack method executes, it loses the input
focus.

TControl::SetBounds
TControl See also Example
The SetBounds method sets the Left, Top, Width, and Height properties all at once.
virtual void __fastcall SetBounds(int ALeft, int ATop, int AWidth, int
AHeight);

Description
Use SetBounds to change all of the component's boundary properties at one time. The same
effect can be achieved by setting the Left, Top, Width, and Height properties separately, but
SetBounds changes all four properties at once ensuring that the control will not repaint between
changes.
Specify the values for the Left, Top, Width, and Height properties as the value of the ALeft,
ATop, AWidth, and AHeight parameters, respectively.

TControl::SetDragMode
TControl See also
The SetDragMode methods sets the drag mode for the control.
virtual void __fastcall SetDragMode(TDragMode Value);
Description
SetDragMode is the protected method for the DragMode property. Override SetDragMode to
execute additional code when the value of the DragMode property changes.

TControl::SetName
TControl See also
The SetName property sets the name of the control.
virtual void __fastcall SetName(const System::AnsiString Value);
Description
SetName is the protected method for setting the value of the Name property. Override SetName
to execute additional code when the value of the Name property changes.

TControl::SetParent
TControl See also
The SetParent sets the parent of the control
virtual void __fastcall SetParent(TWinControl* AParent);
Description
Call SetParent to make the specified window control the parent of this control. The SetParent
method is a protected method for setting the Parent property. Override SetParent to execute
additional code when the value of the Parent property changes.
Specify the control that is to become the parent control as the value of the AParent parameter.
If the control already has a parent, SetParent removes the control from that parent's list of
controls by calling the parent's RemoveControl method. If AParent is non-NULL, SetParent calls
that control's InsertControl method to add the control to its list of controls.
The destructors of controls call SetParent(NULL) to remove the control from its parent's control
list before destroying the component.

TControl::SetParentComponent
TControl See also
The SetParentComponent sets the parent for the control.
virtual void __fastcall SetParentComponent(Classes::TComponent* Value)
;

Description
Call SetParentComponent to make the specified component the parent of the control. Specify
the component that is to become the parent of the control as the value of the Value parameter.
SetParentComponent calls the SetParent method only if the component specified as the parent
is a windowed control.

TControl::SetTextBuf
TControl See also Example
The SetTextBuf method sets text of the control.
void __fastcall SetTextBuf(char * Buffer);
Description
Call the SetTextBuf method to set the text of the control to the text in the specified buffer.
The text is set to the text in the buffer pointed to by the Buffer parameter. Buffer must point to a
null-terminated string. The SetTextBuf method sends the WM_SETTEXT and
CM_TEXTCHANGED messages.
Note
The SetTextBuf method is provided for backwards compatibility only. Use the Text property
instead to set the text of the control.

TControl::SetZOrder
TControl See also
The SetZOrder method repositions the control in its parent’s control list, thereby changing
position onscreen also.
virtual void __fastcall SetZOrder(bool TopMost);
Description
Call SetZOrder to change the Z-order of the control. To make the control the topmost control,
specify the TopMost value as true. To make the control the bottommost, set TopMost to false.
After changing the order, SetZOrder invalidates the control to ensure repainting to reflect the
new order.
The stacking order of windowed and non-windowed controls cannot be mingled. For example, if
you put a memo, a windowed control, on a form, and then put a label, a non-windowed control,
on top of it, the label disappears behind the memo. Windowed controls always stack on top of
non-windowed controls. In this example, calling the SetZOrder method of the label or the memo
has no effect, the label always remains behind the memo.

TControl::Show
TControl See also
The Show method makes a control visible.
void __fastcall Show(void);
Description
Use the Show method to make visible a control that was previously hidden.
The Show method sets the control’s Visible property to true and also ensures that the parent
control is visible.

TControl::TControl
TControl See also
The TControl method creates an instance of TControl.
__fastcall virtual TControl(Classes::TComponent* AOwner);
Description
Call TControl to construct and initialize an instance of TControl.
After calling the inherited constructor, TControl initializes the following properties:
• Color to clWindow.
• ControlStyle to [csCaptureMouse, csClickEvents, csSetCaption, csDoubleClick].
• DragCursor to crDrag.
• Enabled and Visible to true.
• IsControl to false.
• ParentColor, ParentFont, and ParentShowHint to true.
When overriding TControl, always call the inherited TControl method first, then proceed with the
control's initialization. Remember to specify the override directive when overriding the TControl
method.
If a component's TControl method allocates resources or memory, also override the ~TControl
method to free those resources.

TControl::Update
TControl See also Example
The Update method processes any pending paint messages immediately.
virtual void __fastcall Update(void);
Description
Call Update to force the control to be repainted before any more, possibly time-consuming,
processing takes place. Use Update to provide immediate feedback to the user that cannot wait
for the Windows paint message to arrive. Update does not invalidate the control, but simply
forces a repaint of any regions that have already been invalidated. Call Repaint instead if you
need to invalidate the control as well.

TControl::UpdateBoundsRect
TControl See also
The UpdateBoundsRect method changes the Top, Left, Width, and Height properties of the
control, but doesn’t update it’s screen image.
void __fastcall UpdateBoundsRect(const Windows::TRect &R);
Description
UpdateBoundsRect is primarily used internally by controls to stay synchronized with changes
made by Windows. UpdateBoundsRect updates the properties to match those passed in the
rectangle as the R parameter.

TControl::VisibleChanging
TControl See also
The VisibleChanging method is called before the value of a control’s Visible property changes.
virtual void __fastcall VisibleChanging(void);
Description
VisibleChanging does nothing more than provide an interface for descendent objects to override
in order to respond to changes in the control’s visibility. For example, if the control should not
change its visibility, override VisibleChanging to raise an exception when an attempt is made to
alter the control’s visibility.

TControl::WndProc
TControl See also
The WndProc method provides specific message responses for the control.
virtual void __fastcall WndProc(Messages::TMessage &Message);
Description
Override WndProc to provide specialized responses to messages.
WndProc is the first method that receives messages for a Borland C++Builder control. It defines
mouse-message responses for basic clicks and drags, and sends all other messages on to the
Dispatch method.
When overriding WndProc to provide specialized responses to messages, be sure to call the
inherited WndProc at the end to dispatch any other messages.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent

TControl example
TControl

TConversion
Hierarchy Methods See also
TConversion converts rich text data from one encoding format to another, at the point when the
data is streamed from a storage medium that uses one format to a storage medium that uses the
other.
Header
vcl/comctrls.hpp
Description
TConversion, by itself, does not perform any conversions. It simply reads from or writes to a
stream. TConversion exists primarily to provide an interface that can be overridden by derived
classes that convert text from one format to another when it is streamed.
Descendants of TCustomRichEdit use TConversion when streaming text to and from files, when
the files contain plain ANSI text or text in rich text format (RTF). To allow rich text edit controls to
read from and write to files that use another format, derive a class from TConversion which
converts between that format and RTF. Rich text edit controls can use the new class by
registering it through their RegisterConversionFormat method, or by making it the default
converter.

TConversion methods
TConversion Alphabetically

In TConversion
~TConversion
ConvertReadStream
ConvertWriteStream
TConversion

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TConversion methods
TConversion By object

~TConversion
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ConvertReadStream
ConvertWriteStream
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TConversion

TConversion::~TConversion
TConversion
~TConversion frees the memory associated with the TConversion object. Do not call ~
TConversion directly. Instead, use the delete keyword on the object, which causes ~
TConversion to be invoked automatically.
__fastcall virtual ~TConversion(void);

TConversion::ConvertReadStream
TConversion See also
ConvertReadStream reads BufSize bytes from Stream into the memory buffer pointed to by
Buffer.
virtual int __fastcall ConvertReadStream(Classes::TStream* Stream, char
* Buffer, int BufSize);

To convert text between two formats, override this method in a descendent class and convert the
text in the buffer. To create a descendent class that TCustomRichEdit can use, convert the text
to RTF format.
Note
ConvertReadStream should reverse the conversion that ConvertWriteStream makes.

TConversion::ConvertWriteStream
TConversion See also
ConvertWriteStream writes BufSize bytes to Stream from the memory buffer pointed to by
Buffer.
virtual int __fastcall ConvertWriteStream(Classes::TStream* Stream,
char * Buffer, int BufSize);

To write text between two formats, override this method in a descendent class and convert the
text in the buffer. To create a descendent class that TCustomRichEdit can use, convert the text
from RTF format.
Note
ConvertWriteStream should reverse the conversion that ConvertReadStream makes.

TConversion::TConversion
TConversion
TConversion creates a new TConversion object.
__fastcall TConversion(void);

Hierarchy

TObject

TConversion example
TConversion

TCurrencyField
Hierarchy Properties Methods Events See also
A TCurrencyField object represents a field that contains currency values in a dataset.
Header
vcl/dbtables.hpp
Description
Currency fields can hold values in the range from (positive or negative) 5.0 * 10e-324 to 1.7 *
10308 with an accuracy of 15 digits.
TCurrencyField differs from its immediate ancestor TFloatField only in having a DataType of
ftCurrency, and in formatting the value using a currency format by default. As a descendant of
TFloatField, TCurrencyField includes many properties, methods, and events that are useful for
managing the value and properties of a floating-point field in a database.
Do not confuse TCurrencyField with the Currency data type. Currency fields use the Double data
type to store and manipulate their values. This data type is the format used by the physical
database tables for currency fields. The BCDField class uses the Currency data type to store
and manipulate its value.

TCurrencyField properties
TCurrencyField Alphabetically Legend

In TCurrencyField
Currency

Derived from TFloatField
MaxValue
MinValue
Precision
Value

Derived from TNumericField
DisplayFormat
EditFormat

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner

Tag

TCurrencyField properties
TCurrencyField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

Currency
DataSet

DataSize
DataType

DesignInfo
DisplayFormat
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditFormat

EditMaskPtr
EditMask
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
MaxValue
MinValue
Name
NewValue

OldValue
Owner

Precision
ReadOnly
Required
Size
Tag
Text
Value
Visible

TCurrencyField::Currency
TCurrencyField
Currency determines whether the value in the field should be formatted as a currency value.

__property Currency;

Use the Currency property to influence how the value in the field should be formatted for viewing
and editing in a data-aware control.
The format of the field for display purposes uses the DisplayFormat property if it is assigned. If
DisplayFormat is not assigned, Currency determines how the field is formatted for display. If
Currency is true, the value is formatted for display using the FloatToText function with the
ffCurrency formatting code. If Currency is false, the value is formatted with the ffGeneral format.
The format of the field for editing purposes uses the EditFormat (or DisplayFormat) property if it
is assigned. If neither EditFormat nor DisplayFormat is assigned, Currency determines how the
field is formatted for editing. If Currency is true, the value is formatted for editing using the
FloatToText function with the ffFixed formatting code. If Currency is false, the value is formatted
with the ffGeneral format.
The default value of Currency for TCurrencyField components is true.

TCurrencyField events
TCurrencyField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TCurrencyField events
TCurrencyField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TCurrencyField methods
TCurrencyField Alphabetically

In TCurrencyField
~TCurrencyField
TCurrencyField

Derived from TFloatField
IsValidChar

Derived from TField
Assign
AssignValue
Clear
FocusControl
GetData
SetData
SetFieldType

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCurrencyField methods
TCurrencyField By object

~TCurrencyField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TCurrencyField

TCurrencyField::TCurrencyField
TCurrencyField See also
TCurrencyField creates an instance of TCurrencyField.
__fastcall virtual TCurrencyField(Classes::TComponent* AOwner);

Call TCurrencyField to create and initialize an instance of TCurrencyField. After calling the
inherited constructor, TCurrencyField sets the DataType to ftCurrency, and the Currency
property to true.
It is seldom necessary to TCurrencyField directly, because a currency field object is instantiated
automatically for all currency fields in a dataset.

TCurrencyField::~TCurrencyField
TCurrencyField
~TCurrencyField frees the memory associated with the TCurrencyField object. Do not call ~
TCurrencyField directly. Instead, use the delete keyword on the object, which causes ~
TCurrencyField to be invoked automatically.
__fastcall virtual ~TCurrencyField(void);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField
TNumericField
TFloatField

TCurrencyField example
TCurrencyField

TControlScrollBar
Hierarchy Properties Methods See also
TControlScrollBar displays a horizontal or vertical scroll bar.
Header
vcl/forms.hpp
Description
The HorzScrollBar and VertScrollBar properties of TForm and TScrollBox use TControlScrollBar
objects to represent scroll bars.

TControlScrollBar properties
TControlScrollBar Alphabetically Legend

In TControlScrollBar
Increment

Kind
Margin
Position
Range

ScrollPos
Tracking
Visible

TControlScrollBar properties
TControlScrollBar By object Legend

Increment
Kind

Margin
Position
Range

ScrollPos
Tracking
Visible

TControlScrollBar::Increment
TControlScrollBar
Determines how far the display moves when the user clicks one of the small end arrows on the
scroll bar.
__property TScrollBarInc Increment;
Description
If Increment is set to 1, each click scrolls by one position; if Increment is set to 2, each click
scrolls by two positions; and so forth.

TControlScrollBar::Kind
TControlScrollBar Example
Determines whether the scroll bar is horizontal or vertical.
__property TScrollBarKind Kind;
Description
These are the possible values for Kind:
Value Meaning

sbHorizontal Scroll bar is horizontal
sbVertical Scroll bar is vertical

TControlScrollBar::Margin
TControlScrollBar See also Example
Determines when a scroll bar is generated.
__property unsigned short Margin;
Description
The Margin property determines the minimum number of pixels that must separate each control
from the edge of the form or scroll box. At runtime, whenever a visual component is less than
Margin pixels from the edge and Visible is set to true, a scroll bar appears.

TControlScrollBar::Position
TControlScrollBar See also Example
The position of the thumb tab on the scroll bar.
__property int Position;
Description
The value of Position changes at runtime as the user scrolls the scroll bar.

TControlScrollBar::Range
TControlScrollBar See also
Determines how far the form or scroll box can move.
__property int Range;
Description
Range represents the virtual size (in pixels) of the form or scroll box. For example, if the Range
of a form’s horizontal scroll bar is set to 500, and the width of the form is 200, the scroll bar’s
Position can vary from 0 to 300.
If the Range of a horizontal scroll bar is less than the width of the form or scroll box, no
horizontal scroll bar appears. If the Range of a vertical scroll bar is less than the height of the
form or scroll box, no vertical scroll bar appears.
The value of Range is set automatically, but can be overridden in the Object Inspector or in
program code.

TControlScrollBar::ScrollPos
TControlScrollBar See also
The current value of Position.
__property int ScrollPos;
Description
The read-only ScrollPos property returns the current value of Position.

TControlScrollBar::Tracking
TControlScrollBar
Determines whether the form or scroll box moves before the thumb tab is released.
__property bool Tracking;
Description
If Tracking is set to true, the image in the scroll box or form moves as the user drags the thumb
tab. If Tracking is set to false, the image remains static until the thumb tab is released.

TControlScrollBar::Visible
TControlScrollBar See also Example
Determines whether the scroll bar appears.
__property bool Visible;
Description
If Visible is set to true, a scroll bar appears whenever a visual component is less than Margin
pixels from the edge of the form or scroll box.

TControlScrollBar methods
TControlScrollBar Alphabetically

In TControlScrollBar
~TControlScrollBar
Assign
TControlScrollBar

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TControlScrollBar methods
TControlScrollBar By object

~TControlScrollBar
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TControlScrollBar

TControlScrollBar::~TControlScrollBar
TControlScrollBar
~TControlScrollBar frees the memory associated with the TControlScrollBar object. Do not call ~
TControlScrollBar directly. Instead, use the delete keyword on the object, which causes ~
TControlScrollBar to be invoked automatically.
__fastcall virtual ~TControlScrollBar(void);

TControlScrollBar::Assign
TControlScrollBar See also
Copies the contents of a TControlScrollBar instance to another TControlScrollBar.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
Assign copies the Visible, Range, Position, and Increment properties of the source object to
another TControlScrollBar instance.

TControlScrollBar::TControlScrollBar
TControlScrollBar
TControlScrollBar creates a new TControlScrollBar object.
__fastcall TControlScrollBar(TScrollingWinControl* AControl,
TScrollBarKind AKind);

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent

TControlScrollBar example
TControlScrollBar

TControlCanvas
Hierarchy Properties Methods Events See also
TControlCanvas is a specialized canvas object associated with a control.
Header
vcl/controls.hpp
Description
Use TControlCanvas as a drawing space to render the image of a control. Standard window
controls such as edit controls or list boxes do not require a canvas, as they are drawn by
Windows.
As a canvas, TControlCanvas provides many properties, events, and methods to aid in the
creation of rich images. In addition, TControlCanvas adds properties and methods to interact
with a control object, and to manage the device context associated with the control.
TControlCanvas is used by TGraphicControl and TCustomControl to provide services for
rendering their images.

TControlCanvas properties
TControlCanvas Alphabetically Legend

In TControlCanvas
Control

Derived from TCanvas
Brush

ClipRect
CopyMode
Font
Handle
Pen
PenPos
Pixels

TControlCanvas properties
TControlCanvas By object Legend

Brush
ClipRect

Control
CopyMode
Font
Handle
PenPos
Pen
Pixels

TControlCanvas::Control
TControlCanvas See also
Control specifies the control associated with the control canvas object.
__property TControl* Control;
Description
Read Control to gain access to the control associated with the control canvas object.
Descendants of TControl that use a control canvas set the Control property to form the
association. The control canvas object uses the Control property to get information from its
associated control.

TControlCanvas events
TControlCanvas Alphabetically

Derived from TCanvas
OnChange
OnChanging

TControlCanvas events
TControlCanvas By object

OnChange
OnChanging

TControlCanvas methods
TControlCanvas Alphabetically

In TControlCanvas
~TControlCanvas
FreeHandle
TControlCanvas

Derived from TCanvas
Arc
BrushCopy
Chord
CopyRect
Draw
DrawFocusRect
Ellipse
FillRect
FloodFill
FrameRect
LineTo
MoveTo
Pie
Polygon
Polyline
Rectangle
Refresh
RoundRect
StretchDraw
TextHeight
TextOut
TextRect
TextWidth

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TControlCanvas methods
TControlCanvas By object

~TControlCanvas
Arc
Assign
BrushCopy
Chord
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CopyRect
DefaultHandler
Dispatch
DrawFocusRect
Draw
Ellipse
FieldAddress
FillRect
FloodFill
FrameRect
FreeHandle
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
LineTo
MethodAddress
MethodName
MoveTo
NewInstance
Pie
Polygon
Polyline
Rectangle
Refresh
RoundRect
StretchDraw
TControlCanvas
TextHeight
TextOut
TextRect
TextWidth

TControlCanvas::~TControlCanvas
TControlCanvas See also
~TControlCanvas frees the memory associated with the TControlCanvas object. Do not call ~
TControlCanvas directly. Instead, use the delete keyword on the object, which causes ~
TControlCanvas to be invoked automatically.
__fastcall virtual ~TControlCanvas(void);
Description
~TControlCanvas releases the handle to a device context (HDC) the control canvas uses before
freeing the memory associated with the object.

TControlCanvas::FreeHandle
TControlCanvas See also
FreeHandle releases the handle to a device context (HDC) used by the control canvas object.
void __fastcall FreeHandle(void);
Description
Call FreeHandle to free the HDC used by the control canvas. FreeHandle sets the Handle
property to NULL. After calling FreeHandle, an HDC will be re-acquired if any of the drawing
methods are called.
Note
Setting the Handle property to NULL does not free the HDC. Set the Handle property to NULL
rather than call FreeHandle if the HDC is release by the application.

TControlCanvas::TControlCanvas
TControlCanvas
TControlCanvas creates a new TControlCanvas object.
__fastcall TControlCanvas(void);

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TCanvas

TControlCanvas example
TControlCanvas

TCustomCheckBox
Hierarchy Properties Methods See also
TCustomCheckBox is the ancestor of all check-box components.
Header
vcl/stdctrls.hpp
Description
TCustomCheckBox is an abstract class from which check-box components, including
TCheckBox and TDBCheckBox, descend. Check boxes present the user with options that can
be selected (checked) or deselected (unchecked).

TCustomCheckBox properties
TCustomCheckBoxAlphabetically Legend

In TCustomCheckBox
Alignment
AllowGrayed
Checked
State

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomCheckBox properties
TCustomCheckBoxBy object Legend

Alignment
Align
AllowGrayed
BoundsRect

Brush
Checked
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
Left
Name

Owner
Parent
ShowHint

Showing
State
TabOrder
TabStop
Tag
Top
Visible
Width

TCustomCheckBox::Alignment
TCustomCheckBoxExample
Controls the position of the check box’s caption.
__property Classes::TLeftRight Alignment;
Description
If Alignment is set to taRightJustify, the caption appears to the right of the check box. If
Alignment is set to taLeftJustify, the caption appears to the left of the check box.

TCustomCheckBox::AllowGrayed
TCustomCheckBoxSee also
Determines whether check box can be in a “grayed” state.
__property bool AllowGrayed;
Description
If AllowGrayed is set to true, the check box has three possible states: checked, unchecked, and
grayed. If AllowGrayed is set to false, the check box has only two possible states: checked and
unchecked.

TCustomCheckBox::Checked
TCustomCheckBoxSee also Example
Indicates whether the check box is selected.
__property bool Checked;
Description
When Checked is true, a check mark appears in the check box (State = cbChecked), indicating
that the option is selected. When Checked is false, the check box is either unchecked (State =
cbUnchecked) or grayed (State = cbGrayed).

TCustomCheckBox::State
TCustomCheckBoxSee also Example
Indicates whether the check box is selected, deselected, or grayed.
__property TCheckBoxState State;
Description
These are the possible values of State:
Value Meaning

cbUnchecked The check box has no check mark, indicating that the user has not
selected the option.

cbChecked The check box has a check mark in it, indicating that the user has
selected the option.

cbGrayed The check box has a check mark in it, but it is grayed.

TCustomCheckBox methods
TCustomCheckBoxAlphabetically Legend

In TCustomCheckBox
~TCustomCheckBox

CreateParams
CreateWindowHandle
CreateWnd
TCustomCheckBox
Toggle

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification

GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomCheckBox methods
TCustomCheckBoxBy object Legend

~TCustomCheckBox
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos

CreateParams
CreateWindowHandle
CreateWnd
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent

GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform
Realign

Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TCustomCheckBox

Toggle
UpdateControlState

Update

TCustomCheckBox::~TCustomCheckBox
TCustomCheckBox
~TCustomCheckBox frees the memory associated with the TCustomCheckBox object. Do not
call ~TCustomCheckBox directly. Instead, use the delete keyword on the object, which causes ~
TCustomCheckBox to be invoked automatically.
__fastcall virtual ~TCustomCheckBox(void);

TCustomCheckBox::CreateParams
TCustomCheckBoxSee also
Initializes a window-creation parameter record.
virtual void __fastcall CreateParams(Controls::TCreateParams &Params);
Description
CreateParams calls the inherited method, then makes specific adjustments for check boxes.

TCustomCheckBox::CreateWindowHandle
TCustomCheckBoxSee also
Creates a window handle for the check box.
virtual void __fastcall CreateWindowHandle(const Controls::
TCreateParams &Params);

Description
CreateWindowHandle implements special processing required by some Windows NT systems,
then calls the inherited method.

TCustomCheckBox::CreateWnd
TCustomCheckBoxSee also
Creates a Windows control corresponding to the check box.
virtual void __fastcall CreateWnd(void);
Description
CreateWnd calls the inherited method, then sends a BM_SETCHECK message to set the check
state of the control.

TCustomCheckBox::TCustomCheckBox
TCustomCheckBox
Creates and initializes a TCustomCheckBox instance.
__fastcall virtual TCustomCheckBox(Classes::TComponent* AOwner);
Description
Call TCustomCheckBox to generate a check box at runtime. For check boxes placed on forms at
design time, TCustomCheckBox is called automatically.

TCustomCheckBox::Toggle
TCustomCheckBoxSee also
Changes the state of the check box.
virtual void __fastcall Toggle(void);
Description
Use the Toggle method to select or deselect the check box programmatically. Toggle switches
among the valid check-box states—from checked to unchecked to grayed, or from checked to
unchecked.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TButtonControl

TCustomCheckBox example
TCustomCheckBox

TCustomComboBox
Hierarchy Properties Methods Events See also
TCustomComboBox is the ancestor of all combo-box components, including TComboBox,
TDBComboBox, TDriveComboBox, and TFilterComboBox.
Header
vcl/stdctrls.hpp
Description
TCustomComboBox encapsulates behavior common to all combo boxes. A combo box is an edit
box with a scrollable drop-down list attached to it; users can select an item from the list or type
directly into the edit box.
To disable either manual editing or the drop-down list, set the Style property.

TCustomComboBox properties
TCustomComboBox Alphabetically Legend

In TCustomComboBox
Canvas

DropDownCount
DroppedDown

EditHandle
ItemHeight
ItemIndex
Items

ListHandle
MaxLength
SelLength
SelStart
SelText
Sorted
Style

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ParentColor
ShowHint
Top

Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomComboBox properties
TCustomComboBox By object Legend

Align
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
DropDownCount
DroppedDown

EditHandle
Enabled

Handle
Height
HelpContext
Hint
ItemHeight

ItemIndex
Items

Left
ListHandle

MaxLength
Name

Owner
ParentColor
Parent
SelLength
SelStart
SelText
ShowHint

Showing
Sorted
Style

TabOrder
TabStop
Tag
Top
Visible
Width

TCustomComboBox::Canvas
TCustomComboBox See also
Provides runtime access to the combo box’s drawing surface.
__property Graphics::TCanvas* Canvas;
Description
The read-only Canvas property provides access to the combo box’s drawing surface that you
can use when implementing a handler for the OnDrawItem event.

TCustomComboBox::DropDownCount
TCustomComboBox Example
The maximum number of items displayed in the drop-down list before a scroll bar is added.
__property int DropDownCount;
Description
If the number of items to be displayed is greater than DropDownCount, a scroll bar is added to
the right side of the drop-down list.

TCustomComboBox::DroppedDown
TCustomComboBox
Indicates whether the drop-down list is currently displayed.
__property bool DroppedDown;
Description
DroppedDown is true whenever the drop-down list is open, and false whenever the drop-down
list is closed.

TCustomComboBox::EditHandle
TCustomComboBox See also
The handle for the edit box.
__property HWND EditHandle;
Description
The read-only EditHandle property returns the handle of the combo box’s edit box. (The edit
box is a separate Windows control, distinct from the drop-down list.)

TCustomComboBox::ItemHeight
TCustomComboBox See also Example
The height, in pixels, of the combo box and the items in the drop-down list.
__property int ItemHeight;
Description
If Style is set to csOwnerDrawFixed or csOwnerDrawVariable, the ItemHeight property
determines the height of the combo box and of each item in the drop-down list. If Style is set to
any other value, the ItemHeight property is inoperative.

TCustomComboBox::ItemIndex
TCustomComboBox See also Example
The position of the selected item in the drop-down list.
__property int ItemIndex;
Description
ItemIndex is an ordinal number indicating the position of the currently selected item in the combo
box’s drop-down list. (The “selected” item is the one displayed in the edit box.) The first item
in the list is 0. If no item is selected, the value of ItemIndex is –1.

TCustomComboBox::Items
TCustomComboBox See also
The items (strings) in the drop-down list.
__property Classes::TStrings* Items;
Description
The Items property contains the strings that appear in the combo box’s drop-down list. In
TCustomComboBox descendants (TComboBox, TDBComboBox, TDriveComboBox, and
TFilterComboBox), where this property is published, you can add or remove items by editing the
Items list from the Object Inspector.

TCustomComboBox::ListHandle
TCustomComboBox See also
The handle for the drop down list.
__property HWND ListHandle;
Description
The read-only ListHandle property returns the handle of the combo box’s drop-down list. (The
drop-down list is a separate Windows control, distinct from the edit box.)

TCustomComboBox::MaxLength
TCustomComboBox Example
The maximum length (in characters) of manually entered text.
__property int MaxLength;
Description
The MaxLength property specifies the maximum number of characters that the user can enter
into the edit box. It does not affect the length of strings available in the drop-down list.
Note
If MaxLength is 0, there is no limit to the number of characters that can be entered.

TCustomComboBox::SelLength
TCustomComboBox See also Example
The length, in characters, of the text that appears highlighted in the edit box.
__property int SelLength;
Description
The SelLength property determines the number of characters that appear selected (highlighted)
in the edit box.
The combo box must be the active control when the value of SelLength changes, or the
highlighting will not take effect.

TCustomComboBox::SelStart
TCustomComboBox See also
The position of the first highlighted character in the edit box.
__property int SelStart;
Description
The SelStart property determines which character begins the selected (highlighted) segment of
the text in the edit box. The first character in the edit box is designated with 0, the second with 1,
and so forth.
The combo box must be the active control when the value of SelStart changes, or the
highlighting will not take effect.

TCustomComboBox::SelText
TCustomComboBox See also Example
The highlighted segment of the text in the edit box.
__property System::AnsiString SelText;
Description
SelText is the selected (highlighted) substring of the text in the edit box. The first character of
SelText is returned by SelStart, and the length of SelText is returned by SelLength. For example,
if SelStart = 0 and SelLength = 5, then SelText is the first five characters of the text in the edit
box.
If no text is currently selected when a value is assigned to SelText, the SelText string is inserted
in the text at the cursor. The combo box must be the active control when the value of SelText
changes, or the highlighting will not take effect.

TCustomComboBox::Sorted
TCustomComboBox Example
Determines whether the drop-down list is alphabetized.
__property bool Sorted;
Description
If Sorted is true, the items in the drop-down list automatically appear in alphabetical order.

TCustomComboBox::Style
TCustomComboBox See also
Determines the display style of the combo box.
__property TComboBoxStyle Style;
Description
These are the possible values of the Style:
Value Meaning

csDropDown Creates a drop-down list with an edit box for manually entered text. All
items are strings of the same height.

csSimple Creates an edit box with a fixed list (list box) underneath. The list does
not appear at runtime unless the combo box is sized to accommodate it.

csDropDownList Creates a drop-down list with no edit box; the user cannot enter text
manually. All items are strings of the same height.

csOwnerDrawFixed Creates a drop-down list with an edit box for manually entered text. Each
item in the combo box is the height specified by the ItemHeight property.

csOwnerDrawVariableCreates a drop-down list with an edit box for manually entered text. Items
in the combo box can be of varying heights.

Owner-draw combo boxes (csOwnerDrawFixed and csOwnerDrawVariable) can display
graphics along with, or instead of, text. Each time an item is displayed in an owner-draw combo
box, an OnDrawItem event occurs; to display a graphic, write an OnDrawItem event handler. If
Style is csOwnerDrawVariable, an OnMeasureItem event occurs as well; to set the height of the
item, write an OnMeasureItem event handler. If Style is csOwnerDrawFixed (or if no
OnMeasureItem event handler is found) the ItemHeight property determines the height of all the
items.

TCustomComboBox events
TCustomComboBox Alphabetically Legend

In TCustomComboBox
OnChange
OnDrawItem
OnDropDown
OnMeasureItem

TCustomComboBox events
TCustomComboBox By object Legend

OnChange
OnDrawItem
OnDropDown
OnMeasureItem

TCustomComboBox::OnChange
TCustomComboBox See also
OnChange occurs when text is entered in the edit box or an item is selected from the drop-down
list.
__property Classes::TNotifyEvent OnChange;
Description
Write an OnChange event handler to take specific action whenever the text in the combo box
changes.

TCustomComboBox::OnDrawItem
TCustomComboBox See also
OnDrawItem occurs when an item in an owner-draw combo box needs to be redisplayed.
__property TDrawItemEvent OnDrawItem;
Description
Write an OnDrawItem event handler to redraw items in the drop-down list. OnDrawItem passes
four parameters to its event handler:
• A reference to the combo box containing the item.
• The index of the item in the Items property (TStrings object).
• A rectangle (TRect) in which to draw.
• The state of the item, which can take one of the following values.
Value Meaning

odSelected The item is selected.
odGrayed The item is grayed.
odDisabled The drop-down list is currently disabled.
odChecked The item is checked.
odFocused The item currently has focus.
OnDrawItem occurs only if Style is set to csOwnerDrawFixed or csOwnerDrawVariable.

TCustomComboBox::OnDropDown
TCustomComboBox See also
OnDropDown occurs when the user opens the drop-down list by clicking the arrow at the right of
the control.
__property Classes::TNotifyEvent OnDropDown;
Description
Write an OnDropDown event handler to implement special processing that needs to occur only
when the drop-down list is activated.

TCustomComboBox::OnMeasureItem
TCustomComboBox
OnMeasureItem occurs when an item in a csOwnerDrawVariable combo box needs to be
redisplayed.
__property TMeasureItemEvent OnMeasureItem;
When Style is set to csOwnerDrawVariable, the OnMeasureItem event always precedes
OnDrawItem. Write an OnMeasureItem event handler to specify the size of an item in the drop-
down list.
OnMeasureItem passes three parameters to its event handler:
• A reference to the combo box containing the item.
• The index of the item in the Items property (TStrings object).
• The height of the item, in pixels.
The event handler can reset the final parameter, Height, to the appropriate value.
Description
Items property, OnDrawItem event, Style property, TStrings object, TWinControl object

TCustomComboBox methods
TCustomComboBox Alphabetically Legend

In TCustomComboBox
~TCustomComboBox

Change
Clear
ComboWndProc
CreateParams
CreateWnd
DestroyWnd
DrawItem
DropDown
MeasureItem
SelectAll
SetStyle
TCustomComboBox
WndProc

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack

SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomComboBox methods
TCustomComboBox By object Legend

~TCustomComboBox
Assign
BeginDrag
BringToFront
Broadcast
CanFocus

Change
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
ClientToScreen
ComboWndProc
ContainsControl

ControlAtPos
CreateParams
CreateWnd
DefaultHandler
DestroyComponents
Destroying
DestroyWnd
DisableAlign
Dispatch
DragDrop
Dragging
DrawItem
DropDown
EnableAlign
EndDrag
FieldAddress

FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate

MeasureItem
MethodAddress

MethodName
NewInstance
PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SelectAll

SendToBack
SetBounds
SetFocus

SetStyle
SetTextBuf
Show
TCustomComboBox
UpdateControlState
Update
WndProc

TCustomComboBox::~TCustomComboBox
TCustomComboBox See also
~TCustomComboBox frees the memory associated with the TCustomComboBox object. Do not
call ~TCustomComboBox directly. Instead, use the delete keyword on the object, which causes
~TCustomComboBox to be invoked automatically.
__fastcall virtual ~TCustomComboBox(void);

TCustomComboBox::Change
TCustomComboBox See also
Triggers the OnChange event.
virtual void __fastcall Change(void);
Description
Change is the protected implementation method for the OnChange event. This method does
nothing except call any event handler attached to OnChange. To perform additional processing,
override Change.

TCustomComboBox::Clear
TCustomComboBox
Deletes all text from the edit box and all items from the drop-down list.
void __fastcall Clear(void);
Description
Call Clear to empty the combo box at runtime. Clear removes all text from the edit box and
deletes all items from the drop-down list.

TCustomComboBox::ComboWndProc
TCustomComboBox See also
Provides message responses for the combo box.
virtual void __fastcall ComboWndProc(Messages::TMessage &Message, HWND
ComboWnd, void * ComboProc);

Description
Override ComboWndProc to change the way the combo box responds to Windows messages.

TCustomComboBox::CreateParams
TCustomComboBox See also
Initializes a window-creation parameter record.
virtual void __fastcall CreateParams(Controls::TCreateParams &Params);
Description
The CreateWnd method calls CreateParams to initialize the parameters it passes to
CreateWindowHandle. Override CreateParams to customize the way a combo box creates its
Windows representation.

TCustomComboBox::CreateWnd
TCustomComboBox See also
Creates a Windows control corresponding to the combo box.
virtual void __fastcall CreateWnd(void);
Description
CreateWnd first calls the inherited CreateWnd method, then initializes parameters specific to the
combo box control.

TCustomComboBox::DestroyWnd
TCustomComboBox See also
Destroys the combo box’s window handle.
virtual void __fastcall DestroyWnd(void);
Description
DestroyWnd saves the contents of the drop-down list before calling the inherited DestroyWnd
method.

TCustomComboBox::DrawItem
TCustomComboBox See also
Triggers the OnDrawItem event.
virtual void __fastcall DrawItem(int Index, const Windows::TRect &Rect,
TOwnerDrawState State);

Description
DrawItem is the protected implementation method for the OnDrawItem event. The combo box
calls DrawItem for each item in its list, passing the index of the item and the state (odSelected,
odGrayed, odDisabled, odChecked, or odFocused). If there is an event handler attached to
OnDrawItem, the DrawItem method simply calls the event handler. If there is no event handler
attached, DrawItem fills the rectangle passed in Rect and draws any text associated with the
indexed item, ignoring the State parameter.

TCustomComboBox::DropDown
TCustomComboBox See also
Triggers the OnDropDown event.
virtual void __fastcall DropDown(void);
Description
DropDown is the protected implementation method for the OnDropDown event. This method
does nothing except call any event handler attached to OnDropDown. To perform additional
processing, override DropDown.

TCustomComboBox::MeasureItem
TCustomComboBox See also
Triggers the OnMeasureItem event.
virtual void __fastcall MeasureItem(int Index, int &Height);
Description
MeasureItem is the protected implementation method for the OnMeasureItem event. This
method does nothing except call any event handler attached to OnMeasureItem. To perform
additional processing, override MeasureItem.

TCustomComboBox::SelectAll
TCustomComboBox See also Example
Selects the entire block of text in the edit box.
void __fastcall SelectAll(void);
Description
SelectAll selects (highlights) all the text in the edit box. To select only part of the text, use the
SelStart and SelLength properties.

TCustomComboBox::SetStyle
TCustomComboBox See also
Sets the Style and ControlStyle properties.
virtual void __fastcall SetStyle(TComboBoxStyle Value);
Description
SetStyle sets the Style property to the value specified by Value. It then adds csFixedHeight to
ControlsStyle, or, if Stye is csSimple, removes csFixedHeight. Finally, SetStyle destroys and
recreates the combo box’s window handle.

TCustomComboBox::TCustomComboBox
TCustomComboBox
Creates and initializes a TCustomComboBox instance.
__fastcall virtual TCustomComboBox(Classes::TComponent* AOwner);
Description
Call TCustomComboBox to generate a combo box at runtime.

TCustomComboBox::WndProc
TCustomComboBox See also
Receives and screens messages for the combo box.
virtual void __fastcall WndProc(Messages::TMessage &Message);
Description
The WndProc method screens each message before passing it to Dispatch, which then
determines which method handles the message.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TCustomComboBox example
TCustomComboBox

TCustomControl
Hierarchy Properties Methods See also
The TCustomControl component is the abstract base class from which to derive windowed
controls that require the support of a Canvas for drawing complex visual images.
Header
vcl/controls.hpp
Description
Standard windowed controls already "know" how to display themselves, because they are part of
Windows. Thus, a button or a check box component descends directly from TWinControl. When
creating original windowed controls that do not correspond to standard Windows components,
derive them from TCustomControl, rather than directly from TWinControl. TCustomControl
makes drawing original controls easier by providing a Canvas property to manage the drawing
surface and a virtual Paint method that is called to respond to WM_PAINT messages.
When creating custom controls that don’t need to receive input focus, derive them from
TGraphicControl instead of TCustomControl, to avoid the overhead associated with being a
windowed control. Painting a windowed control is slower than painting a graphic control.

TCustomControl properties
TCustomControl Alphabetically Legend

In TCustomControl
Canvas

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomControl properties
TCustomControl By object Legend

Align
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
Left
Name

Owner
Parent
ShowHint

Showing
TabOrder
TabStop

Tag
Top
Visible
Width

TCustomControl::Canvas
TCustomControl See also
The Canvas property is a TCanvas object that presents a drawing surface for the control to draw
on.
__property Graphics::TCanvas* Canvas;
Description
Use the properties of the TCanvas object to draw or paint on the surface of the control. Canvas
encapsulates a Windows device context, providing all the tools and methods needed for drawing
and painting.
Canvas is a protected property that is usually redeclared as public in descendants of
TCustomControl.

TCustomControl methods
TCustomControl Alphabetically Legend

In TCustomControl
~TCustomControl

Paint
PaintWindow
TCustomControl

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent

HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomControl methods
TCustomControl By object Legend

~TCustomControl
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance

Paint
PaintTo
PaintWindow

Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TCustomControl
UpdateControlState
Update

TCustomControl::~TCustomControl
TCustomControl See also
~TCustomControl frees the memory associated with the TCustomControl object. Do not call ~
TCustomControl directly. Instead, use the delete keyword on the object, which causes ~
TCustomControl to be invoked automatically.
__fastcall virtual ~TCustomControl(void);

TCustomControl::TCustomControl
TCustomControl See also
The TCustomControl method is the constructor for TCustomControl.
__fastcall virtual TCustomControl(Classes::TComponent* AOwner);
Description
The TCustomControl method constructs and initializes a new custom control and inserts the
newly-constructed control into its owner, as specified by the AOwner parameter, by calling that
owner's InsertComponent method.
TCustomControl creates the canvas for the custom control after calling the inherited constructor.
Nearly every kind of control overrides TCustomControl to initialize its unique properties. When
overriding the TCustomControl method, always call the inherited TCustomControl method first,
then proceed with the component's initialization.

TCustomControl::Paint
TCustomControl See also
The Paint method renders the image of a custom control.
virtual void __fastcall Paint(void);
Description
Override the Paint method to specify how the image of the control should be drawn.
The Paint method for TCustomControl does nothing other than provide an interface for a method
that responds to WM_PAINT messages. Paint is called by the PaintWindow method, after that
method has supplied the Canvas with the handle to a device context. When creating a custom
control, always override Paint to draw the image of the control.

TCustomControl::PaintWindow
TCustomControl See also
The PaintWindow method provides a device context to the canvas and renders the image of the
control by calling the Paint method.
virtual void __fastcall PaintWindow(HDC DC);
Description
Override PaintWindow to provide additional responses to the WM_PAINT message.
When a custom controls receives a WM_PAINT message, the PaintWindow method responds.
PaintWindow provides a Windows device context for the canvas, calls the Paint method, and
finally removes the device context. Override the Paint method to draw the image of the control.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TCustomControl example
TCustomControl

TCustomDBGrid
Hierarchy Properties Methods Events See also
TCustomDBGrid is the abstract base class for grid controls that display the records from a
dataset in a tabular format.
Header
vcl/dbgrids.hpp
Description
TCustomDBGrid introduces new properties, events, and methods to expand the capabilities of
TCustomGrid for displaying the fields from a dataset. At runtime, users can manipulate
TCustomDBGrid objects using the TDBNavigator object.
Do not create instances of TCustomDBGrid. Use TCustomDBGrid as a base class when
declaring grid objects that display information from datasets. Properties and methods of
TCustomDBGrid provide basic behavior that descendent classes inherit as well as behavior that
components can override to customize their behavior.

TCustomDBGrid properties
TCustomDBGrid Alphabetically Legend

In TCustomDBGrid
Columns

DataLink
DataSource
DefaultDrawing

FieldCount
Fields
IndicatorOffset
LayoutLock

Options
ReadOnly
SelectedField
SelectedIndex

SelectedRows
TitleFont

UpdateLock
Derived from TCustomGrid

EditorMode
Derived from TWinControl

Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
ParentWindow

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ParentColor
ShowHint
Top

Visible
Width
WindowProc

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo

Owner
Tag

TCustomDBGrid properties
TCustomDBGrid By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Columns

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor

DataLink
DataSource
DefaultDrawing
DesignInfo
EditorMode
Enabled

FieldCount
Fields
Handle

Height
HelpContext
Hint

IndicatorOffset
LayoutLock

Left
Name
Options

Owner
ParentColor
Parent
ParentWindow
ReadOnly
SelectedField
SelectedIndex

SelectedRows
ShowHint

Showing
TabOrder
TabStop
Tag
TitleFont
Top

UpdateLock
Visible
Width
WindowProc

TCustomDBGrid::Columns
TCustomDBGrid See also
TColumns describes the display attributes and field bindings of the columns in the
TCustomDBGrid object.
__property TDBGridColumns* Columns;
Description
Use Columns to read or set the field bindings and display attributes of the columns in the data-
aware grid. Columns is an indexed collection of TColumn objects. Use the properties of the
TColumn objects to specify the display attributes or field bindings of individual columns in the
grid. The field binding of a column designates a field within the dataset specified by the
DataSource property.
Columns can be set at design time through the Columns editor, or programmatically at runtime.

TCustomDBGrid::DataLink
TCustomDBGrid See also
DataLink helps the data-aware grid manage its link to the data source and respond to data
events.
__property TGridDataLink* DataLink;
Description
Applications should not need to use the DataLink property. It is exposed as a protected method
so that component writers can create data grids that use descendants of TGridDataLink to
respond to additional data events.
DataLink helps TCustomDBGrid to
• Resolve the field bindings specified by Columns with the fields in the dataset.
• Respond to changes in the values of fields.
• Respond to changes in record currency.
• Respond to changes in the editing state of the dataset.
• Keep track of unposted edits and discard or post them as appropriate.

TCustomDBGrid::DataSource
TCustomDBGrid See also
DataSource identifies the link to the dataset where the data-aware grid finds its data.
__property Db::TDataSource* DataSource;
Description
Set DataSource to the TDataSource object that links to the dataset where the data-aware grid
should fetch its data. DataSource allows the data-aware grid to read from, write to, and navigate
around the dataset, while maintaining record currency with other data-aware objects that use the
same data source.

TCustomDBGrid::DefaultDrawing
TCustomDBGrid See also Example
DefaultDrawing indicates whether the cells in the data-aware grid are drawn automatically, or if
the application provides customized painting using the OnDrawColumnCell event.
__property bool DefaultDrawing;
Description
Set DefaultDrawing to true to allow the data-aware grid to draw the data in the cells of the grid
automatically. Set DefaultDrawing to false to turn off the default drawing when providing
customized painting in an OnDrawColumnCell event handler or an OnDrawDataCell event
handler.
When DefaultDrawing is true, the data-aware grid fetches the data for each cell from the
appropriate entry in the Fields array, and writes it to the cell. It then draws the focus rectangle if
the cell has focus, or if the cell is selected and the Options property includes
dgAlwaysShowSelection.
When DefaultDrawing is false, the data-aware grid draws the appropriate background color on
the cell and sets up the brush and font described by the appropriate TColumn object. However,
the value of the field is not written to the cell, and no focus rectangle is drawn.

TCustomDBGrid::FieldCount
TCustomDBGrid See also
FieldCount is the number of fields (columns) displayed in the grid.
__property int FieldCount;
Description
Use FieldCount to iterate through all the field components indexed by the Fields property.
FieldCount may differ from the number of fields in the underlying data set, because the grid may
contain calculated fields, and not all fields in the data set are necessarily shown in the grid.
Individual fields are removed and calculated fields are added using the Columns editor at design
time.
FieldCount is the same as the number of columns at runtime. At design time, the grid may
contain empty columns.

TCustomDBGrid::Fields
TCustomDBGrid See also
Fields is an indexed array of field components that correspond to the columns of the data-aware
grid.
__property Db::TField* Fields[int FieldIndex];
Description
Use Fields to gain direct access to the field component in the dataset for a particular column in
the grid. The field for the first data column is obtained using an Index of 0, the field for the
second data column using an Index of 1, and so on. The range for Index is 0 to FieldCount - 1.
The first data column in the grid may not be the same as the first column in the grid. If Options
includes dgIndicator, the first column in the grid will be a non-scrolling columns that contains the
current row indicator.
The individual field components in Fields can be used to obtain information such as the value of
the field on the current record, its preferred display width, or the string to draw when displaying
or editing the field. Use the field component to write values directly to the dataset without using
the editor in the cell.
Note
If the column in the grid represents a calculated field, there is no field component for that column
in the dataset. Fields returns NULL when the Index specifies the column that contains a
calculated field. To obtain the field component for a calculated field, use the GetColField method.

TCustomDBGrid::IndicatorOffset
TCustomDBGrid See also
IndicatorOffset is the index of the first column in the grid that contains data.
__property unsigned char IndicatorOffset;
Description
Use IndicatorOffset to convert between the positions of the columns in the Columns property
and the columns drawn on the data-aware grid. IndicatorOffset is 1 if the Options property
includes dgIndicator, because the first column of the grid is used for the current row indicator.
IndicatorOffset is 0 if all columns contain data.

TCustomDBGrid::LayoutLock
TCustomDBGrid See also
LayoutLock is the number of times the BeginLayout method has been called without an
EndLayout or CancelLayout call.
__property unsigned char LayoutLock;
Description
Use LayoutLock to determine when the column bindings change. Whenever a column width or
binding changes or the fields in the data source change, the BeginLayout method is called.
BeginLayout increments LayoutLock to keep track of the fact that the column bindings are
changing. When changes are complete, the EndLayout method is called. EndLayout decrements
LayoutLock. When LayoutLock returns to 0, the data-aware grid knows that all changes are
complete, and the Fields and Columns properties are updated.

TCustomDBGrid::Options
TCustomDBGrid
Options specifies various display and behavioral properties of the data-aware grid.
__property TDBGridOptions Options;
Description
Set Options to include the desired properties for the data-aware grid. Options is a set drawn from
the following values:
Value Meaning

dgEditing The user can edit data using the grid. dgEditing is ignored if Options includes
dgRowSelect.

dgAlwaysShowEditor The grid is always in edit mode. That is, the user does not have to press Enter or F2
before editing the contents of a cell. dgAlwaysShowEditor does nothing
unless dgEditing is also included in Options. dgAlwaysShowEditor is
ignored if Options includes dgRowSelect.

dgTitles Titles appear at the top of the columns in the grid.
dgIndicator A small pointer appears in the first column to indicate which row is current.
dgColumnResize Columns that are bound to fields can be resized or moved.
dgColLins Lines appear between columns in the grid.
dgRowLines Lines appear between the rows of the grid.
dgTabs The user can navigate through the grid using the Tab and Shift+Tab keys.
dgRowSelect The user can select an entire row, as well as selecting individual cells. If Options

includes dgRowSelect, dgEditing and dgAlwaysShowEditor are ignored.
dgAlwaysShowSelectionThe selected cell displays the focus rectangle even when the grid does not have

focus.
dgConfirmDelete A message box appears, asking for confirmation, when the user types Ctrl+Delete to

delete a row in the grid.
dgCancelOnExit When the user exits the grid from an inserted record to which the user made no

modifications, the inserted record is not posted to the dataset. This prevents the
inadvertent posting of empty records.

dgMultiSelect More than one row in the grid can be selected at a time.
See also
ReadOnly property, SelectedIndex property, SelectedRows property

TCustomDBGrid::ReadOnly
TCustomDBGrid See also
ReadOnly indicates whether the grid is used for display only, or whether the user can edit data
using the grid.
__property bool ReadOnly;
Description
Set ReadOnly to true to prevent users from changing the data in the dataset. Set ReadOnly to
false to allow users to edit data using the grid.
When ReadOnly is true, users can not use the Insert key to insert a new row in the grid or use
the Down Arrow key to add a row to the end of the grid.

TCustomDBGrid::SelectedField
TCustomDBGrid See also
SelectedField is the field component for the currently selected cell in the grid.
__property Db::TField* SelectedField;
Description
Set SelectedField to move focus to a particular field in the grid. Read SelectedField to obtain
access to the field component for the currently selected cell. If there is not currently selected cell,
SelectedField is NULL. For example, when an entire row is selected, SelectedField is NULL.

TCustomDBGrid::SelectedIndex
TCustomDBGrid See also
SelectedIndex is the index of the currently selected column in the Columns array.
__property int SelectedIndex;
Description
Set SelectedIndex to move focus to a column in the grid that is identified by position. Read
SelectedIndex to determine which column in the grid has focus. A value of 0 indicates the first
data column, 1 is the second data column, and so on. SelectedIndex is -1 if there is no currently
selected column.
If the Options property includes dgIndicator, the index of the data column given by SelectedIndex
will differ from the index of the physical column in the grid.
To access the field component for the selected column, use the SelectedField property.

TCustomDBGrid::SelectedRows
TCustomDBGrid See also
SelectedRows is a set of bookmarks to all the records in the dataset that correspond to rows
selected in the grid.
__property TBookmarkList* SelectedRows;
Description
Use the properties and methods of the TBookmarkList object returned by SelectedRows to
• Determine the number of rows in the grid that are selected.
• Determine whether the current record in the dataset is selected.
• Determine whether a particular record in the dataset is selected.
• Delete all selected rows from the dataset.
SelectedRows is only meaningful when the Options property includes dgRowSelect.
SelectedRows can only identify a single row unless the Options property includes dgMultiSelect.

TCustomDBGrid::TitleFont
TCustomDBGrid See also
TitleFont describes the font used to draw the column titles in the grid.
__property Graphics::TFont* TitleFont;
Description
Set TitleFont to change the font used to draw the column headings. TitleFont is only meaningful
if the Options property includes dgTitles.

TCustomDBGrid::UpdateLock
TCustomDBGrid See also
UpdateLock counts the number of times the BeginUpdate method is called without a
corresponding call to EndUpdate.
__property unsigned char UpdateLock;
Description
UpdateLock prevents the grid from repainting while the data in the grid changes. Whenever a
change is made that affects the data that is drawn in the grid, the BeginUpdate method is called.
BeginUpdate increments UpdateLock to keep track of the fact that the contents of the grid are
changing. When changes are complete, the EndUpdate method is called. EndUpdate
decrements UpdateLock.
When UpdateLock returns to 0, the data-aware grid can repaint its cells. When UpdateLock is
greater than 0, the grid defers repaints. UpdateLock prevents the grid from flickering when the
grid is resized or the user scrolls through the data.

TCustomDBGrid events
TCustomDBGrid Alphabetically Legend

In TCustomDBGrid
OnColEnter
OnColExit
OnColumnMoved
OnDrawColumnCell
OnDrawDataCell
OnEditButtonClick

TCustomDBGrid events
TCustomDBGrid By object Legend

OnColEnter
OnColExit
OnColumnMoved
OnDrawColumnCell
OnDrawDataCell
OnEditButtonClick

TCustomDBGrid::OnColEnter
TCustomDBGrid See also
OnColEnter occurs when focus moves to a new cell in the grid.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnColEnter;
Description
Write an OnColEnter event handler to take specific action when a new cell has just been
selected. Focus moves to a cell when
• The user navigates to the cell using the keyboard. For example, when the user uses the Tab

key, or the Home key.
• The user clicks the mouse button down in the cell.
• The SelectedField or SelectedIndex property is set.
Read the SelectedField or SelectedIndex property to determine which cell was just entered.

TCustomDBGrid::OnColExit
TCustomDBGrid See also
OnColExit occurs just before a cell in the grid loses input focus.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnColExit;
Description
Write an OnColExit event handler to take specific action when a cell is about to lose focus. For
example, use OnColExit to post edits to the underlying dataset when the user leaves a cell,
rather than waiting for the user to leave the record.
A cell loses focus when
• The user navigates out of the cell using the keyboard. For example, when the user presses

the Tab key or the Home key.
• The user clicks the mouse button down in another cell.
• The SelectedField or SelectedIndex property is set.
When the selected cell in the data-aware grid changes, first the OnColExit event occurs. Then
the values of SelectedField and SelectedIndex are updated. Finally the OnColEnter event
occurs. Thus, in an OnColExite event handler, the SelectedField or SelectedIndex property can
be used to determine which column is about to lose focus.

TCustomDBGrid::OnColumnMoved
TCustomDBGrid See also
OnColumnMoved occurs when the user moves a column using the mouse.
typedef void __fastcall (__closure *TMovedEvent)(System::TObject*
Sender, long FromIndex, long ToIndex)
;

__property Grids::TMovedEvent OnColumnMoved;
Description
Write an OnColumnMoved event handler to take specific action just after a column in the grid
has been moved. The FromIndex parameter gives the position the column previously occupied
in the Columns array. The ToIndex parameter gives the position the column now occupies.
OnColumnMoved can only occur when the Options property includes dgColumnResize.

TCustomDBGrid::OnDrawColumnCell
TCustomDBGrid See also
OnDrawColumnCell occurs when the grid needs to paint a cell.
typedef Set<Grids_3, gdSelected, gdFixed> TGridDrawState;
typedef void __fastcall (__closure *TDrawColumnCellEvent)(System::
TObject* Sender, const Windows::TRect &Rect,
int DataCol, TColumn* Column, Grids::TGridDrawState State);

__property TDrawColumnCellEvent OnDrawColumnCell;
Description
Write an OnDrawColumnCell event handler to provide customized drawing for the data in the
cells of the grid. Draw on the cell using the methods of the Canvas property. The Rect parameter
indicates the location of the cell on the canvas. The DataCol parameter is the index of the
column in the Columns array. The Column parameter is the TColumn object that describes the
display attributes and field binding for the cell. The State parameter indicates whether the cell
has input focus, whether the cell is selected, and whether the cell is a fixed (non-data) cell such
as a column header.
An OnDrawColumnCell event handler can call the DefaultDrawColumnCell method to instruct
the data-aware grid to write the data value in the cell. The OnDrawColumnCell event handler can
augment the DefaultDrawColumnCell method to provide visual indications of selection and
focus. If the OnDrawColumnCell event handler does not use DefaultDrawColumnCell to draw the
text for the cell, use the GetFieldValue method to get the text that should be displayed in the cell.
If DefaultDrawing is true, the data will already be drawn in the cell before the
OnDrawColumnCell event, and the grid draws a focus rectangle around selected cells after the
OnDrawColumnCell event.
Note
If the Columns property has a State property of csDefault, the OnDrawDataCell event occurs
before the OnDrawColumnCell. The OnDrawDataCell event is obsolete, and only included for
backward compatibility. Do not set both an OnDrawDataCell event handler and an
OnDrawColumnCell event handler.

TCustomDBGrid::OnDrawDataCell
TCustomDBGrid See also
OnDrawDataCell occurs when the grid needs to paint a cell if the State property of Columns is
csDefault.
typedef Set<Grids_3, gdSelected, gdFixed> TGridDrawState;
typedef void __fastcall (__closure *TDrawDataCellEvent)(System::
TObject* Sender, const Windows::TRect &Rect,
Db::TField* Field, Grids::TGridDrawState State);

__property TDrawDataCellEvent OnDrawDataCell;
Description
Do not write an OnDrawDataCell event handler. OnDrawDataCell is obsolete and included for
backward compatibility. Instead, write an OnDrawColumnCell event handler.

TCustomDBGrid::OnEditButtonClick
TCustomDBGrid See also
OnEditButtonClick occurs when the user presses the ellipsis button in a grid column.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnEditButtonClick;
Description
Write an OnEditButtonClick event handler to bring up an appropriate list or dialog when the user
presses the ellipsis button in a grid cell. The OnEditButtonClick event handler can set the value
of the field based on the user response to the list or dialog. Use the SelectedField property to
access the TField component whose value should be set.

TCustomDBGrid methods
TCustomDBGrid Alphabetically Legend

In TCustomDBGrid
~TCustomDBGrid

AcquireLayoutLock
BeginLayout
BeginUpdate
CancelLayout
CanEditAcceptKey
CanEditModify
CanEditShow
ColEnter
ColExit
ColumnMoved
ColWidthsChanged
CreateColumns
CreateEditor
CreateWnd
DataToRawColumn
DefaultDrawColumnCell
DefaultDrawDataCell
DeferLayout
DefineFieldMap
DrawCell
DrawColumnCell
DrawDataCell
EditButtonClick
EndLayout
EndUpdate
GetColField
GetEditLimit
GetEditMask
GetEditText
GetFieldValue
HighlightCell
KeyDown
KeyPress
LayoutChanged
LinkActive
Loaded
MouseDown
Notification
RawToDataColumn
Scroll
SetColumnAttributes
SetEditText
StoreColumns
TCustomDBGrid
TimedScroll
ValidFieldIndex

Derived from TCustomGrid
MouseUp

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused

GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Dispatch
FieldAddress
Free

FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomDBGrid methods
TCustomDBGrid By object Legend

~TCustomDBGrid
AcquireLayoutLock
Assign
BeginDrag
BeginLayout
BeginUpdate
BringToFront
Broadcast
CancelLayout
CanEditAcceptKey
CanEditModify
CanEditShow
CanFocus
ClassInfo

ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen

ColEnter
ColExit
ColumnMoved
ColWidthsChanged
ContainsControl
ControlAtPos
CreateColumns
CreateEditor
CreateWnd
DataToRawColumn
DefaultDrawColumnCell
DefaultDrawDataCell
DeferLayout
DefineFieldMap
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
DrawCell
DrawColumnCell
DrawDataCell
EditButtonClick
EnableAlign
EndDrag
EndLayout
EndUpdate
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetColField
GetEditLimit
GetEditMask
GetEditText
GetFieldValue

GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
HighlightCell
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
KeyDown
KeyPress
LayoutChanged
LinkActive
Loaded
MethodAddress
MethodName
MouseDown
MouseUp
NewInstance
Notification
PaintTo
Perform
RawToDataColumn

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy

Scroll
SendToBack
SetBounds
SetColumnAttributes
SetEditText
SetFocus
SetTextBuf
Show
StoreColumns

TCustomDBGrid
TimedScroll
UpdateControlState
Update
ValidFieldIndex

TCustomDBGrid::~TCustomDBGrid
TCustomDBGrid See also
~TCustomDBGrid frees the memory associated with the TCustomDBGrid object. Do not call ~
TCustomDBGrid directly. Instead, use the delete keyword on the object, which causes ~
TCustomDBGrid to be invoked automatically.
__fastcall virtual ~TCustomDBGrid(void);
Description
~TCustomDBGrid frees all the helper objects used by the grid.

TCustomDBGrid::AcquireLayoutLock
TCustomDBGrid See also
AcquireLayoutLock calls BeginLayout if the table is not currently being reformatted.
bool __fastcall AcquireLayoutLock(void);
Description
Applications cannot call this protected method. AcquireLayoutLock is called before recomputing
Columns when the fields in the dataset change or when the Columns property changes.
AquireLayoutLock returns true if the table is not already being laid out, to indicate that the
computation of Columns should proceed. AquireLayoutLock prevents the computation of
Columns from looping endlessly because of the changes that must occur during the
computation.

TCustomDBGrid::BeginLayout
TCustomDBGrid See also
BeginLayout increments the LayoutLock property when the column bindings or fields in the
dataset change.
void __fastcall BeginLayout(void);
Description
Applications cannot call this protected method. Data-aware grids call BeginLayout internally
before making changes to the Columns property or any of the individual TColumn objects in
Columns. Once the change is complete, the data-aware grid calls EndLayout. If the response to
the change must be cancelled or postponed, the grid calls CancelLayout.
Each call to BeingLayout increments the LayoutLock property. Each call to EndLayout or
CancelLayout decrements the LayoutLock property. If LayoutLock returns to 0 in a call to
EndLayout, the Fields property is updated to match both the bindings of the Columns property
and the fields available in the dataset. The Columns property is then updated in turn to match
the Fields property. This ensures that the Columns property matches both the specified column
bindings and the fields available in the dataset.

TCustomDBGrid::BeginUpdate
TCustomDBGrid See also
BeginUpdate increments the UpdateLock property when the data in the grid changes.
void __fastcall BeginUpdate(void);
Description
Applications cannot call this protected method. Data-aware grids call BeginUpdate internally
before making changes that affect the data that is drawn in the grid. Once the change is
complete, the data-aware grid calls EndUpdate, which decrements the UpdateLock property.
While UpdateLock is greater than 0, the grid does not repaint its cells. BeginUpdate and
EndUpdate prevent the grid from flickering when the grid is resized or the user scrolls through
the data.

TCustomDBGrid::CancelLayout
TCustomDBGrid See also
CancelLayout decrements the LayoutLock property.
void __fastcall CancelLayout(void);
Description
Applications can not call this protected method. Data-aware grids call CancelLayout internally
when postponing the recomputation of Columns.
Each call to BeingLayout increments the LayoutLock property. Each call to EndLayout or
CancelLayout decrements the LayoutLock property. If LayoutLock returns to 0 in a call to
CancelLayout, the Columns property is not updated. CancelLayout is called from the
DeferLayout method to decrement the LayoutLock and prevent the recomputation of Columns
until a more appropriate time.

TCustomDBGrid::CanEditAcceptKey
TCustomDBGrid See also
CanEditAcceptKey indicates whether the Key parameter can be entered into the current cell.
virtual bool __fastcall CanEditAcceptKey(char Key);
Description
Data-aware grids use CanEditAcceptKey internally to determine whether keys typed by the user
are valid for the field represented by the current cell. CanEditAcceptKey calls the IsValidChar
method of the field component associated with the column that has input focus.
CanEditAcceptKey provides a crude validation of keyboard input. More refined validation is
provided when the value in the cell is written to the record in the dataset, or by an edit mask.

TCustomDBGrid::CanEditModify
TCustomDBGrid See also
CanEditModify indicates whether the current column of the grid can be edited.
virtual bool __fastcall CanEditModify(void);
Description
Data-aware grids use CanEditModify internally to determine whether to allow the user to edit the
current cell. CanEditModify returns true if the field in the current column can be edited.
CanEditModify returns false if the field can not be edited. If the dataset is not in edit mode,
CanEditModify will attempt to put it in edit mode.
Note
CanEditModify returns false when the current field is a binary large object (BLOB) field. BLOB
fields can only be edited through the clipboard or by streaming.

TCustomDBGrid::CanEditShow
TCustomDBGrid See also
CanEditShow indicates whether the inplace edit control can be created to allow editing.
virtual bool __fastcall CanEditShow(void);
Description
TCustomDBGrid overrides the inherited method to prevent the inplace edit control from coming
up while the layout of the grid is being recomputed.
Grid controls call CanEditShow internally before creating the editor for a cell. CanEditShow is
called after the grid has determined that the field can be edited by calling CanEditModify.

TCustomDBGrid::ColEnter
TCustomDBGrid See also
ColEnter calls the OnColEnter event handler.
virtual void __fastcall ColEnter(void);
Description
Applications can not directly call ColEnter. It is exposed as a protected method so that
descendants can call the OnCellEnter event handler in response to other events or override the
response when a cell in the grid is selected.

TCustomDBGrid::ColExit
TCustomDBGrid See also
ColExit calls the OnColExit event handler.
virtual void __fastcall ColExit(void);
Description
Applications can not directly call ColExit. It is exposed as a protected method so that
descendants can call the OnColExit event handler in response to other events or override the
response when a cell in the grid loses focus.

TCustomDBGrid::ColumnMoved
TCustomDBGrid See also
ColumnMoved calls the OnColumnMoved event handler.
virtual void __fastcall ColumnMoved(long FromIndex, long ToIndex);
Description
Applications can not directly call ColumnMoved. It is exposed as a protected method so that
descendants can call the OnColumnMoved event handler in response to other events or override
the response after a column in the grid is moved.

TCustomDBGrid::ColWidthsChanged
TCustomDBGrid See also
ColWidthsChanged updates the column widths in the Columns property when the user resizes
the columns.
virtual void __fastcall ColWidthsChanged(void);
Description
Applications can not directly call ColWidthsChanged. It is called automatically when the user
resizes the columns in the grid. ColWidthsChanged overrides the inherited method to update the
column widths in the Columns property.

TCustomDBGrid::CreateColumns
TCustomDBGrid See also
CreateColumns creates the TDBGridColumns object that stores the column descriptors for the
grid.
virtual TDBGridColumns* __fastcall CreateColumns(void);
Description
Applications cannot call CreateColumns. It is exposed as a protected method so that component
writers can substitute a descendant of TDBGridColumns to manage the column descriptors of a
data-aware grid, and so that helper objects in the DBGrids unit can create a set of column
descriptors for a grid.

TCustomDBGrid::CreateEditor
TCustomDBGrid See also
CreateEditor creates the inplace editor that allows the cells of the grid to be edited.
virtual Grids::TInplaceEdit* __fastcall CreateEditor(void);
Description
CreateEditor overrides the inherited method to create a data-aware descendant of TInplaceEdit.

TCustomDBGrid::CreateWnd
TCustomDBGrid See also
CreateWnd creates the window used to display the data-aware grid.
virtual void __fastcall CreateWnd(void);
Description
CreateWnd overrides the inherited method to set up the relationship between the visual display
and the data source after the window is created.

TCustomDBGrid::DataToRawColumn
TCustomDBGrid See also
DataToRawColumn converts a column index in the Columns property to the index of the
corresponding column in the visual display.
int __fastcall DataToRawColumn(int ACol);
Description
Applications can not call this protected method. It is used internally to allow the data-aware grid
to adjust to the presence or absence of the column that contains the row indicator.

TCustomDBGrid::DefaultDrawColumnCell
TCustomDBGrid See also
DefaultDrawColumnCell draws the text in a column cell.
void __fastcall DefaultDrawColumnCell(const Windows::TRect &Rect, int
DataCol, TColumn* Column, Grids::TGridDrawState State);

Description
Call DefaultDrawColumnCell from an OnDrawColumnCell event handler to lookup up the text
representation of a field and write it to the cell. DefaultDrawColumnCell does exactly what the
grid does when the DefaultDrawing property is true, except it never draws a focus rectangle on
selected cells.
The Rect parameter is the position of the cell on the canvas. The DataCol parameter is the index
of the column in the Columns array. The Column parameter is the TColumn object that describes
the display attributes and field binding for the cell. The State parameter indicates whether the
cell has input focus, whether the cell is selected, and whether the cell is a fixed (non-data) cell
such as a column header.

TCustomDBGrid::DefaultDrawDataCell
TCustomDBGrid See also
DefaultDrawDataCell draws the text in a column cell.
void __fastcall DefaultDrawDataCell(const Windows::TRect &Rect, Db::
TField* Field, Grids::TGridDrawState State);

Description
Call DefaultDrawDataCell from an OnDrawDataCell event handler to lookup up the text
representation of a field and write it to the cell. Unlike what the grid draws when the
DefaultDrawing property is true, DefaultDrawDataCell gets the alignment for the text from the
field component rather than the column descriptor, and it never draws a focus rectangle on
selected cells.
The Rect parameter gives the position of the cell on the canvas. The Field parameter gives the
field component that provides the data and alignment for the cell. The State parameter indicates
whether the cell has input focus, whether the cell is selected, and whether the cell is a fixed
(non-data) cell such as a column header.

TCustomDBGrid::DeferLayout
TCustomDBGrid See also
DeferLayout decrements the LayoutLock property and posts a message to the grid to trigger a
new layout sequence at a more appropriate time.
void __fastcall DeferLayout(void);
Description
Applications cannot call this protected method. Data-aware grids call DeferLayout internally to
postpone the recomputation of the Columns property after the dataset changes when it is
inappropriate to recompute columns immediately.
DeferLayout calls CancelLayout to decrement the LayoutLock property which was incremented
in response to the change in the dataset. It then posts a message to the grid which will trigger
another layout attempt at a later point in time. When the message is received, the grid calls
BeginLayout and then either EndLayout or DeferLayout, depending on whether it is an
appropriate time to proceed with the computation of Columns.

TCustomDBGrid::DefineFieldMap
TCustomDBGrid See also
DefineFieldMap builds the Fields array from the Columns property and the data source.
virtual void __fastcall DefineFieldMap(void);
Description
Applications cannot call this protected method. DefineFieldMap rebuilds the Fields array to
reflect the fields from the data source that correspond to the columns in the Columns property.
After calling DefineFieldMap, the Columns property should be updated to use the field
components in the Fields array. This ensures that the Columns property reflects any changes
imposed by the dataset.

TCustomDBGrid::DrawCell
TCustomDBGrid See also
DrawCell draws the cell specified by the ACol and ARow parameters.
virtual void __fastcall DrawCell(long ACol, long ARow, const Windows::
TRect &ARect, Grids::TGridDrawState AState);

Description
DrawCell overrides the inherited method to use the Columns property when drawing cells in the
grid.
DrawCell sets up the font and brush and paints the background of the cell. If the DefaultDrawing
property is true, DrawCell fetches the data for the cell and writes it to the position described by
the ARect parameter. Whether DefaultDrawing is true or false, DrawCell generates the
OnDrawDataCell and OnDrawColumnCell events. Finally, if DefaultDrawing is true and either the
cell has focus or the cell is selected and Options includes dgAlwaysShowSelection, DrawCell
draws a focus rectangle around the cell.

TCustomDBGrid::DrawColumnCell
TCustomDBGrid See also
DrawColumnCell calls the OnDrawColumnCell event handler.
virtual void __fastcall DrawColumnCell(const Windows::TRect &Rect, int
DataCol, TColumn* Column, Grids::TGridDrawState State);

Description
Applications can not call DrawColumnCell directly. It is exposed as a protected method so that
descendants can call the OnDrawColumnCell event handler or override the method to block the
event.

TCustomDBGrid::DrawDataCell
TCustomDBGrid See also
DrawDataCell calls the OnDrawDataCell event handler.
virtual void __fastcall DrawDataCell(const Windows::TRect &Rect, Db::
TField* Field, Grids::TGridDrawState State);

Description
Applications cannot call DrawDataCell directly. It is exposed as a protected method so that
descendants can call the OnDrawDataCell event handler or override the method to block the
event.

TCustomDBGrid::EditButtonClick
TCustomDBGrid See also
EditButtonClick calls the OnEditButtonClick event handler.
virtual void __fastcall EditButtonClick(void);
Description
Applications cannot call EditButtonClick directly. It is exposed as a protected method so that
descendants can call the OnEditButtonClick event handler or override the method to block the
event.

TCustomDBGrid::EndLayout
TCustomDBGrid See also
EndLayout decrements the LayoutLock property and recomputes the Columns property if
LayoutLock reaches 0.
void __fastcall EndLayout(void);
Description
Applications cannot call this protected method. Data-aware grids call Endlayout internally after
changes to the Columns property or the dataset. EndLayout decrements the LayoutLock
property which was previously incremented by BeingLayout before the Columns property was
changed or when notification of the change to the dataset was received.
If LayoutLock returns to 0, EndLayout updates the Fields property to match both the bindings of
the Columns property and the fields available in the dataset. The Columns property is then
updated in turn to match the Fields property. This ensures that the Columns property matches
both the specified column bindings and the fields available in the dataset.

TCustomDBGrid::EndUpdate
TCustomDBGrid See also
EndUpdate decrements the UpdateLock property.
void __fastcall EndUpdate(void);
Description
Applications can not call this protected method. Data-aware grids call EndUpdate internally after
making changes that affect the data that is drawn in the grid. EndUpdate returns the UpdateLock
to the state it was in before the BeginUpdate method was called at the start of the changes.
While UpdateLock is greater than 0, the grid does not repaint its cells. When UpdateLock returns
to 0, painting is reenabled. BeginUpdate and EndUpdate prevent the grid from flickering when
the grid is resized or the user scrolls through the data.

TCustomDBGrid::GetColField
TCustomDBGrid See also
GetColField returns the field component that represents the binding of a specified column.
Db::TField* __fastcall GetColField(int DataCol);
Description
Call GetColField to obtain the field component for a column in the data-aware grid. The DataCol
parameter is the index of the column in the Columns property, where 0 is the first column, 1 is
the second column, and so on.
Unlike the Fields property, GetColField will return field components for columns that do not
represent fields in the dataset, such as calculated fields.

TCustomDBGrid::GetEditLimit
TCustomDBGrid See also
GetEditLimit limits the number of characters that can be typed into cells representing string
fields.
virtual int __fastcall GetEditLimit(void);
Description
GetEditLimit is called by the inplace editor to determine if a limit should be placed on the number
of characters a user can type into a cell. GetEditLimit sets no limits except when the selected cell
represents a string field.

TCustomDBGrid::GetEditMask
TCustomDBGrid See also
GetEditMask returns the input mask associated with the field for the selected cell.
virtual System::AnsiString __fastcall GetEditMask(long ACol, long ARow)
;

Description
The inplace editor calls GetEditMask to obtain any input mask associated with the field binding
of the indicated cell. GetEditMask returns the EditMask property of the field component from the
Columns array.
The ACol and ARow parameters indicate the index of the row and column of the cell in the grid.
The ACol parameter is not the same as the index of the column in the Columns array if the
Options property includes dgIndicator.

TCustomDBGrid::GetEditText
TCustomDBGrid See also
GetEditText returns the value of the indicated cell formatted for editing.
virtual System::AnsiString __fastcall GetEditText(long ACol, long ARow)
;

Description
The inplace editor calls GetEditText to obtain the text for the indicated cell. GetEditText locates
the field component for the cell from the Columns array and returns its value formatted for
editing.
The ACol and ARow parameters indicate the index of the row and column of the cell in the grid.
The ACol parameter is the “raw” column index, which is not the same as the index of the
column in the Columns array if the Options property includes dgIndicator.
Note
The string returned by GetEditText may differ from the string returned by the GetFieldValue
method if the field formats its value differently for editing and display.

TCustomDBGrid::GetFieldValue
TCustomDBGrid See also
GetFieldValue returns the value of the indicated cell formatted for display.
System::AnsiString __fastcall GetFieldValue(int ACol);
Description
Call GetFieldValue to obtain the text that should be displayed in a cell. For example, an
OnDrawColumnCell event handler can use GetFieldValue to obtain the text for the cell to draw it
in a special way, rather than calling DefaultDrawColumnCell.
The ACol parameter is the index of the column in the columns array. If the Options property
includes dgIndicator, this is not the same as the index of the column in the physical display.

TCustomDBGrid::HighlightCell
TCustomDBGrid See also
HighlightCell indicates whether the cell indicated by the DataCol and DataRow parameters
should be highlighted when it is drawn.
virtual bool __fastcall HighlightCell(int DataCol, int DataRow, const
System::AnsiString Value, Grids::TGridDrawState AState);

Description
Applications can not call this protected method. It is called internally by the DrawCell method to
determine whether the indicated cell should be highlighted. HighlightCell returns true if the cell
has focus, the cell is selected and Options includes dgAlwaysShowSelection, or the cell is in a
selected row and Options includes dgRowSelect.

TCustomDBGrid::KeyDown
TCustomDBGrid See also
KeyDown provides special processing when the user presses down on a key.
virtual void __fastcall KeyDown(unsigned short &Key, Classes::
TShiftState Shift);

Description
Applications can not call KeyDown. It is called automatically when the user presses a key, before
the KeyPress method is called.
KeyDown generates an OnKeyDown event and then responds to the following keystrokes:
Keystroke Response

UpArrow Move to the previous row. If Options includes dgRowSelect, select it.
Ctrl+UpArrow Move to the first row in the grid. Deselect any selected rows.
DownArrow Move to the next row. If Options includes dgRowSelect, select it.
Ctrl+DownArrow Move to the last row in the grid. Deselect any selected rows.
PageUp Move up by the number of records shown in the grid. Deselect any selected rows.
Ctrl+PageUp Move to the first row in the grid. Deselect any selected rows.
PageDown Move down by the number of records shown in the grid. Deselect any selected rows.
LeftArrow Move left one column. If Options includes dgRowSelect, move to the previous

row without selecting it.
Ctrl+LeftArrow Move to the first column in the current row.
RightArrow Move right one column. If Options includes dgRowSelect, move to the next

row without selecting it.
Ctrl+RightArrow Move to the last column in the current row.
Home Move to the first column of the current row. If Options includes dgRowSelect or

the grid has only one column, move to the first record in the dataset.
Deselect any selected rows.

Ctrl+Home Move to the first record in the dataset. Deselect any selected rows.
End Move to the last column of the current row. If Options includes dgRowSelect or

the grid has only one column, move to the last record in the dataset.
Deselect any selected rows.

Ctrl+End Move to the last record in the dataset. Deselect any selected rows.
Tab Move to the next cell in the grid.
Shift+Tab Move to the previous cell in the grid.
Ctrl+Delete Delete the current selection.
Insert Insert a new row above the current one, and move to it. Deselect any selected rows.
Escape Cancel any unposted edits. Deselect any selected rows.
F2 Put the grid in edit mode.

TCustomDBGrid::KeyPress
TCustomDBGrid See also
KeyPress overrides the inherited method to post edits to the database when the user presses
Return.
virtual void __fastcall KeyPress(char &Key);
Description
When the user presses a key, first the KeyDown method is called, then the KeyPress method,
and finally the KeyUp method when the user releases the key. KeyPress writes any pending
edits to the database and calls the inherited KeyPress method.

TCustomDBGrid::LayoutChanged
TCustomDBGrid See also
LayoutChanged recomputes the Columns property.
virtual void __fastcall LayoutChanged(void);
Description
Applications cannot call this protected method. It is called automatically in response to changes
the affect the layout of the columns. These include
• Changes to the fields in the dataset.
• Changes in the Options property that affect the layout.
• Changes to the TitleFont property.
LayoutChanged calls AcquireLayoutLock to initiate the changes to Columns. If
AcquireLayoutLock does not indicate that the call to LayoutChanged is recursive,
LayoutChanged calls EndLayout to perform the actual computation.

TCustomDBGrid::LinkActive
TCustomDBGrid See also
LinkActive recomputes the Columns property and the vertical scrollbar of the grid.
virtual void __fastcall LinkActive(bool Value);
Description
Applications can not call this protected method. It is called automatically when the dataset is
opened. LinkActive calls LayoutChanged to recompute the Columns property, and adjusts the
vertical scrollbar for the data in the dataset.

TCustomDBGrid::Loaded
TCustomDBGrid See also
Loaded sets up the Columns property once the data grid and all its child components have been
loaded.
virtual void __fastcall Loaded(void);
Description
Applications can not call this protected method. Loaded overrides the inherited method to lay out
the grid once all of its parts have been loaded.

TCustomDBGrid::MouseDown
TCustomDBGrid See also
MouseDown provides special processing when the user clicks on the mouse.
virtual void __fastcall MouseDown(Controls::TMouseButton Button,
Classes::TShiftState Shift, int X, int Y);

Description
MouseDown is called automatically when the user presses the mouse button. If the mouse is
pressed in the row or column resize region of the grid, MouseDown posts any pending edits and
calls the inherited method to handle the resize. When Options includes dgRowSelect,
MouseDown selects the row that received the click, or toggles its selection state if the Ctrl key is
pressed. If the mouse is clicked in a data cell, MouseDown tries to put the grid into edit mode.

TCustomDBGrid::Notification
TCustomDBGrid See also
Notification adjusts the grid when any of its child components are destroyed.
virtual void __fastcall Notification(Classes::TComponent* AComponent,
Classes::TOperation Operation);

Description
After calling the inherited method, Notification
• Checks if the pop-up menu for any of its columns is going away, and if so, resets the

PopupMenu property of the column object.
• Checks if the data source is going away, and if so, sets the DataSource property to NULL.
• Checks if any of the field components associated with its columns is going away, and if so,

removes the column from the layout.

TCustomDBGrid::RawToDataColumn
TCustomDBGrid See also
RawToDataColumn converts the index of a column in the visual display to the corresponding
index in the Columns property.
int __fastcall RawToDataColumn(int ACol);
Description
Applications can not call this protected method. It is used internally to allow the data-aware grid
to adjust to the presence or absence of the column that contains the row indicator.

TCustomDBGrid::Scroll
TCustomDBGrid See also
Scroll updates the image of the grid to reflect a new record position.
virtual void __fastcall Scroll(int Distance);
Description
Scroll is called in response to changes in the current record in the dataset. Scroll updates the
image in the grid, scrolling the data if necessary.

TCustomDBGrid::SetColumnAttributes
TCustomDBGrid See also
SetColumnAttributes sets the column widths and disables tabbing to cells that can’t be edited.
virtual void __fastcall SetColumnAttributes(void);
Description
Applications can not call this protected method. It is called automatically when the Columns
property is recomputed, to adjust the column widths and ensure that the user can only tab to
fields that can be edited.

TCustomDBGrid::SetEditText
TCustomDBGrid See also
SetEditText updates the edited version of the current cell’s data.
virtual void __fastcall SetEditText(long ACol, long ARow, const System:
:AnsiString Value);

Description
SetEditText is called by the inplace editor so that the grid can store the new value for the current
cell. The grid stores this value until the user moves to a new cell or presses Escape. If the user
moves to a new cell, this value is written to the record in the database. If the user presses
Escape, the value is discarded.

TCustomDBGrid::StoreColumns
TCustomDBGrid See also
StoreColumns indicates whether the columns of the grid are stored when the grid is saved, or
whether they are generated dynamically.
bool __fastcall StoreColumns(void);
Description
StoreColumns causes the Columns property to be stored only when the Columns property has a
State property of csCustomized. The State property for Columns indicates whether the columns
are generated automatically from the fields in the dataset, or if they are specified
programmatically or by the Columns editor.

TCustomDBGrid::TCustomDBGrid
TCustomDBGrid See also
TCustomDBGrid creates and initializes an instance of TCustomDBGrid.
__fastcall virtual TCustomDBGrid(Classes::TComponent* AOwner);
Description
Call TCustomDBGrid for a descendant of TCustomDBGrid to create a data-aware grid at
runtime. Grids placed on a form at design time are created automatically.
After calling the constructor of its parent object, TCustomDBGrid creates the helper objects used
by the data-aware grid and initializes
• Color to clWindow, and ParentColor to false.
• DefaultDrawing to true.
• Options to [dgEditing, dgTitles, dgIndicator, dgColumnResize, dgColLines, dgRowLines,

dgTabs, dgConfirmDelete, dgCancelOnExit].

TCustomDBGrid::TimedScroll
TCustomDBGrid See also
TimedScroll moves the current record in response to the user dragging the mouse outside of the
data cells.
virtual void __fastcall TimedScroll(Grids::TGridScrollDirection
Direction);

Description
If the Direction parameter includes sdUp, TimedScroll moves the dataset to the first visible
record in the grid. If the Direction parameter includes sdDown, TimedScroll moves the dataset to
the last visible record in the grid. After adjusting the current record, TimedScroll calls the
inherited method to update the image.

TCustomDBGrid::ValidFieldIndex
TCustomDBGrid See also
ValidFieldIndex indicates whether an index into the columns array refers to a valid field in the
dataset.
bool __fastcall ValidFieldIndex(int FieldIndex);
Description
Call ValidFieldIndex to determine whether a column displays data from a field in the dataset.
ValidFieldIndex returns true if the column is associated with a database field. ValidFieldIndex
returns false if the column is a calculated field or if the field for the column is undefined.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl
TCustomGrid

TCustomDBGrid example
TCustomDBGrid

TCustomEdit
Hierarchy Properties Methods Events See also
The TCustomEdit object is the abstract class from which all edit-box and memo controls are
derived.
Header
vcl/stdctrls.hpp
Description
TCustomEdit encapsulates the fundamental behavior common to all components for editing text
by introducing methods and properties that provide
• Basic text editing functions such as selecting text, modifying selected text, and case

conversions.
• Ability to respond to changes in the contents of the text.
• Access control of the text for making it read-only or introducing a password character to hide

the actual value.
Do not create instances of TCustomEdit. Use TCustomEdit as a base class when creating new
control objects that permit the user to enter or modify text. Properties and methods of
TCustomEdit provide basic behavior that descendent classes inherit as well as behavior that
components can override to customize their behavior.

TCustomEdit properties
TCustomEdit Alphabetically Legend

In TCustomEdit
AutoSelect
AutoSize
BorderStyle
CharCase
HideSelection
MaxLength
Modified
OEMConvert
PasswordChar
ReadOnly
SelLength
SelStart
SelText

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ParentColor
ShowHint
Text
Top

Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomEdit properties
TCustomEdit By object Legend

Align
AutoSelect
AutoSize
BorderStyle
BoundsRect

Brush
CharCase
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
HideSelection
Hint
Left
MaxLength
Modified
Name
OEMConvert

Owner
ParentColor
Parent
PasswordChar
ReadOnly
SelLength
SelStart
SelText
ShowHint

Showing
TabOrder
TabStop
Tag
Text
Top
Visible
Width

TCustomEdit::AutoSelect
TCustomEdit See also Example
AutoSelect determines whether all the text in the edit control is automatically selected when the
control gets focus.
__property bool AutoSelect;
Description
Set AutoSelect to true to select all the text when the edit control gets focus. AutoSelect only
applies to single-line edit controls.
Use AutoSelect when the user is more likely to replace the text in the edit control than to append
to it.

TCustomEdit::AutoSize
TCustomEdit See also Example
AutoSize determines whether the height of the edit control automatically resizes to
accommodate the text.
__property bool AutoSize;
Description
Use AutoSize to make the edit control adjust its size automatically so the client area
accommodates the height of the text. When AutoSize is false, the edit control has a fixed height.
When AutoSize is true, the size of the control is readjusted whenever a change occurs that could
affect the height of the control, such as a change to the font or border style.
Note
AutoSize only adjusts the height of the edit control Even with AutoSize set to true, text in the edit
control may appear truncated if it extends beyond the width of the edit control.

TCustomEdit::BorderStyle
TCustomEdit See also Example
BorderStyle determines whether the edit control has a single line border around the client area.
__property Forms::TBorderStyle BorderStyle;
Description
Use BorderStyle to affect the sharpness with which the client area of the edit control stands out.
BorderStyle can have a value of either bsSingle or bsNone. If BorderSyle is bsSingle, the edit
control has a single-line border around the client area. If BorderStyle is bsNone, there will be no
border.
Note
BorderStyle interacts with the Ctl3D property to create different visual effects. Try combining
different combinations of the two properties to get the desired look.

TCustomEdit::CharCase
TCustomEdit See also Example
CharCase determines the case of the text within the edit control.
__property TEditCharCase CharCase;
Description
Use CharCase to force the contents of the edit control to assume a particular case. The possible
values of CharCase are as follows:
Value Meaning

ecLowerCase The text is converted to lowercase.
ecNormal The text appears in mixed case. It is not forced into any case.
ecUpperCase The text is converted to uppercase.
When CharCase is set to ecLowerCase or ecUpperCase, the case of characters is converted as
the user types them into the edit control. Changing the CharCase property to ecLowerCase or
ecUpperCase changes the actual contents of the text, not just the appearance. Any case
information is lost and can’t be recaptured by changing CharCase to ecNormal.

TCustomEdit::HideSelection
TCustomEdit See also Example
HideSelection determines whether the visual indication of the selected text remains when focus
shifts to another control.
__property bool HideSelection;
Description
Set HideSelection to false to provide visual feedback of the selected portion of the text even
when the edit control does not have focus. Set HideSelection to true to show the selection only
when the edit control has focus. HideSelection does not affect the actual value of the selection,
only the visual indication. Always setting HideSelection to false can make forms with many edit
controls look too busy.

TCustomEdit::MaxLength
TCustomEdit See also Example
MaxLength specifies the maximum number of characters the user can enter into the edit control.
__property int MaxLength;
Description
Use MaxLength to limit the number of characters that can be entered into the edit control. A
value of 0 indicates that there is no limit on the length. MaxLength only applies to single-line edit
controls.
Use MaxLength to limit the length of the text in an edit control if that text will be copied into a
fixed-length buffer.
Note
Setting MaxLength will not truncate the existing text, it merely prevents the user from adding
more text after reaching the limit of MaxLength characters.

TCustomEdit::Modified
TCustomEdit See also Example
Modified indicates whether the user edited the text of the edit control.
__property bool Modified;
Description
Use Modified to determine whether the Text property of the edit control changed. If an
application directly alters the Text property of an edit control, it should set the Modified property
to true.

TCustomEdit::OEMConvert
TCustomEdit See also
OEMConvert determines whether characters typed in the edit control are converted from ANSI to
OEM and then back to ANSI.
__property bool OEMConvert;
Description
To ensure that any characters typed in the edit control can be unambiguously converted to the
OEM character set, set OEMconvert to true. This causes all characters to be converted from
ANSI to OEM and then back to ANSI as they are typed. Set OEMconvert to false to avoid the
overhead of this conversion when it does not matter whether the text can be unambiguously
mapped to an OEM string.
OEMConvert is most useful for edit controls used to enter file names when the application does
not use Unicode file names.

TCustomEdit::PasswordChar
TCustomEdit See also Example
PasswordChar indicates the character, if any, to display in place of the actual characters typed in
the control.
__property char PasswordChar;
Description
Use the PasswordChar property to create an edit control that displays a special character in
place of any entered text. If PasswordChar is set to the null character (ANSI character zero), the
edit control displays its text normally. If PasswordChar is any other character, the edit control
displays PasswordChar in place of each character typed. PasswordChar affects the appearance
of the edit control only. The value of the Text property reflects the actual characters that are
typed.

TCustomEdit::ReadOnly
TCustomEdit See also Example
ReadOnly determines whether the user can change the text of the edit control.
__property bool ReadOnly;
Description
To restrict the edit control to display only, set the ReadOnly property to true. Set ReadOnly to
false to allow the contents of the edit control to be edited.
Setting ReadOnly to true ensures that the text is not altered, while still allowing the user to select
text. The selected text can then be manipulated by the application, or copied to the Clipboard.

TCustomEdit::SelLength
TCustomEdit See also Example
SelLength is the number of characters that are selected.
__property int SelLength;
Description
Read SelLength to determine the length, in characters, of the selected text. Set SelLength to
change the selection to consist of the first SelLength characters starting at SelStart.
Note
Setting SelLength to a value greater than the number of characters from SelStart to the end of
the text results in the selection of all characters from SelStart to the end of the text. Reading
SelLength immediately after setting it to a value greater than the number of available characters
returns the number of characters actually selected, not the value that was just set.

TCustomEdit::SelStart
TCustomEdit See also
SelStart is the position of the first selected character in the text.
__property int SelStart;
Description
Read SelStart to determine the position of the first selected character, where 0 indicates the first
character. If there is no selected text, SelStart indicates the position of the cursor. Set SelStart to
remove the current selection and position the cursor just before the indicated character.
To select a particular range of the text, first set SelStart to position the cursor, and then set
SelLength to extend the selection.

TCustomEdit::SelText
TCustomEdit See also Example
SelText is the selected portion of the edit control’s text.
__property System::AnsiString SelText;
Description
Read SelText to determine the value of the selected text. Set SelText to replace the selected
text with a new string. If there is no selection, but the edit control has focus, set SelText to insert
a new string into the text at the cursor.

TCustomEdit events
TCustomEdit Alphabetically Legend

In TCustomEdit
OnChange

TCustomEdit events
TCustomEdit By object Legend

OnChange

TCustomEdit::OnChange
TCustomEdit See also
OnChange occurs whenever the text for the edit control may have changed.
__property Classes::TNotifyEvent OnChange;
Description
Write an OnChange event handler to take specific action whenever the text for the edit control
may have changed. Use the Modified property to see if a change actually occurred. The Text
property of the edit control will already be updated to reflect any changes. This event provides
the first opportunity to respond to modifications that the user types into the edit control.

TCustomEdit methods
TCustomEdit Alphabetically Legend

In TCustomEdit
~TCustomEdit

Change
Clear
ClearSelection
CopyToClipboard
CreateParams
CreateWnd
CutToClipboard
DestroyWnd
GetSelTextBuf
PasteFromClipboard
SelectAll
SetSelTextBuf
TCustomEdit

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack

SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomEdit methods
TCustomEdit By object Legend

~TCustomEdit
Assign
BeginDrag
BringToFront
Broadcast
CanFocus

Change
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClearSelection
Clear
ClientToScreen
ContainsControl

ControlAtPos
CopyToClipboard

CreateParams
CreateWnd
CutToClipboard
DefaultHandler
DestroyComponents
Destroying
DestroyWnd
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress

FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetSelTextBuf
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress

MethodName
NewInstance
PaintTo
PasteFromClipboard
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SelectAll
SendToBack
SetBounds
SetFocus
SetSelTextBuf
SetTextBuf
Show
TCustomEdit
UpdateControlState
Update

TCustomEdit::~TCustomEdit
TCustomEdit
~TCustomEdit frees the memory associated with the TCustomEdit object. Do not call ~
TCustomEdit directly. Instead, use the delete keyword on the object, which causes ~
TCustomEdit to be invoked automatically.
__fastcall virtual ~TCustomEdit(void);

TCustomEdit::Change
TCustomEdit See also
Change responds to changes in the Text property by calling the OnChange event handler if it is
assigned.
virtual void __fastcall Change(void);
Description
Applications do not call the Change method directly. It is triggered automatically by Windows
events. Change is declared as a protected method so that derived classes can make additional
responses to changes in the Text property beyond invoking the OnChange event handler.
Derived classes that override the Change method should be sure to call the inherited method.

TCustomEdit::Clear
TCustomEdit See also
Clear deletes all text from the edit control.
void __fastcall Clear(void);
Description
Use Clear to replace the Text property with an empty string. Clear removes all text, not just the
selected text. To remove just the selected text, use ClearSelection.

TCustomEdit::ClearSelection
TCustomEdit See also Example
ClearSelection removes the selected text from the edit control.
void __fastcall ClearSelection(void);
Description
Use ClearSelection to delete the selected text from the edit control. If no text is selected,
ClearSelection does nothing. If all of the text is selected, ClearSelection clears all text, like the
Clear method.
Note
Calling ClearSelection does the same thing as sending the edit control a WM_CLEAR message.

TCustomEdit::CopyToClipboard
TCustomEdit See also Example
CopyToClipboard copies the selected text in the edit control to the Clipboard in CF_TEXT
format.
void __fastcall CopyToClipboard(void);
Description
Use CopyToClipboard to replace the contents of the Clipboard with the selected text.
CopyToClipboard does not clear the Clipboard if no text is selected. If no text is selected,
CopyToClipboard does nothing.
Note
Calling CopyToClipboard does the same thing as sending the edit control a WM_COPY
message.

TCustomEdit::CreateParams
TCustomEdit See also
The CreateParams method initializes a window-creation parameter record passed in the Params
parameter.
virtual void __fastcall CreateParams(Controls::TCreateParams &Params);
Description
The CreateWnd method calls CreateParams to initialize the parameters it passes to
CreateWindowHandle. TCustomEdit overrides the inherited method to specify a scrollable
single-line edit control that reflects the current values of the BorderStyle, HideSelections,
PasswordChar, and ReadOnly properties.

TCustomEdit::CreateWnd
TCustomEdit See also
The CreateWnd method creates a Windows control corresponding to the edit control.
virtual void __fastcall CreateWnd(void);
Description
CreateWnd is called when the edit control is created, and whenever a change to the edit control requires
the window to be recreated. After calling the inherited method, CreateWnd sends the newly created
window messages to enforce the MaxLength and PasswordChar properties.

TCustomEdit::CutToClipboard
TCustomEdit See also Example
CutToClipboard copies the selected text in the edit control to the Clipboard in CF_TEXT format
and then deletes the selection.
void __fastcall CutToClipboard(void);
Description
Use CutToClipboard to replace the contents of the Clipboard with the selected text while clearing
the selected text. If no text is selected, CutToClipboard does nothing.

TCustomEdit::DestroyWnd
TCustomEdit See also
DestroyWnd destroys the Windows control that corresponds to the edit control.
virtual void __fastcall DestroyWnd(void);
Description
Before the window is destroyed, DestroyWnd saves a copy of any window properties that would
be needed to recreate the window after it is destroyed.

TCustomEdit::GetSelTextBuf
TCustomEdit See also Example
GetSelTextBuf copies the selected text into a buffer and returns the number of characters
copied.
int __fastcall GetSelTextBuf(char * Buffer, int BufSize);
Description
Use GetSelTextBuf to copy the selected text into a character buffer. If there is no selection, the
buffer receives an empty string. If the selection contains more than (BufSize – 1) characters,
only the first (BufSize – 1) characters are copied. GetSelTextBuf returns the number of
characters that were actually copied into the buffer.

TCustomEdit::PasteFromClipboard
TCustomEdit See also Example
PasteFromClipboard copies the contents of the Clipboard into edit control, replacing the current
selection.
void __fastcall PasteFromClipboard(void);
Description
Use PasteFromClipboard to replace the selected text with the contents of the Clipboard, or, if no
text is selected, to insert the contents of the Clipboard at the cursor. If the Clipboard is empty, or
if it does not contain anything in CF_TEXT format, PasteFromClipboard does nothing.
Note
Calling PasteFromClipboard does the same thing as sending the edit control a WM_PASTE
message.

TCustomEdit::SelectAll
TCustomEdit See also Example
SelectAll selects all text in the edit control.
void __fastcall SelectAll(void);
Description
Use SelectAll to select all text in the edit control. To select only part of the text, use the SelStart
and SelLength properties.

TCustomEdit::SetSelTextBuf
TCustomEdit See also Example
SetSelTextBuf replaces the selected text with a null-terminated string.
void __fastcall SetSelTextBuf(char * Buffer);
Description
Use SetSelTextBuf to replace the current selection by the contents of the null-terminated string
pointed to by Buffer. If no text is selected, the contents of Buffer are inserted at the cursor.
SetSelTextBuf does the same thing as setting the SelText property, except that it takes a PChar
rather than a string.

TCustomEdit::TCustomEdit
TCustomEdit See also
TCustomEdit creates an instance of TCustomEdit.
__fastcall virtual TCustomEdit(Classes::TComponent* AOwner);
Description
Call TCustomEdit to create and initialize an instance of TCustomEdit.
After calling the constructor of its parent object, TCustomEdit initializes
• AutoSelect to true.
• AutoSize to true.
• BorderStyle to bsSingle.
• ControlStyle to [csClickEvents, csDoubleClicks, csFixedHeight, csSetCaption].
• Height and Width to 25 and 121.
• HideSelection to true.
• ParentColor to false.
• TabStop to true.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TCustomEdit example
TCustomEdit

TCustomGroupBox
Hierarchy Properties Methods See also
TCustomGroupBox is the abstract base class for all group-box components.
Header
vcl/stdctrls.hpp
Description
Group boxes are visual components that act as containers for sets of related controls, such as
radio buttons. Group boxes may also contain other group boxes. TCustomGroupBox is the
abstract class from which all group-box components—including TGroupBox, TRadioGroup, and
TDBRadioGroup—descend.
In addition to the methods it inherits from TCustomControl, TCustomGroupBox overrides the
AlignControls method (inherited from TWinControl) to handle positioning of components within
the group box.

TCustomGroupBox properties
TCustomGroupBoxAlphabetically Legend

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomGroupBox properties
TCustomGroupBoxBy object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
Left
Name

Owner
Parent
ShowHint

Showing
TabOrder

TabStop
Tag
Top
Visible
Width

TCustomGroupBox methods
TCustomGroupBoxAlphabetically Legend

In TCustomGroupBox
~TCustomGroupBox

Paint
TCustomGroupBox

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent

InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomGroupBox methods
TCustomGroupBoxBy object Legend

~TCustomGroupBox
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance

Paint
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TCustomGroupBox
UpdateControlState
Update

TCustomGroupBox::~TCustomGroupBox
TCustomGroupBox
~TCustomGroupBox frees the memory associated with the TCustomGroupBox object. Do not
call ~TCustomGroupBox directly. Instead, use the delete keyword on the object, which causes ~
TCustomGroupBox to be invoked automatically.
__fastcall virtual ~TCustomGroupBox(void);

TCustomGroupBox::Paint
TCustomGroupBoxSee also
Renders the onscreen image of the group box.
virtual void __fastcall Paint(void);
Description
Paint creates a Windows RECT structure, draws a border around it, and calls the Windows
DrawText function to fill in the caption. If Ctl3D (a protected property, inherited from
TWinControl) is set to true, then Paint draws the border with a three-dimensional look.

TCustomGroupBox::TCustomGroupBox
TCustomGroupBoxSee also
Creates and initializes a TCustomGroupBox instance.
__fastcall virtual TCustomGroupBox(Classes::TComponent* AOwner);
Description
After calling the constructor of its parent object, TCustomGroupBox initializes the ControlStyle
property by turning on the following flags: csAcceptsControls, csCaptureMouse, csClickEvents,
csSetCaption, csDoubleClicks, and csReplicatable. TCustomGroupBox also sets the Width and
Height properties to 185 and 105 pixels, respectively.

Scope
Published

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl

TCustomGroupBox example
TCustomGroupBox

TCustomGrid
Hierarchy Properties Methods See also
TCustomGrid is the abstract base type for all components that present information in a two-
dimensional grid.
Header
vcl/grids.hpp
Description
Use TCustomGrid as a base class when defining components that represent information in a
tabular format. TCustomGrid introduces properties and methods to control the appearance and
behavior of the grid, including responses to mouse actions and user editing.
Do not create instances of TCustomGrid. Instead, put a grid control in a form by creating a
descendant of TCustomGrid. Use TDrawGrid to represent non-textual material in a tabular grid.
If the text represents field values from a dataset, use TDBGrid.
TCustomGrid can also be used as a base class for objects that present information in a two-
dimensional layout that is not explicitly tabular. For example, TOutline descends from
TCustomGrid.

TCustomGrid properties
TCustomGrid Alphabetically Legend

In TCustomGrid
BorderStyle
Col
ColCount
ColWidths
DefaultColWidth
DefaultDrawing
DefaultRowHeight
EditorMode
FixedColor
FixedCols
FixedRows

GridHeight
GridLineWidth

GridWidth
InplaceEditor

LeftCol
Options
Row
RowCount
RowHeights
ScrollBars
Selection
TabStops
TopRow

VisibleColCount
VisibleRowCount

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth

Color
ControlState
ControlStyle
Cursor
Enabled
Height
Hint
Left
Name
Parent
ParentColor
ShowHint
Top
Visible
Width

Derived from TComponent

ComponentCount
ComponentIndex

Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomGrid properties
TCustomGrid By object Legend

Align
BorderStyle
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ColCount
Color
Col
ColWidths

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DefaultColWidth
DefaultDrawing
DefaultRowHeight
DesignInfo
EditorMode
Enabled
FixedColor
FixedCols
FixedRows

GridHeight
GridLineWidth

GridWidth
Handle

Height
HelpContext
Hint

InplaceEditor
LeftCol
Left
Name
Options

Owner
ParentColor
Parent
RowCount
RowHeights
Row
ScrollBars
Selection
ShowHint

Showing
TabOrder
TabStops
TabStop
Tag
TopRow
Top

VisibleColCount

VisibleRowCount
Visible
Width

TCustomGrid::BorderStyle
TCustomGrid See also Example
BorderStyle determines whether a single line border is drawn around the grid.
__property Forms::TBorderStyle BorderStyle;
Description
Set BorderStyle to bsSingle to add a single line border around the grid’s image. Set
BorderStyle to bsNone to omit the border.
The visual effect of BorderStyle is influenced by the value of the Ctrl3D property. Experiment
with different combinations of BorderStyle and Ctrl3D to achieve the desired look.

TCustomGrid::Col
TCustomGrid See also Example
Col is the index of the column that contains the selected cell.
__property long Col;
Description
Use Col at runtime to determine the current column in the grid. Setting Col moves focus to the
cell in the current row that is in the new column. The first column has an index of 0, the second
column an index of 1, and so on.
The selected cell in the grid can be located by reading the Col property and the Row property to
obtain the indexes of its column and row. When focus moves to the grid, the selected cell gets
input focus.

TCustomGrid::ColCount
TCustomGrid See also Example
ColCount is the number of columns in the grid.
__property long ColCount;
Description
Read ColCount to determine the number entries in the ColWidths array. Set ColCount to add or
delete columns at the right-hand side of the grid. The value of ColCount includes any fixed
columns at the left of the grid as well as the scrollable columns in the body of the grid.

Color
Color is the background color of the grid.
__property Color;
Description
Use Color to read or change the background color of the grid. The background color is not used
for the fixed rows or columns in the grid. To change the color of the fixed rows or columns, use
the FixedColor property.
These are the possible values of Color:
Value Meaning

clBlackclBlack Black
clMaroon Maroon
clGreen Green
clOlive Olive green
clNavy Navy blue
clPurple Purple
clTeal Teal
clGray Gray
clSilver Silver
clRed Red
clLime Lime green
clBlue Blue
clFuchsia Fuchsia
clAqua Aqua
clWhite White
clBackground Current background color of the Windows desktop
clActiveCaption Current color of the title bar of the active window
clInactiveCaption Current color of the title bar of inactive windows
clMenu Current background color of menus
clWindow Current background color of windows
clWindowFrame Current color of window frames
clMenuText Current color of text on menus
clWindowText Current color of text in windows
clCaptionText Current color of the text on the title bar of the active window
clActiveBorder Current border color of the active window
clInactiveBorder Current border color of inactive windows
clAppWorkSpace Current color of the application workspace
clHighlight Current background color of selected text
clHightlightText Current color of selected text
clBtnFace Current color of a button face
clBtnShadow Current color of a shadow cast by a button
clGrayText Current color of text that is dimmed
clBtnText Current color of text on a button
clInactiveCaptionText Current color of the text on the title bar of an inactive window
clBtnHighlight Current color of the highlighting on a button
cl3DDkShadow Windows 95 or NT 4.0 only: Dark shadow for three-dimensional display

elements
cl3DLight Windows 95 or NT 4.0 only: Light color for three-dimensional display

elements (for edges facing the light source)
clInfoText Windows 95 or NT 4.0 only: Text color for tool tip controls
clInfoBk Windows 95 or NT 4.0 only: Background color for tool tip controls
Note

If the grid's ParentColor property is true, then changing the Color property of the grid's parent
automatically changes the Color property of the grid. Setting the Color property automatically
sets the ParentColor property to false.

TCustomGrid::ColWidths
TCustomGrid See also Example
ColWidths is an indexed array giving the width in pixels of all the columns in the grid.
__property int ColWidths[long Index];
Description
Read ColWidths to determine the width of the cells in the column specified by the Index
parameter. An index of 0 refers to the first column. Set ColWidths at runtime to change the width
of an individual column.
If the width of a column has not been set explicitly by resizing with the mouse, or by using the
ColWidths property, it’s width is DefaultColWidth.
Use the ColCount property to determine the number of entries in the ColWidths array.

TCustomGrid::DefaultColWidth
TCustomGrid See also Example
DefaultColWidth is the width in pixels of all columns in the grid that have not been explicitly
resized.
__property int DefaultColWidth;
Description
Set DefaultColWidth to change the size of all columns in the grid. When DefaultColWidth is set,
columns that have been resized using the mouse or by setting the ColWidths property are given
the DefaultColWidth as well.
When new columns are added to the grid using the ColCount property, they are created with a
width of DefaultColWidth.

TCustomGrid::DefaultDrawing
TCustomGrid See also Example
DefaultDrawing determines whether the Cells are painted when the grid is drawn.
__property bool DefaultDrawing;
Description
Set DefaultDrawing to true to have the grid automatically paint the cells in the grid, including
adding the background color, the 3-D effects on the fixed cells, and the focus rectangle around
the selected cell. Set DefaultDrawing to false to skip the painting of the cells when the grid is
drawn.
When DefaultDrawing is false, the cells should be painted using the DrawCell method. For
TCustomGrid, DrawCell is an abstract method. Descendants of TCustomGrid use DrawCell to
provide their own customized drawing code, or to generate an OnDrawCell event.

TCustomGrid::DefaultRowHeight
TCustomGrid See also Example
DefaultRowHeight is the height in pixels of all rows in the grid that have not been explicitly
resized.
__property int DefaultRowHeight;
Description
Set DefaultRowHeight to change the size of all rows in the grid. When DefaultRowHeight is set,
rows that have been resized using the mouse or by setting the RowHeights property are given
the DefaultRowHeight as well.
When new rows are added to the grid using the RowCount property, they are created with a
height of DefaultRowHeight.

TCustomGrid::EditorMode
TCustomGrid See also
EditorMode determines whether the current cell can be edited.
__property bool EditorMode;
Description
Set EditorMode to true, at runtime, to put the grid in edit mode. When EditorMode is true, the
user can edit cells in the grid. When the user presses F2, EditorMode is set to true. When the
user presses Enter, the value of EditorMode is toggled.
Note
EditorMode has no effect if the Options property does not include goEditing or if the Options
property includes goAlwaysShowEditor.

TCustomGrid::FixedColor
TCustomGrid See also Example
FixedColor is the background color of the fixed rows and columns in the grid.
__property Graphics::TColor FixedColor;
Description
Set FixedColor to specify the color for the nonscrolling cells in the grid. The scrolling region of

the grid is drawn using the Color property.
The possible values for FixedColor are listed under the entry for the Color property.

TCustomGrid::FixedCols
TCustomGrid See also Example
FixedCols is the number of columns on the left of the grid that cannot be scrolled.
__property int FixedCols;
Description
Set FixedCols to create or get rid of nonscrolling columns. Nonscrolling columns appear at the
left of the grid, and are always visible, even when the user scrolls the other columns in the grid.
Use nonscrolling columns for displaying row titles or row numbers, or to implement a scroll lock
that the user can set.
Nonscrolling columns are visually distinct from the scrollable columns in the grid. They are
painted with a separate background color, and their cells have a raised, 3-D look when the
Ctrl3D property is true.
Note
Grids must include at least one scrolling column. Do not set FixedCols to a value greater than
ColCount - 1.

TCustomGrid::FixedRows
TCustomGrid See also Example
FixedRows is the number of rows on the left of the grid that cannot be scrolled.
__property int FixedRows;
Description
Set FixedRows to create or get rid of nonscrolling rows. Nonscrolling rows appear at the top of
the grid, and are always visible, even when the user scrolls the other rows in the grid. Use
nonscrolling rows for displaying column titles or column numbers.
Nonscrolling rows are visually distinct from the scrollable rows in the grid. They are painted with
a separate background color, and their cells have a raised, 3-D look when the Ctrl3D property is
true.
Note
Grids must include at least one scrolling row. Do not set FixedRows to a value greater than
RowCount - 1.

TCustomGrid::GridHeight
TCustomGrid See also Example
GridHeight is the height of the grid in pixels.
__property int GridHeight;
Description
Read GridHeight to determine the size of the grid. If GridHeight is less than the value of
ClientHeight, all of the rows of the grid appear in the control with an empty region below the grid.
If the underlying grid is too tall to appear in the control, GridHeight is the same as ClientHeight,
and the user must scroll to see the entire contents of the grid.

TCustomGrid::GridLineWidth
TCustomGrid See also Example
GridLineWidth is the width, in pixels, of the lines that separate the cells of the grid.
__property int GridLineWidth;
Description
Set GridLineWidth to make the lines that separate the cells in the grid heavier or lighter. When
GridLineWidth is zero, no separators are drawn between the cells of the grid.
GridLineWidth will have no effect if the Options property does not include goFixedHorzLine,
goFixedVertLine, goHorzLine, or goVertLine.
Note
Even when GridLineWidth is zero, the cells in the fixed rows and columns of the grid will appear
distinct if the Ctrl3D property is true. Set Ctrl3D to false to remove the raised effect that
separates the cells in the fixed region of the grid.

TCustomGrid::GridWidth
TCustomGrid See also Example
GridWidth is the width of the grid in pixels.
__property int GridWidth;
Description
Read GridWidth to determine the size of the grid. If GridWidth is less than the value of
ClientWidth, all of the columns of the grid appear in the control with an empty region to the right
of the grid. If the underlying grid is too wide to appear in the control, GridWidth is the same as
ClientWidth, and the user must scroll to see the entire contents of the grid.

TCustomGrid::InplaceEditor
TCustomGrid See also
InplaceEditor is the edit control the grid uses to allow users to edit the contents of the selected
cell.
__property TInplaceEdit* InplaceEditor;
Description
Read InplaceEditor to gain direct access to the edit control that sits on top of the selected cell

when the grid is in edit mode. The inplace editor is created the first time the grid is put in edit
mode. It is not destroyed until the grid is destroyed. The grid moves the editor when the
selected cell changes. The grid hides the editor’s window when the grid goes out of edit
mode.

TCustomGrid::LeftCol
TCustomGrid See also Example
LeftCol is the number of the first visible scrollable column in the grid.
__property long LeftCol;
Description
Read LeftCol to determine the number of the first column in the scrollable region that is visible.
Set LeftCol to scroll the columns in the grid so that the column with index LeftCol is the first
column after the fixed columns.

TCustomGrid::Options
TCustomGrid See also
Options specifies various display and behavioral properties of the grid.
__property TGridOptions Options;
Description
Set Options to include the desired properties for the grid. Options is a set drawn from the
following values:
Value Meaning

goFixedVertLine Vertical lines are drawn to separate the fixed (nonscrolling) columns in the grid.
goFixedHorzLine Horizontal lines are drawn to separate the fixed (nonscrolling) rows in the grid.
goVertLine Vertical lines are drawn to separate the scrollable columns in the grid.
goHorzLine Horizontal lines are drawn to separate the scrollable rows in the grid.
goRangeSelect Users can select ranges of cells at one time. goRangeSelect is ignored if

Options includes goEditing.
goDrawFocusSelectedCells with input focus are drawn the with a special highlight color, just like selected

cells without input focus. If goDrawFocusSelected is not included, the cell with
input focus is distinguished by a focus rectangle, not by a special
background color, unless goRowSelect is included.

goRowSizing Scrollable rows can be individually resized.
goColSizing Scrollable columns can be individually resized.
goRowMoving Scrollable rows can be moved using the mouse.
goColMoving Scrollable columns can be moved using the mouse.
goEditing Users can edit the contents of cells. When goEditing is included in Options,

goRangeSelect has no effect.
goTabs Users can navigate through the cells in the grid using Tab and Shift+Tab.
goRowSelect Entire rows are selected rather than individual cells. If goRowSelect is included in

Options, goAlwaysShowEditor has no effect.
goAlwaysShowEditor The grid is locked into edit mode. The user does not need to use Enter or F2 to turn

on EditorMode. If Options does not include goEditing,
goAlwaysShowEditor has no effect. If Options includes goRowSelect,
goAlwaysShowEditor has no effect.

goThumbTracking The grid image updates while the user is dragging the thumb of the scrollbar. If
goThumbTracking is not included, the image does not update until the
user releases the thumb in a new position.

TCustomGrid::Row
TCustomGrid See also Example
Row is the index of the row that contains the selected cell.
__property long Row;
Description
Use Row at runtime to determine the current row in the grid. Setting Row moves focus to the cell
in the current column that is in the new row. The first row has an index of 0, the second row an
index of 1, and so on.
The selected cell in the grid can be located by reading the Row property and the Col property to
obtain the indexes of its row and column. When focus moves to the grid, the selected cell gets
input focus.

TCustomGrid::RowCount
TCustomGrid See also Example
RowCount is the number of rows in the grid.
__property long RowCount;
Description
Read RowCount to determine the number entries in the RowHeights array. Set RowCount to add
or delete rows at the bottom of the grid. The value of RowCount includes any fixed rows at the
top of the grid as well as the scrollable rows in the body of the grid.

TCustomGrid::RowHeights
TCustomGrid See also Example
RowHeights is an indexed array giving the height in pixels of all the rows in the grid.
__property int RowHeights[long Index];
Description
Read RowHeights to determine the height of the cells in the row specified by the Index
parameter. An index of 0 refers to the first row. Set RowWidths at runtime to change the height
of an individual row.
If the height of a row has not been set explicitly by resizing with the mouse, or by using the
RowHeights property, it’s height is DefaultRowHeight.
Use the RowCount property to determine the number of entries in the RowHeights array.

TCustomGrid::ScrollBars
TCustomGrid See also Example
ScrollBars specifies whether the grid includes horizontal or vertical scroll bars.
__property Stdctrls::TScrollStyle ScrollBars;
Description
Use ScrollBars to give the grid horizontal or vertical scroll bars. ScrollBars can take one of the
following values:
Value Meaning

ssNone The grid has no scroll bars.
ssHorizontal The grid has a single scroll bar on the bottom edge.
ssVertical The grid has a single scroll bar on the right edge.
ssBoth The grid has a scroll bar on both the bottom and right edges.
Note
If all the cells in the grid fit in the ClientWidth, no horizontal scrollbar appears, even if ScrollBars
is ssHorizontal or ssBoth. If all the cells fit in the ClientHeight, no vertical scrollbar appears, even
if ScrollBars is ssVertical or ssBoth.

TCustomGrid::Selection
TCustomGrid See also Example
Selection indicates the boundaries of the current selection.
__property TGridRect Selection;
Description
Set Selection to select a range of cells in the grid. Selection can either represent the first

column, first row, last column and last row in the grid, or the row and column coordinates of
the upper left and bottom right cells in the selected region.

Selection can only indicate more than one cell when Options includes goRangeSelect.

TCustomGrid::TabStops
TCustomGrid See also
TabStops is an indexed array of Boolean values that indicate whether the user can tab to
specified columns in the grid.
__property bool TabStops[long Index];
Description
Set TabStops to false to remove the column identified by Index from the tab order. The first
column in the grid is identified by an Index of 0.
Note
When the Options property does not include goTabs, the user can’t tab to any column, even if
TabStops is true.

TCustomGrid::TopRow
TCustomGrid See also Example
TopRow is the index of the first visible scrollable row in the grid.
__property long TopRow;
Description
Read TopRow to determine the index of the first row in the scrollable region that is visible. Set
TopRow to scroll the rows in the grid so that the row with index TopRow is the first row after the
fixed rows.

TCustomGrid::VisibleColCount
TCustomGrid See also Example
VisibleColCount is the number of columns visible in the grid.
__property int VisibleColCount;
Description
Use VisibleColCount to determine the number of scrollable columns fully visible in the grid.
VisibleColCount does not include the fixed columns counted by the FixedCols property. It does
not include any partially visible columns on the right edge of the grid.

TCustomGrid::VisibleRowCount
TCustomGrid See also Example
VisibleRowCount is the number of rows visible in the grid.
__property int VisibleRowCount;
Description
Use VisibleRowCount to determine the number of scrollable rows fully visible in the grid.
VisibleRowCount does not include the fixed rows counted by the FixedRows property. It does
not include any partially visible rows on the bottom of the grid.

TCustomGrid methods
TCustomGrid Alphabetically Legend

In TCustomGrid
~TCustomGrid

AdjustSize
BoxRect
CanEditAcceptKey
CanEditModify
CanEditShow
CanGridAcceptKey
CellRect
ColumnMoved
ColWidthsChanged
CreateEditor
CreateParams
DefineProperties
DeleteColumn
DeleteRow
DoExit
DrawCell
GetEditLimit
GetEditMask
GetEditText
GetGridHeight
GetGridWidth
HideEditor
InvalidateCell
InvalidateCol
InvalidateEditor
InvalidateRow
KeyDown
KeyPress
MouseCoord
MouseDown
MouseMove
MouseUp
MoveColRow
MoveColumn
MoveRow
Paint
RowHeightsChanged
RowMoved
ScrollData
SelectCell
SetEditText
ShowEditor
ShowEditorChar
SizeChanged
Sizing
TCustomGrid
TimedScroll
TopLeftChanged
UpdateDesigner

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused

GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress

Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomGrid methods
TCustomGrid By object Legend

~TCustomGrid
AdjustSize
Assign
BeginDrag
BoxRect
BringToFront
Broadcast
CanEditAcceptKey
CanEditModify
CanEditShow
CanFocus
CanGridAcceptKey
CellRect
ClassInfo
ClassNameIs

ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen

ColumnMoved
ColWidthsChanged
ContainsControl
ControlAtPos
CreateEditor
CreateParams
DefaultHandler
DefineProperties
DeleteColumn
DeleteRow
DestroyComponents
Destroying
DisableAlign
Dispatch
DoExit
DragDrop
Dragging
DrawCell
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification

Free
GetEditLimit
GetEditMask
GetEditText
GetGridHeight
GetGridWidth
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
HideEditor

Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize

InvalidateCell
InvalidateCol
InvalidateEditor
InvalidateRow
Invalidate
KeyDown
KeyPress
MethodAddress
MethodName
MouseCoord
MouseDown
MouseMove
MouseUp
MoveColRow
MoveColumn
MoveRow
NewInstance
Paint
PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl

Repaint
RowHeightsChanged
RowMoved
ScaleBy
ScreenToClient
ScrollBy
ScrollData
SelectCell
SendToBack
SetBounds
SetEditText
SetFocus
SetTextBuf
ShowEditorChar
ShowEditor

Show
SizeChanged
Sizing
TCustomGrid
TimedScroll
TopLeftChanged
UpdateControlState
UpdateDesigner
Update

TCustomGrid::~TCustomGrid
TCustomGrid See also
~TCustomGrid frees the memory associated with the TCustomGrid object. Do not call ~
TCustomGrid directly. Instead, use the delete keyword on the object, which causes ~
TCustomGrid to be invoked automatically.
__fastcall virtual ~TCustomGrid(void);

TCustomGrid::AdjustSize
TCustomGrid See also
AdjustSize resizes all the rows or columns to the default size plus a specified delta.
virtual void __fastcall AdjustSize(long Index, long Amount, bool Rows)
;

Description
Grid components call AdjustSize internally to fix up the rows or columns when the user resizes
them using the mouse. Index is the index of the first row or column to adjust. Amount is the
number of pixels the default size is changing. Rows is a boolean that indicates whether the rows
or the columns are changing.

TCustomGrid::BoxRect
TCustomGrid See also
BoxRect returns the screen coordinates of a specified set of cells.
Windows::TRect __fastcall BoxRect(long ALeft, long ATop, long ARight,
long ABottom);

Description
Call BoxRect to obtain the screen coordinates, in pixels, of the cells that run from the column
with index ALeft to the column with index ARight and the row with index ATop to the row with
index ABottom. The coordinates of cells that are not visible on screen are not included in the
final rectangle.

TCustomGrid::CanEditAcceptKey
TCustomGrid See also
CanEditAcceptKey indicates whether the Key parameter can be entered into the current cell.
virtual bool __fastcall CanEditAcceptKey(char Key);
Description
CanEditAcceptKey provides a simple screening of keyboard input while the user is editing the
contents of a cell. The CanEditAcceptKey method for TCustomGrid always returns true.
Descendants of TCustomGrid override this method to screen out illegal characters.
More refined validation can be obtained by using an edit mask.

TCustomGrid::CanEditModify
TCustomGrid See also
CanEditModify indicates whether the current cell in the grid can be edited.
virtual bool __fastcall CanEditModify(void);
Description
Grid components use CanEditModify internally to determine whether to allow the user to edit the
current cell. CanEditModify returns true unless the inplace editor has disallowed editing for the
cell.

TCustomGrid::CanEditShow
TCustomGrid See also
CanEditShow indicates whether the inplace edit control can be created to allow editing.
virtual bool __fastcall CanEditShow(void);
Description
Grid controls call CanEditShow internally before creating the editor for a cell. CanEditShow is
called after the grid has determined that the field can be edited by calling CanEditModify.
CanEditShow returns false if the Options property does not indicate that the grid allows editing,
or if it indicates that the grid permits row selection. Otherwise, if the Options property indicates
that the grid is locked in edit mode, or if the grid has input focus, CanEditShow returns true. If
the grid is not locked in edit mode and the grid does not have input focus, CanEditShow returns
false.

TCustomGrid::CanGridAcceptKey
TCustomGrid See also
CanGridAcceptKey indicates whether the grid should respond to a given key combination.
virtual bool __fastcall CanGridAcceptKey(unsigned short Key, Classes:
:TShiftState Shift);

Description
Grid controls call CanGridAcceptKey internally to screen key combinations when the user first
presses a key. The CanGridAcceptKey method for TCustomGrid always returns true.
Descendants of TCustomGrid override this method to screen out irrelevant key combinations, or
key combinations that indicate actions which would violate the Options or mode of the grid.

TCustomGrid::CellRect
TCustomGrid See also Example
CellRect returns the screen coordinates of a cell in the grid.
Windows::TRect __fastcall CellRect(long ACol, long ARow);
Description
Call CellRect to obtain the boundaries, in pixels, of the cell in the column and row indicated by
the ACol and ARow parameters. The top left cell is specified when ACol and ARow are set to
zero.
If the indicated cell is not visible, CellRect returns an empty rectangle.

TCustomGrid::ColumnMoved
TCustomGrid See also
ColumnMoved provides the interface for a method that responds when the position of a column
changes.
virtual void __fastcall ColumnMoved(long FromIndex, long ToIndex);
Description
ColumnMoved is called immediately after a column in the grid has moved. The FromIndex
parameter is the old index of the column, and the ToIndex parameter is the new index. The
ColumnMoved method of TCustomGrid does nothing. Descendants of TCustomGrid override
this method to make internal adjustments or to generate an OnColumnMoved event.

TCustomGrid::ColWidthsChanged
TCustomGrid See also
ColWidthsChanged responds when the column widths change.
virtual void __fastcall ColWidthsChanged(void);
Description
ColWidthsChanged is called immediately after the column widths change. The change can result
from setting the ColWidths property, from setting the DefaultColWidth property, from moving one
of the columns, or from resizing the columns with the mouse.
ColWidthsChanged adjusts the scroll bar and the position of the inplace editor to take into
account the new column size and positions of the columns.

TCustomGrid::CreateEditor
TCustomGrid See also
CreateEditor creates the inplace editor control.
virtual TInplaceEdit* __fastcall CreateEditor(void);
Description
Grid controls call CreateEditor internally the first time the grid goes into edit mode. CreateEditor
is exposed as a protected method so that descendants of TCustomGrid can substitute a
specialized descendant of TInplaceEdit to handle cell editing.

TCustomGrid::CreateParams
TCustomGrid See also
CreateParams initializes a window-creation parameter record passed in the Params parameter.
virtual void __fastcall CreateParams(Controls::TCreateParams &Params);
Description
The CreateWnd method is called internally to specify the properties of the window that
implements this control. The TCreateParams type is a data structure holding information needed
when telling Windows to create a window handle. The fields of a TCreateParams record become
the parameters to a call to the CreateWindowEx API function.
After calling the inherited method, CreateParams adjusts the value of Params to request that the
grid receive double click messages, and to implement the values of the Ctrl3D, ScrollBars, and
BorderStyle properties.

TCustomGrid::DefineProperties
TCustomGrid See also
DefineProperties adds the ColWidths and RowHeights properties to the values saved with the
grid.
virtual void __fastcall DefineProperties(Classes::TFiler* Filer);
Description
DefineProperties overrides the inherited method to save the ColWidths and RowHeights
properties with the grid when they contain values other than the default widths and heights.

TCustomGrid::DeleteColumn
TCustomGrid See also
DeleteColumn deletes the column with index ACol from the grid.
void __fastcall DeleteColumn(long ACol);
Description
Call DeleteColumn to remove a column from the middle of the grid. To remove the last column
from the grid, set the ColCount property.

TCustomGrid::DeleteRow
TCustomGrid See also
DeleteRow deletes the row with index ARow from the grid.
void __fastcall DeleteRow(long ARow);
Description
Call DeleteRow to remove a row from the middle of the grid. To remove the last row from the
grid, set the RowCount property.

TCustomGrid::DoExit
TCustomGrid See also
DoExit hides the inplace editor when selection moves to another control in a form.
virtual void __fastcall DoExit(void);
Description
After calling the inherited method, which generates an OnExit event, DoExit hides the inplace
editor unless the Options property includes goAlwaysShowEditor.

TCustomGrid::DrawCell
TCustomGrid See also
DrawCell is the abstract prototype for a method that draws the contents of a cell in the grid.
virtual void __fastcall DrawCell(long ACol, long ARow, const Windows::
TRect &ARect, TGridDrawState AState);

Description
Descendants of TCustomGrid implement the DrawCell method to draw the contents of the cell or
to generate an OnDrawCell event. If the DefaultDrawing property is true, the background of the
cell is painted before DrawCell is called, and the 3D effects of the fixed cells or the focus
rectangle around the focused cell are drawn after DrawCell.
The ACol and ARow parameters give the column and row indexes of the cell that should be
drawn. The ARect parameter gives the boundaries of the cell in the coordinates of the canvas.
The AState parameter indicates whether the cell is selected, whether the cell has input focus,
and whether the cell is in the fixed, non-scrolling portion of the grid.

TCustomGrid::GetEditLimit
TCustomGrid See also
GetEditLimit provides the interface for a method that limits the number of characters that can be
typed into cells.
virtual int __fastcall GetEditLimit(void);
Description
GetEditLimit is called by the inplace editor to determine if a limit should be placed on the number
of characters a user can type into a cell. GetEditLimit sets no limits. Descendants of
TCustomGrid override this method to limit the text for certain cells.

TCustomGrid::GetEditMask
TCustomGrid See also
GetEditMask provides the interface for a method that returns an input mask for the specified cell.
virtual System::AnsiString __fastcall GetEditMask(long ACol, long ARow)
;

Description
The inplace editor calls GetEditMask to obtain any input mask associated with the cell specified
by the ACol and ARow parameters. GetEditMask returns an empty string, indicating that the cell
has no input mask. Descendants of TCustomGrid override this method to provide an input mask
or generate an OnGetEditMask event.

TCustomGrid::GetEditText
TCustomGrid See also
GetEditText returns the value of the indicated cell formatted for editing.
virtual System::AnsiString __fastcall GetEditText(long ACol, long ARow)
;

Description
The inplace editor calls GetEditText to obtain the text for the indicated cell. GetEditText returns
an empty string. Descendants of TCustomGrid override the GetEditText method to return a
string that represents the contents of the cell indicated by the ACol and ARow parameters.

TCustomGrid::GetGridHeight
TCustomGrid See also
GetGridHeight is the protected property access method for the GridHeight property.
int __fastcall GetGridHeight(void);
Description
GetGridHeight computes the value of the GridHeight property, based on the row heights,
separator width, and the size of the control.

TCustomGrid::GetGridWidth
TCustomGrid See also
GetGridWidth is the protected property access method for the GridWidth property.
int __fastcall GetGridWidth(void);
Description
GetGridWidth computes the value of the GridWidth property, based on the column widths,
separator width, and the size of the control.

TCustomGrid::HideEditor
TCustomGrid See also
HideEditor hides the inplace editor when it is not in use.
void __fastcall HideEditor(void);
Description
Grid controls call HideEditor when the grid goes out of edit mode. HideEditor hides the window
of the inplace editor.

TCustomGrid::InvalidateCell
TCustomGrid See also
InvalidateCell invalidates the region occupied by a cell so that it will be repainted with the next
Windows paint message.
void __fastcall InvalidateCell(long ACol, long ARow);
Description
Call InvalidateCell when the contents of a cell change so that the cell will need to be repainted.
The ACol parameter is the column index of the cell, and the ARow parameter is the row index.

TCustomGrid::InvalidateCol
TCustomGrid See also
InvalidateCol invalidates the region occupied by a column so that it will be repainted with the
next Windows paint message.
void __fastcall InvalidateCol(long ACol);
Description
Call InvalidateCol when a column changes so that the area it occupies will need to be repainted.
The ACol parameter is the column index.

TCustomGrid::InvalidateEditor
TCustomGrid See also
InvalidateEditor causes the inplace editor to repaint itself, moving to a new location if necessary.
void __fastcall InvalidateEditor(void);
Description
InvalidateEditor is called when the selected cell changes while the grid is in edit mode.

TCustomGrid::InvalidateRow
TCustomGrid See also
InvalidateRow invalidates the region occupied by a row so that it will be repainted with the next
Windows paint message.
void __fastcall InvalidateRow(long ARow);
Description
Call InvalidateRow when a row changes so that the area it occupies will need to be repainted.
The ARow parameter is the row index.

TCustomGrid::KeyDown
TCustomGrid See also
The KeyDown provides special processing when the user presses a key.
virtual void __fastcall KeyDown(unsigned short &Key, Classes::
TShiftState Shift);

Description
After generating an OnKeyDown event, KeyDown calls CanGridAcceptKey to screen out
problematic key combinations. KeyDown moves to the appropriate cell in response to
navigational key combinations, or sets the EditorMode property to true when the user presses
F2.

TCustomGrid::KeyPress
TCustomGrid See also
KeyPress provides special processing when the user presses a key.
virtual void __fastcall KeyPress(char &Key);
Description
After generating an OnKeyPress event, KeyPress toggles the EditorMode property when the
user presses the Enter key. KeyPress is called after the KeyDown method, but before the user
releases the key.

TCustomGrid::MouseCoord
TCustomGrid See also
MouseCoord returns the row and column indexes of the cell that contains a point specified in
screen coordinates.
TGridCoord __fastcall MouseCoord(int X, int Y);
Description
Call MouseCoord to locate the column and row of the cell which contains a given screen
coordinate. Usually, MouseCoord is used to locate the cell which is under the mouse.

TCustomGrid::MouseDown
TCustomGrid See also
MouseDown provides special processing when the user presses a mouse button.
virtual void __fastcall MouseDown(Controls::TMouseButton Button,
Classes::TShiftState Shift, int X, int Y);

Description
MouseDown hides the editor window so that it can move selection to the cell that receives the
mouse click. If the mouse lands in the hot region for beginning a move or resize of a row or
column, MouseDown starts the move or resize, and provides visual feedback by changing the
cursor. If the editor window was hidden, it is brought back up in its new location. Finally,
MouseDown generates an OnMouseDown event.

TCustomGrid::MouseMove
TCustomGrid See also
MouseMove provides special processing when the user moves the mouse.
virtual void __fastcall MouseMove(Classes::TShiftState Shift, int X,
int Y);

Description
If the grid is in the middle of moving or resizing a row or column, or in the middle of selecting a
range of cells using the mouse, MouseMove calculates the changes implied by the mouse move
and provides visual feedback to the user. Finally, MouseMove generates an OnMouseMove
event.

TCustomGrid::MouseUp
TCustomGrid See also
MouseUp provides special processing when the user releases the mouse button.
virtual void __fastcall MouseUp(Controls::TMouseButton Button, Classes:
:TShiftState Shift, int X, int Y);

Description
MouseUp finishes a move or resize operation on a row or column, or if the user is selecting a
range of cells using the mouse, MouseUp finishes the select operation. Finally, MouseUp
generates an OnMouseUp event.

TCustomGrid::MoveColRow
TCustomGrid See also
MoveColRow selects the cell indicated by the ACol and ARow parameters.
void __fastcall MoveColRow(long ACol, long ARow, bool MoveAnchor, bool
Show);

Description
Grid controls call MoveColRow internally when changing the selected cell or cells. MoveColRow
selects the indicated cell, but does not take care of removing any previous selection.
The ACol and ARow parameters are the column index and the row index of the cell to be
selected. The MoveAnchor parameter indicates whether the new cell becomes the upper left
corner of the selected region. MoveAnchor is true unless MoveColRow is called when extending
a multicell selected region. The Show parameter indicates whether MoveColRow should ensure
that the newly selected cell is visible.

TCustomGrid::MoveColumn
TCustomGrid See also
MoveColumn moves a column to a new position.
void __fastcall MoveColumn(long FromIndex, long ToIndex);
Description
Call MoveColumn to move the column identified by the FromIndex parameter to the position
specified by the ToIndex parameter.

TCustomGrid::MoveRow
TCustomGrid See also
MoveRow moves a row to a new position.
void __fastcall MoveRow(long FromIndex, long ToIndex);
Description
Call MoveRow to move the row identified by the FromIndex parameter to the position specified
by the ToIndex parameter.

TCustomGrid::Paint
TCustomGrid See also
Paint draws the image of the grid control on the screen.
virtual void __fastcall Paint(void);
Description
Paint is called when the grid receives a Windows paint message. Paint draws the grid, calling
the DrawCell method when it is time to paint the contents of each cell. If DefaultDrawing is false,
Paint does not draw the background of the cells, provide the raised 3D effects on the fixed cells,
or draw the focus rectangle around the selected cell when it has focus.

TCustomGrid::RowHeightsChanged
TCustomGrid See also
RowHeightsChanged responds when the row heights change.
virtual void __fastcall RowHeightsChanged(void);
Description
RowHeightsChanged is called immediately after the row heights change. The change can result
from setting the RowHeights property, from setting the DefaultRowHeight property, from moving
one of the rows, or from resizing the rows with the mouse.
RowHeightsChanged adjusts the scroll bar and the position of the inplace editor to take into
account the new row size and positions of the rows.

TCustomGrid::RowMoved
TCustomGrid See also
RowMoved provides the interface for a method that responds when the position of a row
changes.
virtual void __fastcall RowMoved(long FromIndex, long ToIndex);
Description
RowMoved is called immediately after a row in the grid changes position. The FromIndex
parameter is the old index of the row, and the ToIndex parameter is the new index. The
RowMoved method of TCustomGrid does nothing. Descendants of TCustomGrid override this
method to make internal adjustments or to generate an OnRowMoved event.

TCustomGrid::ScrollData
TCustomGrid See also
ScrollData scrolls the visual image of the cells in the grid.
void __fastcall ScrollData(int DX, int DY);
Description
Grid controls call ScrollData internally when the nonfixed rows or columns scroll. ScrollData
updates the image of the grid.

TCustomGrid::SelectCell
TCustomGrid See also
SelectCell determines whether a particular cell in the grid can be selected.
virtual bool __fastcall SelectCell(long ACol, long ARow);
Description
Grid controls call SelectCell internally before attempting to move selection to a the cell identified
by the ACol and ARow parameters. ACol and ARow are the column and row indexes for the cell,
where the first column has index 0, and the top row has index 0.
The SelectCell method for TCustomGrid always returns true, allowing the cell to be selected.
Descendants of TCustomGrid override this method to check the properties of the information
displayed in the cell or generating an OnSelectCell event.

TCustomGrid::SetEditText
TCustomGrid See also
SetEditText provides the interface for a method that updates the text associated with a cell.
virtual void __fastcall SetEditText(long ACol, long ARow, const System:
:AnsiString Value);

Description
SetEditText is called by the inplace editor so that the grid can store the new value for the current
cell. The SetEditText method for TCustomGrid does nothing. Descendants of TCustomGrid
override this method to update an internal representation of the cell’s value, or to generate an
OnSetEditText event.

TCustomGrid::ShowEditor
TCustomGrid See also
ShowEditor displays the inplace editor when the grid enters edit mode.
void __fastcall ShowEditor(void);
Description
Grid controls call ShowEditor when the grid enters edit mode. ShowEditor displays the window of
the inplace editor over the currently selected cell. If the inplace editor does not yet exist,
ShowEditor creates it.

TCustomGrid::ShowEditorChar
TCustomGrid See also
ShowEditorChar displays the inplace editor, with its text set to the specified character.
void __fastcall ShowEditorChar(char Ch);
Description
Grid controls call ShowEditorChar when the user types a character into a cell and the editor is
not already showing. ShowEditorChar displays the window of the inplace editor over the
currently selected cell, and sets its text property to the character Ch. If the inplace editor does
not yet exist, ShowEditorChar creates it.

TCustomGrid::SizeChanged
TCustomGrid See also
SizeChanged responds to changes in the size of the grid.
virtual void __fastcall SizeChanged(long OldColCount, long OldRowCount)
;

Description
SizeChanged provides the interface for a method that responds to changes in the number of
rows or columns in the grid. The SizeChanged method of TCustomGrid does nothing.
Descendants of TCustomGrid override this method to make internal adjustments or generate
events.

TCustomGrid::Sizing
TCustomGrid See also
Sizing indicates whether the indicated coordinates are on one of the resize hot zones of the
graph.
bool __fastcall Sizing(int X, int Y);
Description
Grid controls call Sizing internally with the coordinates of a mouse click to determine whether the
user is about to resize a row or column.

TCustomGrid::TCustomGrid
TCustomGrid See also
TCustomGrid creates an instance of TCustomGrid.
__fastcall virtual TCustomGrid(Classes::TComponent* AOwner);
Description
Do not directly create instances of TCustomGrid. TCustomGrid is an abstract base class for grid
controls. Instead, call the constructor of a descendant of TCustomGrid to create a grid control at
runtime. Grid controls placed on a form at design time are created automatically.
After calling the constructor of its parent object, TCustomGrid
• Initializes the BorderStyle property to bsSingle.
• Initializes the ColCount and RowCount properties to 5.
• Initializes the Color property to clWindow and the FixedColor property to clBtnFace.
• Initializes the ControlStyle property to [csCaptureMouse, csOpaque, csDoubleClicks,

csFramed]
• Initializes the DefaultColWidth property to 64 and the DefaultRowHeight property to 24.
• Initializes the DefaultDrawing property to true.
• Initializes the EditorMode property to false.
• Initializes the FixedCols and FixedRows properties to 1.
• Initializes the GridLineWidth property to 1.
• Initializes the Options property to [goFixedVertLine, goFixedHorzLine, goVertLine,

goHorzLine, goRangeSelect]
• Initializes the ParentColor property to false.
• Initializes the ScrollBars property to ssBoth.
• Initializes the TabStop property to true.

TCustomGrid::TimedScroll
TCustomGrid See also
TimedScroll extends the move, resize, or selection out of the scrollable region when the user
drags the mouse in a direction where the grid is scrolled.
virtual void __fastcall TimedScroll(TGridScrollDirection Direction);
Description
TimedScroll is called periodically as the user continues to drag with the mouse outside of the
scrollable cells in the grid. TimedScroll does nothing unless the user is moving a row or column,
resizing a row or column, or selecting a multiple cell region using the mouse. TimedScroll scrolls
the cells in the grid to allow the operation to continue into the portion of the grid that was hidden
due to scrolling.

TCustomGrid::TopLeftChanged
TCustomGrid See also
TopLeftChanged updates the position of the inplace editor when the grid scrolls.
virtual void __fastcall TopLeftChanged(void);
Description
Grid controls call TopLeftChanged internally, whenever the LeftCol or TopRow property
changes.
Descendants of TCustomGrid override this method to make additional adjustments or to
generate an OnTopLeftChanged event.

TCustomGrid::UpdateDesigner
TCustomGrid See also
UpdateDesigner notifies the designer when rows and columns of the grid are moved or resized.
void __fastcall UpdateDesigner(void);
Description
At design time, the designer automatically keeps track of property changes so that it can prompt
the user to save any changes. Moving or resizing the rows and columns of the grid using the
mouse bypasses this system. UpdateDesigner gets around this problem by notifying the
designer that the properties of the grid have changed and that the changes should be saved.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl

TCustomGrid example
TCustomGrid

TCustomImageList
Hierarchy Properties Methods Events See also
A TCustomImageList is an abstract class that is derived from to provide a collection of same-
sized images, each of which can be referred to by its index.
Header
vcl/controls.hpp
Description
Image lists are used to efficiently manage large sets of icons or bitmaps. All images in an image
list are contained in a single, wide bitmap in screen device format. An image list may also
include a monochrome bitmap that contains masks used to draw images transparently (icon
style).

TCustomImageList properties
TCustomImageList Alphabetically Legend

In TCustomImageList
AllocBy
BkColor
BlendColor

Count
DragCursor

Dragging
DrawingStyle
Handle
Height
ImageType
Masked
ShareImages
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TCustomImageList properties
TCustomImageList By object Legend

AllocBy
BkColor
BlendColor

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
Count

DesignInfo
DragCursor

Dragging
DrawingStyle
Handle
Height
ImageType
Masked
Name

Owner
ShareImages
Tag
Width

TCustomImageList::AllocBy
TCustomImageList See also
The AllocBy property sets the number of images which the image list will grow by when it needs
to resize to make room for new images.
__property int AllocBy;
Description
Use the AllocBy method to specify the number of new images that can be added to the resized
image list.

TCustomImageList::BkColor
TCustomImageList See also
The BkColor property determines which background color to use when drawing an image.
__property Graphics::TColor BkColor;
Description
Setting BKColor to clNone specifies no background color i.e. the image is drawn transparently.
Setting BKColor to clDefault specifies using the image lists background color when drawing.

TCustomImageList::BlendColor
TCustomImageList See also
The BlendColor property determines which foreground color to use when drawing an image.
__property Graphics::TColor BlendColor;
Description
clNone specifies no blend color while clDefault specifies the system highlight color for the
foreground color.

TCustomImageList::Count
TCustomImageList See also
The Count property returns the number of images in the image list.
__property int Count;
Description
Count can be useful when iterating through the image list.

TCustomImageList::DragCursor
TCustomImageList See also Example
The DragCursor property specifies the current drag cursor that is associated with the image list.
__property TCursor DragCursor;
Description
Use the DragCursor property to determine which drag cursor should be displayed when an
image in the image list is dragged. When an image is dragged, a new drag image is created by
combining the given image (typically a mouse cursor image) with the current drag cursor.

TCustomImageList::Dragging
TCustomImageList See also
The Dragging property returns whether an image in the image list is being dragged.
__property bool Dragging;
Description
When Dragging returns true, an image in the image list is being dragged. When Dragging returns
false, no image is being dragged.

TCustomImageList::DrawingStyle
TCustomImageList See also
The DrawingStyle property specifies the style to be used when the image list is drawing an
image.
__property TDrawingStyle DrawingStyle;
Description
Use the DrawingStyle property to control how the image is to appear. These are the possible
values:
Value Meaning

dsFocused Draws the image blending 25% with the system highlight color. This only
affects image lists which contain masks.

dsSelected Draws the image blending 50% with the system highlight color. This only
affects image lists which contain masks.

dsNormal Draws the image using the color specified in the BkColor property. If the
BkColor is clNone then the image is drawn transparently using the mask.

dsTransparent Draws using the mask regardless of the BkColor setting.

TCustomImageList::Handle
TCustomImageList See also Example
The Handle property specifies the handle to the image list.
__property int Handle;
Description
The Handle property allows access to the Windows image list object handle when calling
Windows API functions that requires it.

TCustomImageList::Height
TCustomImageList See also Example
The Height property specifies the height of images within the image list.
__property int Height;
Description
Use the Height property to specify the height of images before any are added to the image list.
The image list is cleared when this value changes.

TCustomImageList::ImageType
TCustomImageList See also
The ImageType property determines whether the image list will use the image or the associated
image mask when drawing.
__property TImageType ImageType;
Description
Use the ImageType property to control how the image is to appear. These are the possible
values
Value Meaning

itImage Draws the image.
itMask Draws the mask.

TCustomImageList::Masked
TCustomImageList See also
The Masked property specifies whether the image list contains transparent or non-transparent
images.
__property bool Masked;
Description
Set the Masked property to true to specify that the images will contain transparent areas.

TCustomImageList::ShareImages
TCustomImageList See also
The ShareImages property specifies whether the image list destroys its handle when the image
list is destroyed.
__property bool ShareImages;
Description
Set the ShareImages property to false to ensure that the handle to the image list is freed when
the image list is destroyed.

TCustomImageList::Width
TCustomImageList See also Example
The Width property sets the width of images within the image list.
__property int Width;
Description
Use the Width property to specify the width of images before any are added to the image list.
The image list is cleared when this value changes.

TCustomImageList events
TCustomImageList Alphabetically Legend

In TCustomImageList
OnChange

TCustomImageList events
TCustomImageList By object Legend

OnChange

TCustomImageList::OnChange
TCustomImageList See also
The OnChange event is called when the image list changes.
Description
Use the OnChange event to execute some code when the image list changes. Any objects
registered with the RegisterChanges method will also be notified.

TCustomImageList methods
TCustomImageList Alphabetically Legend

In TCustomImageList
~TCustomImageList
Add
AddIcon
AddImages
AddMasked
Assign
BeginDrag

Change
Clear
DefineProperties
Delete
DragLock
DragMove
DragUnlock
Draw
DrawOverlay
EndDrag
FileLoad

GetBitmap
GetHotSpot
GetIcon
GetImageBitmap

GetImages
GetMaskBitmap
GetResource
HandleAllocated
HandleNeeded
HideDragImage
Initialize
Insert
InsertIcon
InsertMasked
Move
Overlay

RegisterChanges
Replace
ReplaceIcon
ReplaceMasked
ResourceLoad
SetDragImage
ShowDragImage
TCustomImageList
UnRegisterChanges

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomImageList methods
TCustomImageList By object Legend

~TCustomImageList
AddIcon
AddImages
AddMasked
Add
Assign
BeginDrag

Change
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DefineProperties

Delete
DestroyComponents
Destroying
Dispatch
DragLock
DragMove
DragUnlock
DrawOverlay
Draw
EndDrag
FieldAddress
FileLoad
FindComponent
FreeInstance
FreeNotification
Free
GetBitmap
GetHotSpot
GetIcon
GetImageBitmap

GetImages
GetMaskBitmap
GetParentComponent
GetResource
HandleAllocated
HandleNeeded
HasParent
HideDragImage
InheritsFrom
Initialize
InitInstance
InsertComponent
InsertIcon

InsertMasked
Insert
InstanceSize
MethodAddress

MethodName
Move
NewInstance
Overlay
RegisterChanges
RemoveComponent
ReplaceIcon
ReplaceMasked
Replace
ResourceLoad
SetDragImage
ShowDragImage
TCustomImageList
UnRegisterChanges

TCustomImageList::~TCustomImageList
TCustomImageList See also
~TCustomImageList frees the memory associated with the TCustomImageList object. Do not call
~TCustomImageList directly. Instead, use the delete keyword on the object, which causes ~
TCustomImageList to be invoked automatically.
__fastcall virtual ~TCustomImageList(void);
Description
Before calling Free, ~TCustomImageList first calls UnRegisterChanges to unregister any objects
registered to receive notification when the image list changed and frees all TChangeLink and
TBitMap objects associated with the image list.

TCustomImageList::Add
TCustomImageList See also
The Add method adds an Image and its Mask to the image list object. Add returns the index of
the added image.
int __fastcall Add(Graphics::TBitmap* Image, Graphics::TBitmap* Mask);
Description
Use the Add method to add images with their masks to an image list. When the Masked property
of the image list is false, the second bitmap handle is ignored; it can be set to NULL. Add returns
-1 if it fails, 0 if it’s successful.

TCustomImageList::AddIcon
TCustomImageList See also
The AddIcon method adds an icon specified by Image to the image list object. AddIcon returns
the index of the added image.
int __fastcall AddIcon(Graphics::TIcon* Image);
Description
Use the AddIcon method to add an icon to an image list. AddIcon returns -1 if it fails, 0 if it’s
successful.

TCustomImageList::AddImages
TCustomImageList See also
The AddImages method adds images from another image list specified by Value to the image list
object.
void __fastcall AddImages(TCustomImageList* Value);
Description
Use the AddImages method to add the images from another image list. AddImages returns -1 if
it fails, 0 if it’s successful.

TCustomImageList::AddMasked
TCustomImageList See also
The AddMasked method adds an image to the image list along with a color which is used to
generate the transparent mask from the image.
int __fastcall AddMasked(Graphics::TBitmap* Image, Graphics::TColor
MaskColor);

Description
AddMasked is similar to Add except that a mask bitmap is not specified. Instead, a color that the
system combines with the image bitmap to automatically generate the masks is specified. Each
pixel of the specified color in the image bitmap is changed to black, and the corresponding bit in
the mask is set to one. As a result, any pixel in the image that matches the specified color is
transparent when the image is drawn. AddMasked returns -1 if it fails, 0 if it’s successful.

TCustomImageList::Assign
TCustomImageList See also
The Assign method copies the information from one image list to another.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
If Source is another TImageList object, Assign discards any current image information and
replaces it with the information from Source. If Source is any other type of object, Assign calls its
inherited method. Use this method to copy one object's information to another.

TCustomImageList::BeginDrag
TCustomImageList See also
The BeginDrag method starts the dragging of an image.
bool __fastcall BeginDrag(HWND Window, int X, int Y);
Description
Use the BeginDrag method to start dragging an image set by SetDragImage at the X and Y
coordinates of the drag position relative to the upper-left corner of the image. Window is the
handle to the image list. BeginDrag returns true if it was successful in starting the drag of the
image.

TCustomImageList::Change
TCustomImageList See also
The Change method notifies the image list and any objects registered by RegisterChanges that
a change has occurred in the image list.
virtual void __fastcall Change(void);
Description
Use this method to trigger the OnChange event of the image list and any objects registered with
the image list for change notification.

TCustomImageList::Clear
TCustomImageList See also
The Clear method clears all images from the image list.
void __fastcall Clear(void);
Description
Use the Clear method to remove all images from the image list. Use the Delete method to delete
one image from the image list.

TCustomImageList::DefineProperties
TCustomImageList See also
The DefineProperties method calls the inherited DefineProperties method and also defines
bitmap data for storage by the filer.
virtual void __fastcall DefineProperties(Classes::TFiler* Filer);
Description
The DefineProperties method calls the inherited DefineProperties method and also calls the
TFiler::DefineBinaryProperty which defines binary data the filer object will store as if the data
were a property.

TCustomImageList::Delete
TCustomImageList See also
The Delete method deletes a particular image from the image list.
void __fastcall Delete(int Index);
Description
Use the Delete method to delete an image specified by Index in the image list. Use the Clear
method to delete all images in the image list.

TCustomImageList::DragLock
TCustomImageList See also
The DragLock method associates the drag image with the given Window handle and draws it at
the position given by the parameters XPos and YPos while the window is in drag mode. Returns
true if successful.
bool __fastcall DragLock(HWND Window, int XPos, int YPos);
Description
Call DragLock to use an image in the image list as a drag image when a particular window is
dragged.

TCustomImageList::DragMove
TCustomImageList See also
The DragMove method moves the drag image set by SetDragImage to a new position specified
by X and Y within its currently associated window while the window is in drag mode. Returns true
if successful.
bool __fastcall DragMove(int X, int Y);
Description
Use the DragMove method to move the image that is being dragged during a drag-and-drop
operation.

TCustomImageList::DragUnlock
TCustomImageList See also
The DragUnlock method removes the association between the drag image and a window.
void __fastcall DragUnlock(void);
Description
Use the DragUnlock method when an image is no longer needed as a drag image for a particular
window.

TCustomImageList::Draw
TCustomImageList See also
The Draw method draws the image specified by the Index parameter onto the provided Canvas
at position X, Y. The image is drawn according to the style set in the DrawingStyle property.
void __fastcall Draw(Graphics::TCanvas* Canvas, int X, int Y, int
Index);

Description
Use the Draw method do draw an image.
Example
The following code draws each header section adding text for a title and icons stored in
ImageList1. The image list contains as many icons as there are header sections.
void TForm1::HeaderControl1DrawSection(THeaderControl *HeaderControl1,
THeaderSection *Section, const TRect& Rect, bool Pressed)

{
HeaderControl->Canvas->Brush->Color = clRed;
HeaderControl->Canvas->FillRect(Rect);
HeaderControl->Canvas->Font->Color = clYellow;
HeaderControl->Canvas->TextOut(Rect.left + 30, Rect.top + 2, "Header

Control");
ImageList1->Draw(HeaderControl1->Canvas,Rect.Left,Rect.Top,Section-

>Index);
}

TCustomImageList::DrawOverlay
TCustomImageList See also
The DrawOverlay method draws an image and an overlay onto the provided Canvas.
void __fastcall DrawOverlay(Graphics::TCanvas* Canvas, int X, int Y,
int ImageIndex, TOverlay Overlay);

Description
An overlay mask is an image drawn transparently over another image. Any image can be used
as an overlay mask. To draw an overlay mask over an image use the DrawOverlay method with
the index of the overlay mask. The Overlay method must be called first to allow an image to be
used as an overlay.

TCustomImageList::EndDrag
TCustomImageList See also Example
The EndDrag method ends the drag operation. EndDrag returns true if successful.
bool __fastcall EndDrag(void);
Description
Use EndDrag after BeginDrag has been called to end the drag operation.

TCustomImageList::FileLoad
TCustomImageList See also
The FileLoad method loads a file of type TResType into the image list. The MaskColor is used to
set the transparent color for the images in the file. Name specifies the file to be loaded.
bool __fastcall FileLoad(TResType ResType, System::AnsiString Name,
Graphics::TColor MaskColor);

Description
Use the FileLoad method to load a bitmap, cursor, or icon file into an image list. FileLoad returns
true if successful.

TCustomImageList::GetBitmap
TCustomImageList See also
The GetBitmap method returns the image specified by the Index parameter as a bitmap into the
Image parameter.
void __fastcall GetBitmap(int Index, Graphics::TBitmap* Image);
Description
Use the GetBitmap method to obtain a particular image in the image list as a bitmap object.

TCustomImageList::GetHotSpot
TCustomImageList See also
The GetHotSpot method returns the hot spot location associated with the current drag image.
POINT __fastcall GetHotSpot(void);
Description
Use the GetHotSpot method to obtain the position of the hot spot of the current drag image.

TCustomImageList::GetIcon
TCustomImageList See also
The GetIcon method returns the image specified by Index as an icon into the Image parameter.
void __fastcall GetIcon(int Index, Graphics::TIcon* Image);
Description
Use the GetIcon method to obtain a particular image in the image list as an icon.

TCustomImageList::GetImageBitmap
TCustomImageList See also
The GetImageBitmap method returns a handle to a bitmap containing all of the images in the
image list.
HBITMAP __fastcall GetImageBitmap(void);
Description
Use the GetImageBitmap method to obtain a bitmap that contains all images in the image list.
GetImageBitmap returns 0 if unsuccessful.

TCustomImageList::GetImages
TCustomImageList See also
The GetImages method returns the image and its mask specified by the Index parameter as a
bitmap into the Image and Mask parameters respectively.
void __fastcall GetImages(int Index, Graphics::TBitmap* Image,
Graphics::TBitmap* Mask);

Description
Use the GetImages method to obtain an image and its mask as bitmaps.

TCustomImageList::GetMaskBitmap
TCustomImageList See also
The GetMaskBitmap method returns a handle to a bitmap containing all masks for images in the
image list.
HBITMAP __fastcall GetMaskBitmap(void);
Description
Use the GetMaskBitmap to obtain a bitmap that contains all masks in the image list.
GetMaskBitmap returns 0 unsuccessful.

TCustomImageList::GetResource
TCustomImageList See also
The GetResource method loads the specified bitmap, cursor, or icon resource into the image list.
bool __fastcall GetResource(TResType ResType, System::AnsiString Name,
int Width, TLoadResources LoadFlags, Graphics::TColor MaskColor);

Description
Use the GetResource method to load bitmap, cursor, or icon resource of Name into an image
list.
ResType specifies the type of graphical resource that is to be loaded into the image list and can
be rtBitmap, rtCursor or rtIcon. The MaskColor is used to set the transparent color for the images
in the file. LoadFlags specifies how to load the image. A combination of the following values can
be used.
Value Meaning

lrNone No specific resource flags.
lrDefaultColor Use the color format of the display.
lrDefaultSize Use system metrics for Height and Width if the Width parameter to

GetResource is 0. If the Width parameter is 0 and this option is not
specified for cursors and icons, the resources width and height will be
used.

lrFromFile Loads the resource from the specified file.
lrMap3DColors Replaces the images grey shades with the 3D windows colors.
lrTransparent Replaces the color table entry for the first pixel of the resource with the

default window color (COLOR_WINDOW). This applies only to images
with color tables.

lrMonoChrome Loads the resource as black and white.

TCustomImageList::HandleAllocated
TCustomImageList See also Example
The HandleAllocated method returns true if a window handle for the control exists, false if none
exists.
bool __fastcall HandleAllocated(void);
Description
Use the HandleAllocated method to determine if a handle exists for the control. HandleAllocated
doesn’t create a handle if one doesn’t already exist. Calling the Handle property of a control
directly creates a handle automatically if one didn't previously exist.

TCustomImageList::HandleNeeded
TCustomImageList See also Example
The HandleNeeded method creates an image list handle for the image list if one doesn't already
exist.
void __fastcall HandleNeeded(void);
Description
Use the HandleNeeded method to create an image list handle for the image list when one
doesn’t already exist. This method is called automatically when an image list’s handle property
is accessed.

TCustomImageList::HideDragImage
TCustomImageList See also
The HideDragImage method hides the current drag image if it was previously shown.
void __fastcall HideDragImage(void);
Description
Use the HideDragImage method to hide the current drag image.

TCustomImageList::Initialize
TCustomImageList See also
The Initialize method sets numerous image list properties to their default values and creates
instances of objects used internal to the image list.
void __fastcall Initialize(void);
Description
Initialize is called from the TCustomImageList constructor of the image list.

TCustomImageList::Insert
TCustomImageList See also
The Insert method inserts a bitmap and its mask into the image list following the image specified
by Index.
void __fastcall Insert(int Index, Graphics::TBitmap* Image, Graphics::
TBitmap* Mask);

Description
Use the Insert method to insert a bitmap and its mask into the image list.

TCustomImageList::InsertIcon
TCustomImageList See also
The InsertIcon method inserts an icon at the Index + 1 position in the image list.
void __fastcall InsertIcon(int Index, Graphics::TIcon* Image);
Description
Use the InsertIcon method to insert an icon into the image list.

TCustomImageList::InsertMasked
TCustomImageList See also
The InsertMasked method inserts a bitmap at the Index + 1 position, creating the mask from the
transparent color provided by the parameter MaskColor.
void __fastcall InsertMasked(int Index, Graphics::TBitmap* Image,
Graphics::TColor MaskColor);

Description
Use the InsertMasked method to insert a masked image into the image list.

TCustomImageList::Move
TCustomImageList See also
The Move method moves an image specified by CurIndex in the image list to another position
specified by NewIndex within the image list.
void __fastcall Move(int CurIndex, int NewIndex);
Description
Use the Move method to move an image to another position in the image list.

TCustomImageList::Overlay
TCustomImageList See also
The Overlay method adds the index of an image to the list of images to be used as overlay
masks. Up to four indices can be added to the list.
typedef signed char TOverlay;
bool __fastcall Overlay(int ImageIndex, TOverlay Overlay);
Description
An overlay mask is an image drawn transparently over another image. Any image can be used
as an overlay mask. To draw an overlay mask over an image use the DrawOverlay method with
the index of the overlay mask. If successful, Overlay returns true.

TCustomImageList::RegisterChanges
TCustomImageList See also
The RegisterChanges method registers an object to be notified when changes occur in the
image list.
void __fastcall RegisterChanges(TChangeLink* Value);
Description
Use the RegisterChanges method to have an object notified whenever changes occur in the
image list. The TChangeLink's OnChange event is called whenever a change in the image list
occurs.
Create a change link object for each object that should be notified of changes. Register each
object by calling RegisterChanges and passing its change link object as the Value parameter.
The OnChange event of all registered change link objects is then triggered when a change
occurs in the image list. Any code assigned to the OnChange event handlers will execute.

TCustomImageList::Replace
TCustomImageList See also
The Replace method replaces an image in the image list with a new image and mask.
void __fastcall Replace(int Index, Graphics::TBitmap* Image, Graphics:
:TBitmap* Mask);

Description
Use the Replace method to replace the image at the Index position in the image list with a new
Image and overlay Mask.

TCustomImageList::ReplaceIcon
TCustomImageList See also
The ReplaceIcon method replaces an image in the image list with an icon.
void __fastcall ReplaceIcon(int Index, Graphics::TIcon* Image);
Description
Use the ReplaceIcon method to replace the Image at the Index position in the image list with a
new icon.

TCustomImageList::ReplaceMasked
TCustomImageList See also
The ReplaceMasked method replaces an image in the image list with a new image and mask.
void __fastcall ReplaceMasked(int Index, Graphics::TBitmap* NewImage,
Graphics::TColor MaskColor);

Description
Use the ReplaceMasked method to replace the image at Index position within the image list with
a new image and mask created using the MaskColor for transparency.

TCustomImageList::ResourceLoad
TCustomImageList See also
The ResourceLoad method loads a resource into the image list.
bool __fastcall ResourceLoad(TResType ResType, System::AnsiString
Name, Graphics::TColor MaskColor);

Description
Use the ResourceLoad method to load a resource of type TResType into the image list. The
MaskColor is used to create the mask for the resulting image.

TCustomImageList::SetDragImage
TCustomImageList See also
The SetDragImage method sets an image within the image list to be shown during a drag and
drop operation.
bool __fastcall SetDragImage(int Index, int HotSpotX, int HotSpotY);
Description
Use the SetDragImage method to set the image specified by Index within the image list to be
shown when the image list is being used for drag and drop. The hot spot of the image is
specified by HotSpotX and HotSpotY.

TCustomImageList::ShowDragImage
TCustomImageList See also
The ShowDragImage method shows the current drag image if it was previously hidden.
void __fastcall ShowDragImage(void);
Description
Use ShowDragImage method to show the current drag image if it was previously hidden.

TCustomImageList::TCustomImageList
TCustomImageList See also
The TCustomImageList constructor creates an empty image list.
__fastcall virtual TCustomImageList(Classes::TComponent* AOwner);

-Or-
__fastcall TCustomImageList(int AWidth, int AHeight);
Description
Use the TCustomImageList constructor to create an image list as a child of the component
specified by AOwner with a default image size of 16 by 16 pixels.
Or use the TCustomImageList constructor to create an image list object with an image size that
other than the default of 16 x 16 pixels. The initial size of the image list is determined by the
AHeight and AWidth parameters. The height and width can be altered after the image list has
been created using the Width and Height properties.

TCustomImageList::UnRegisterChanges
TCustomImageList See also
The UnRegisterChanges method removes an object from the list of objects to be notified when
the image list changes.
void __fastcall UnRegisterChanges(TChangeLink* Value);
Description
Use the UnRegisterChanges method to unregister a TChangeLink object. The object will no
longer receive notification when the image list changes.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent

TCustomImageList example
TCustomImageList

TCustomLabel
Hierarchy Properties Methods See also
TCustomLabel is the base class for non-windowed controls that display text on a form.
Header
vcl/stdctrls.hpp
Description
Use TCustomLabel as a base class when defining objects that display text that can not be edited
by the user. TCustomLabel introduces several new properties and methods to control the
appearance of the text. TCustomLabel is not a descendant of TWinControl, so it does not have
its own window and can’t receive direct input from the keyboard.
Do not create instances of TCustomLabel. To put a label on a form, use a TLabel object.

TCustomLabel properties
TCustomLabel Alphabetically Legend

In TCustomLabel
Alignment
AutoSize
FocusControl
ShowAccelChar
Transparent
WordWrap

Derived from TGraphicControl
Canvas

Derived from TControl
Align
BoundsRect
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ControlState
ControlStyle
Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width
WindowProc

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomLabel properties
TCustomLabel By object Legend

Alignment
Align
AutoSize
BoundsRect

Canvas
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

ControlState
ControlStyle

Cursor
DesignInfo
Enabled
FocusControl
Height
Hint
Left
Name

Owner
Parent
ShowAccelChar
ShowHint
Tag
Top
Transparent
Visible
Width
WindowProc
WordWrap

TCustomLabel::Alignment
TCustomLabel See also Example
Alignment controls the placement of the text within the label.
__property Classes::TAlignment Alignment;
Description
Set Alignment to specify how the text of the label is aligned within the ClientRect of the label
control. Alignment can be one of the following values:
Value Meaning

taLeftJustify The text appears lined up along the left edge of the label.
taRightJustify The text appears lined up along the right edge of the label.
taCenter The text is centered in the label.
The effect of the Alignment property is more obvious if the WordWrap property is true and the
label includes more than one line of text.

TCustomLabel::AutoSize
TCustomLabel See also Example
AutoSize determines whether the size of the label automatically resizes to accomodate the text.
__property bool AutoSize;
Description
Use AutoSize to make the label adjust its size automatically so the client area accomodates the
height and width of the text. When AutoSize is false, the label is fixed in size. When AutoSize is
true, the size of the label is readjusted whenever its text changes. The size of the label is also
readjusted when the Font property changes.
When WordWrap is true, the width of the label is fixed. If AutoSize is also true, changes to the
text cause the label to change in height. When AutoSize is true and WordWrap is false, the
height of the label is determined by the font, and changes to the text cause the label to change
in width.

TCustomLabel::FocusControl
TCustomLabel See also
FocusControl is a windowed control associated with the label.
__property Controls::TWinControl* FocusControl;
Description
Set FocusControl to the windowed control that should receive focus when the user presses the
accelerator key specified by the label. Specify an accelerator key by preceding a character in
the label text with an ampersand (&) and setting the ShowAccelChar property to true.

TCustomLabel::ShowAccelChar
TCustomLabel See also Example
ShowAccelChar determines how an ampersand in the label text is displayed.
__property bool ShowAccelChar;
Description
Set ShowAccelChar to true to allow the label to display an underlined accelerator key value.
When ShowAccelChar is true, any character preceded by an ampersand (&) appears underlined.
If the FocusControl property is set, the windowed control specified by the FocusControl property
receives input focus when the user types that underlined character. To display an ampersand
when ShowAccelChar is true, use two ampersands (&&) to stand for the single ampersand that
is displayed.
Set ShowAccelChar to false to display the label text with all ampersands appearing as
ampersands. When ShowAccelChar is false, the value of the FocusControl property is not used.

TCustomLabel::Transparent
TCustomLabel See also Example
Transparent specifies whether controls that sit below the label on a form can be seen through
the label.
__property bool Transparent;
Description
Set Transparent to true to prevent the label from obscuring other controls on the form. For
example, if the label is used to add text to a graphic, set Transparent to true so that the label
does not stand out as a separate object.
Writing text so that the background is transparent is slower than writing text when Transparent is
false. If the label is not obscuring a complicated image, performance can be improved by setting
the background color of the label to match the object beneath it and setting Transparent to false.

TCustomLabel::WordWrap
TCustomLabel See also Example
WordWrap specifies whether the label text wraps when it is too long for the width of the label.
__property bool WordWrap;
Description
Set WordWrap to true to allow the label to display multiple line of text. When WordWrap is true,
text that is too wide for the label control wraps at the right margin and continues in additional
lines.
Set WordWrap to false to limit the label to a single line. When WordWrap is false, text that is too
wide for the label appears truncated.

TCustomLabel methods
TCustomLabel Alphabetically Legend

In TCustomLabel
~TCustomLabel

GetLabelText
Notification
Paint
SetAutoSize
TCustomLabel

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Invalidate
Perform
Refresh
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
Update

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom

InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomLabel methods
TCustomLabel By object Legend

~TCustomLabel
Assign
BeginDrag
BringToFront
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
DefaultHandler
DestroyComponents
Destroying
Dispatch
DragDrop
Dragging
EndDrag
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free

GetLabelText
GetParentComponent
GetTextBuf
GetTextLen
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InstanceSize
Invalidate

MethodAddress
MethodName
NewInstance

Notification
Paint
Perform
Refresh
RemoveComponent
Repaint
ScreenToClient
SendToBack
SetAutoSize
SetBounds
SetTextBuf
Show
TCustomLabel
Update

TCustomLabel::~TCustomLabel
TCustomLabel
~TCustomLabel frees the memory associated with the TCustomLabel object. Do not call ~
TCustomLabel directly. Instead, use the delete keyword on the object, which causes ~
TCustomLabel to be invoked automatically.
__fastcall virtual ~TCustomLabel(void);

TCustomLabel::GetLabelText
TCustomLabel See also
GetLabelText returns the value of the Caption property.
virtual System::AnsiString __fastcall GetLabelText(void);
Description
Call GetLabelText to obtain the string that appears as the text of the label. GetLabelText is
exposed as a protected method so that descendants can override this method to display text
other than the value of the Caption property.

TCustomLabel::Notification
TCustomLabel See also
Notification updates the FocusControl property when the windowed control it refers to is
destroyed.
virtual void __fastcall Notification(Classes::TComponent* AComponent,
Classes::TOperation Operation);

Description
Notification is called automatically when components are created or destroyed. After calling the
inherited method, Notification checks whether the windowed control specified by the
FocusControl property is about to be destroyed. If the windowed control is going away,
Notification sets the FocusControl property to NULL.

TCustomLabel::Paint
TCustomLabel See also
Paint draws the image of the label.
virtual void __fastcall Paint(void);
Description
Paint is called automatically when the label receives a WM_PAINT message from its Parent.
Paint writes the text returned by the GetLabelText method.

TCustomLabel::SetAutoSize
TCustomLabel See also
SetAutoSize sets the AutoSize property.
virtual void __fastcall SetAutoSize(bool Value);
Description
SetAutoSize is the protected access method for the AutoSize property. It is exposed as a
protected method so that descendants can override it to change the implementation of the
AutoSize property.

TCustomLabel::TCustomLabel
TCustomLabel See also
TCustomLabel creates and initializes an instance of TCustomLabel.
__fastcall virtual TCustomLabel(Classes::TComponent* AOwner);
Description
Call TCustomLabel to create an instance of TCustomLabel at runtime. Labels placed on forms at
design time are created automatically.
After calling the constructor of its parent object, TCustomLabel initializes the following properties:
• AutoSize to true.
• ShowAccelChar to true.
• ControlStyle to [csOpaque, csReplicatable].
• Width to 65 and Height to 17.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TGraphicControl

TCustomLabel example
TCustomLabel

TCustomListBox
Hierarchy Properties Methods Events See also
TCustomListBox is the abstract base class type for the list-box objects that are wrappers for
Windows list box controls.
Header
vcl/stdctrls.hpp
Description
TCustomListBox is an abstract class that encapsulates behavior common to all list box controls
in Borland C++Builder. List box objects are used to display a scrollable list from which users can
select one or more items. Use a list box control to limit the user to selecting from a list of items
that is set at design time. Items in the list can also be dynamically added or deleted at runtime.
As a wrapper for a list box TCustomListBox introduces methods for:
• Displaying, sorting, selecting, manipulating and querying items in the list.
• Creating owner-draw style list boxes that can display graphical images such as icons and

bitmaps.
• Creating multiple-column and multiple-selection lists.
By default TCustomListBox is a standard list box that displays items as text strings. These items
are contained in a TStrings object, and the methods of the TStrings object are used to add,
insert or delete a string. The following code demonstrates adding a new string to the list box:
List box descendents of TCustomListBox inherit the basic functionality of TCustomListBox.
Some descendents also have specialized behavior and can be linked to file, directory, drive or
database information. Use these list boxes to easily access and list this type of information.
A combo box is a list box with an edit control and an optional drop down style for the list. Use a
combo box to allow users to type their selection into an edit box or to save space on a form by
having the list drop down.
For lists of items that require a matrix or expandable tree-like structure use outlines, list views or
tree views. These controls allow the grouping of items under column headings or in expandable
and contractible rows.
Component Writers’ notes
For component writers wanting to create a customized list box objects, use TCustomListBox as a
base class for deriving specialized list box objects.

TCustomListBox properties
TCustomListBox Alphabetically Legend

In TCustomListBox
BorderStyle

Canvas
Columns
ExtendedSelect
IntegralHeight
ItemHeight
ItemIndex
Items
MultiSelect

SelCount
Selected
Sorted
Style
TabWidth

TopIndex
Derived from TWinControl

Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ParentColor
ShowHint
Top

Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomListBox properties
TCustomListBox By object Legend

Align
BorderStyle
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
Columns

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled
ExtendedSelect

Handle
Height
HelpContext
Hint
IntegralHeight
ItemHeight
ItemIndex
Items
Left
MultiSelect
Name

Owner
ParentColor
Parent

SelCount
Selected
ShowHint

Showing
Sorted
Style

TabOrder
TabStop
TabWidth
Tag
TopIndex
Top
Visible
Width

TCustomListBox::BorderStyle
TCustomListBox Example
BorderStyle determines whether the list box has a border.
__property Forms::TBorderStyle BorderStyle;
Description
Use BorderStyle to change the appearance of the outer boundary of the list box control. A list
box can have a single border or no visible border. The following table lists the possible values for
TBorderStyle, which is the type of the BorderStyle property:
Value Meaning

bsNone No visible border
bsSingle Single-line border

TCustomListBox::Canvas
TCustomListBox See also
Canvas provides access to a drawing surface used when implementing a handler for the
OnDrawItem event of an owner-draw list box.
__property Graphics::TCanvas* Canvas;
Description
Canvas is only useful for applications that control the drawing of list box items, that is, for owner-
draw list boxes. Canvas is used to draw graphical images that can be used as items in a list box.
By default a TControlCanvas object is created for the Canvas property in the list box constructor.
To create an owner-draw list box that uses a canvas, set the Style property accordingly.
Example
The following code draws a graphic stored in the Objects property of the Items list of ListBox1.
This code would be attached to the OnDrawItem event handler of ListBox1.
void __fastcall TForm1::ListBox1DrawItem(TWinControl *Control, int
Index,

TRect Rect, TOwnerDrawState State)
{
TBitmap *bmp = static_cast<TBitmap*>(ListBox1->Items->Objects[Index])
;
TRect SourceRect = { 0, 0, bmp->Height, bmp->Width };
ListBox1->Canvas->CopyRect(Rect, bmp->Canvas, SourceRect);

}

TCustomListBox::Columns
TCustomListBox See also
Columns specifies the number of columns, in a multi-column list box, that are visible without
having to scroll.
__property int Columns;
Description
Use Columns to specify the number of columns, in a multi-column list box, that are visible
without having to use the horizontal scrollbar.
Multi-column list boxes have a horizontal scrollbar that allows users to view multiple columns as
they wrap. The default value for Columns is 0, meaning that the list box is not multi-column. That
is, users can scroll only vertically and the list of items will not wrap.
For Columns values greater than 0, multiple columns accommodate the items as they wrap
beyond the bottom of the list box. The Columns property specifies the number of columns that
are visible without having to horizontally scroll the list box.
The width of each column depends upon both the Width property and the number of Columns.

TCustomListBox::ExtendedSelect
TCustomListBox See also
ExtendedSelect determines if the user can select a sequential range of items in the list box.
__property bool ExtendedSelect;
Description
ExtendedSelect works in conjunction with the MultiSelect property. If ExtendedSelect is true and
MultiSelect is true, the user can select an item then hold down the Shift key and select another
and all the items in between the two selected items also become selected. If the user doesn’t
hold down the Shift or Ctrl key while selecting a second item, the first selected item becomes
unselected—in other words, the user must use the Ctrl key to select multiple noncontiguous
items, or the Shift key to select a range of items.
If ExtendedSelect is false and MultiSelect is true, the user can select multiple items without using
the Shift or Ctrl key, but they can’t select a range of items in one operation.
If MultiSelect is false, the setting of ExtendedSelect has no effect as the user will not be able to
select more than one item at a time in the list box.

TCustomListBox::IntegralHeight
TCustomListBox See also Example
IntegralHeight determines whether the list box displays the partial items.
__property bool IntegralHeight;
Description
If IntegralHeight is true, the list box shows only entries that fit completely in the vertical space,
and the bottom of the list box coincides with the bottom of the last completely drawn item in the
list.
If IntegralHeight is false, the bottom of the list box is determined by its ItemHeight property, and
the bottom item in the list might be only partially visible.
If the Style property value of the list box is lsOwnerDrawFixed, the height of the list box at design
time is always an increment of the ItemHeight value.
If the Style property value of the list box is lbOwnerDrawVariable, setting the IntegralHeight
property to true has no effect.

TCustomListBox::ItemHeight
TCustomListBox See also
ItemHeight specifies the height in pixels of an item in an owner-draw list box.
__property int ItemHeight;
Description
Use ItemHeight to control the height of an item in a list box when the Style property is
lsOwnerDrawFixed. The ItemHeight property can also affect the height of the list box itself.
When the IntegralHeight property is true, the height of the list box is always an increment of the
ItemHeight value.
If the Style property is lsStandard or lsOwnerDrawVariable, the value of ItemHeight is ignored.

TCustomListBox::ItemIndex
TCustomListBox See also Example
ItemIndex specifies the ordinal number of the selected item in the list box’s item list.
__property int ItemIndex;
Description
Use ItemIndex to select an item at runtime. Set the value of ItemIndex to the index of the item to
be selected. The ItemIndex of the first item in the list box is 0. If no item is selected, the value is
–1, which is the default value unless MultiSelect is true.
If the value of the MultiSelect property is true the user can select more than one item in the list
box. In this case, the ItemIndex value is the index of the selected item that has focus. If
MultiSelect is true, ItemIndex defaults to 0.

TCustomListBox::Items
TCustomListBox See also
Items contains the strings that appear in the list box.
__property Classes::TStrings* Items;
Description
Use Items to add, insert, delete and move items. By default the items in a list box are of type
TStrings. Use this item type to access its methods or properties in order to manipulate the items
in the list. For example, the following code adds the text in the edit box to the list box as an item:
ListBox1->Items->Add(Edit1->Text);
To add items that are either not strings, such as graphical images, or that are a combination of
strings and other items, set the Style property to an owner-draw.
Other list box properties and methods are used with list box items to:
• Determine their appearance.
• Determine their selection capabilities.
• Provide information about them.

TCustomListBox::MultiSelect
TCustomListBox See also Example
MultiSelect determines whether the user can select more than one element at a time from the list
box.
__property bool MultiSelect;
Description
Set MultiSelect to true to allow the user to select multiple items. If MultiSelect if false, multiple
items cannot be selected in the list box at the same time.
MultiSelect allows users to select multiple non-sequential items. It does not allow users to select
a range of items in one operation, as does the ExtendedSelect property.
When MultiSelect is true and multiple items are selected, the value of the ItemIndex property,
which indicates the index of the Selected item, is the index of the selected item that has focus.

TCustomListBox::SelCount
TCustomListBox See also
SelCount reports the number of items that are selected in a list box when multiple selections are
allowed.
__property int SelCount;
Description
SelCount is read-only. Use SelCount to find the number of selected items in the list box when
the MultiSelect property is true.
When the MultiSelect property is false, only one item can be selected. If no items are selected,
the value of SelCount is 0.

TCustomListBox::Selected
TCustomListBox See also Example
Selected determines whether a particular item is selected in a list box.
__property bool Selected[int Index];
Description
Use Selected to query the state of a particular item in the list box. If the item specified by the
Index parameter is selected in the list box, the value of the Selected property is true. If the
specified item is not selected, Selected is false.
The Index parameter is the item referenced by its position in the list box, with the first item
having an Index value of 0.
An item is selected when the user highlights it. More than one item in the list box can be
selected by setting the MultiSelect property to true. In this case, the Selected item is the one that
has focus.

TCustomListBox::Sorted
TCustomListBox See also Example
Sorted specifies whether the items in a list box are arranged alphabetically.
__property bool Sorted;
Description
Use Sorted to sort the items by setting its value to true. If Sorted is false, the items are unsorted.
When Sorted is true, items that are added or inserted are automatically inserted into the list box
in alphabetical order.

TCustomListBox::Style
TCustomListBox See also Example
Style determines whether the list box is standard or owner-draw.
__property TListBoxStyle Style;
Description
Use Style to specify whether the list box is a standard list box that displays text strings, or an
owner-draw list box that can display graphical images. By default, Style is lbStandard, meaning
that the list box displays each item as a string.
Owner-draw list boxes can display graphical images along with or instead of its strings, and the
items can be of either fixed or varying height. To create owner-draw list boxes, set the value of
Style to lbOwnerDrawFixed or lbOwnerDrawVariable. The following table lists the values for the
TListBoxStyle type of the Style property:
Value Meaning

lbStandard All items are strings, with each item the same height.
lbOwnerDrawFixed Each item in the list box is the height specified by the ItemHeight

property.
lbOwnerDrawVariable Items in the list box can be of varying heights.
Owner-draw list boxes require more programming because the application needs information on
how to render the image for each item in the list.
Each time an item is displayed in an lbOwnerDrawFixed list boxes, the OnDrawItem event
occurs. The event handler for OnDrawItem draws the specified item. The ItemHeight property
determines the height of all the items.
Each time an item is displayed in an lbOwnerDrawVariable list box, two events occur. The first is
the OnMeasureItem event. The code for the OnMeasureItem handler can set the height of each
item. Then the OnDrawItem event occurs. The code for the OnDrawItem handler draws each
item in the list box using the size specified by the OnMeasureItem handler.

TCustomListBox::TabWidth
TCustomListBox
TabWidth is the the tab widths for items in the list box.
__property int TabWidth;
Description
Use TabWidth to specify the tab widths for items in the list box.

TCustomListBox::TopIndex
TCustomListBox See also
TopIndex specifies the index number of the item that appears at the top of the list box.
__property int TopIndex;
Description
Use TopIndex property to find or set the first item displayed at the top of the list box. TopIndex
can be used, for example, to change the topmost item to a different item in the list.
Example
The following example uses a list box containing a list of strings, a button, and an edit box on a
form. When the user runs the application and clicks the button, the third item in the list becomes
the first item, and the index value of that item appears in the edit box. The index value displayed
is 2, indicating the third item in the list (the first item in the list has an index value of 0):
__fastcall TForm1::TForm1(TComponent *Owner)
: TForm(Owner)

{
for (int i = 0; i < 20; ++i)

ListBox1->Items->Add("Item " + AnsiString(i));
}
void __fastcall TForm1::Button1Click(TObject *Sender)
{
ListBox1->TopIndex = 2;
Edit1.Text = AnsiString(ListBox1->TopIndex);

}

TCustomListBox events
TCustomListBox Alphabetically Legend

In TCustomListBox
OnDrawItem
OnMeasureItem

TCustomListBox events
TCustomListBox By object Legend

OnDrawItem
OnMeasureItem

TCustomListBox::OnDrawItem
TCustomListBox See also
OnDrawItem occurs whenever an item in an owner-draw list box needs to be redisplayed.
__property TDrawItemEvent OnDrawItem;
Description
Use OnDrawItem to write a handler for drawing of the items in list boxes with the Style values
lbOwnerDrawFixed or lbOwnerDrawVariable. OnDrawItem occurs when the user selects an item
or scrolls the list in an owner-draw list box, causing the item to be redrawn. OnDrawItem occurs
only for owner-draw list boxes.
OnDrawItem is of type TDrawItemEvent and passes four parameters to its handler describing
the item to be drawn:
• ListBox, specifying a reference to the control containing the item.
• Index, specifying the index of the item in that control.
• Rect, specifying a rectangle in which to draw.
• State, specifying the state of the item (selected, focused or disabled).
The size of the rectangle that contains the item is determined either by the ItemHeight property
for fixed owner-draw list boxes or by the response to the OnMeasureItem event for variable
owner-draw list boxes.
The Index parameter is the position of the item in the list box.
Rect is the area in the list box where the item is to be drawn. The Rect parameter automatically
provides the proper location of the item within the control’s canvas.
State is the current state of the item in the list box. The TOwnerDrawState type defines the
possible values for the State parameter. The following table lists these values:
Value Meaning

odSelected The item is selected.
odDisabled The entire list box is disabled.
odFocused The item currently has focus.
Example
Here is a typical handler for an OnDrawItem event. In the example, a list box with the
lbOwnerDrawFixed style draws a bitmap to the left of each string.
void __fastcall TForm1::ListBox1DrawItem(TWinControl *Control, int
Index,

TRect &Rect, TOwnerDrawState State)
{
int Offset = 2; // default offset
TListBox *ListBox = dynamic_cast<TListBox*>(Control);
TCanvas *Canvas = ListBox->Canvas;
Canvas->FillRect(Rect); // clear the rectangle
// get and paint the bitmap if there is one
Graphics::TBitmap *Bitmap = static_cast<Graphics::TBitmap*>(ListBox->
Items->Objects[Index]);
if (Bitmap) {

Canvas->BrushCopy(Bounds(Rect.Left + 2, Rect.Top,
Bitmap->Width, Bitmap->Height), Bitmap,
Bounds(0, 0, Bitmap->Width, Bitmap->Height), clRed);

Offset = Bitmap->Width + 6;// 4 pixels between bitmap and text
}
// display the text
Canvas->TextOut(Rect.Left + Offset, Rect.Top, ListBox->Items->Names
[Index]);

}

TCustomListBox::OnMeasureItem
TCustomListBox See also
OnMeasureItem occurs whenever an application needs to redisplay an item in a variable height
owner-draw list box.
__property TMeasureItemEvent OnMeasureItem;
Description
Use OnMeasureItem to write a handler to measure items to be drawn in a list box with a Style
property value of lbOwnerDrawVariable.
OnMeasureItem is of type TMeasureItemEvent which contains three parameters describing the
item to measure:
• Control, specifying the control containing the item.
• Index, specifying the index of the item in the control.
• Height, specifying the height of the item.
The Index parameter identifies the position of the item in the list box.
The Height parameter should specify the height in pixels that the given item will occupy in the
control. The Height parameter is a var parameter, which initially contains the default height of the
item or the height of the item text in the control’s font. The handler can set Height to a value
appropriate to the contents of the item, such as the height of a graphical image to be displayed
within the item.
After the OnMeasureItem event occurs, the OnDrawItem event occurs, rendering the item with
the measured size.
Example
Here is a typical handler for an OnMeasureItem event. The example assumes that a variable
owner-draw list box already has bitmaps associated with each of its strings. It sets the height of
the item to the height of the associated bitmap if that height is greater than the default height.
void __fastcall TForm1::ListBox1MeasureItem(TWinControl *Control, int
Index,

int &Height)
{
TListBox *ListBox = dynamic_cast<TListBox*>(Control);
if (ListBox) {

Graphics::TBitmap *Bitmap;
Bitmap = static_cast<Graphics::TBitmap*>(ListBox->Items->Objects

[Index]);
if (Bitmap && Bitmap->Height > Height)

Height = Bitmap->Height;
}

}

TCustomListBox methods
TCustomListBox Alphabetically Legend

In TCustomListBox
~TCustomListBox
Clear

CreateParams
CreateWnd
DestroyWnd
DragCanceled
DrawItem
ItemAtPos
ItemRect
MeasureItem
TCustomListBox
WndProc

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomListBox methods
TCustomListBox By object Legend

~TCustomListBox
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
ClientToScreen
ContainsControl
ControlAtPos

CreateParams
CreateWnd
DefaultHandler
DestroyComponents
Destroying
DestroyWnd
DisableAlign
Dispatch
DragCanceled
DragDrop
Dragging
DrawItem
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused

FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
ItemAtPos
ItemRect

MeasureItem
MethodAddress
MethodName
NewInstance
PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy

SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TCustomListBox
UpdateControlState
Update

WndProc

TCustomListBox::~TCustomListBox
TCustomListBox See also
~TCustomRichEdit frees the memory associated with the TCustomRichEdit object. Do not call ~
TCustomRichEdit directly. Instead, use the delete keyword on the object, which causes ~
TCustomRichEdit to be invoked automatically.
__fastcall virtual ~TCustomListBox(void);
Description
~TCustomRichEdit frees the memory associated with the objects for the Canvas and Items
properties. Then it calls the destructor of its parent object.

TCustomListBox::Clear
TCustomListBox See also
Clear deletes all items from the list box.
void __fastcall Clear(void);
Description
Use Clear to delete all of the items in the list box at once.
Although the items in a standard list box are, by default, of type TStrings, Clear allows the user
to delete all of the items without referring to the item type. For example, the code to use the
Clear method of the list box is simply

ListBox1->Clear();
rather than

ListBox1->Items->Clear();
which calls the item object’s Clear method and also clears the items.

TCustomListBox::CreateParams
TCustomListBox See also
CreateParams initializes the window-creation parameter record passed in the Params
parameter.
virtual void __fastcall CreateParams(Controls::TCreateParams &Params);
Description
CreateParams is used to pass information, in its Params parameter, to CreateWindowHandle
when the list box control is created. The list box CreateWnd method calls the inherited
CreateWnd which passes this information in its call to CreateWindowHandle (a protected
method inherited from TWinControl).
TCustomListBox overrides CreateParams to customize the representation of the window. It uses
information from the list box Columns, ExtendedSelect, IntegralHeight, MultiSelect, Sorted and
Style properties and sets WS_HSCROLL, WS_VSCROLL, LBS_HASSTRINGS and
LBS_NOTIFY Windows styles for creation of the list box.
When overriding CreateParams, always call the inherited method first to set the default values,
then make any desired adjustments.
TCreateParams is the type of the Params parameter for CreateParams. It is a data structure
holding information pertinent to creating a window handle. CreateWindowHandle processed he
fields of the TCreateParams record to become the parameters for a call to the CreateWindowEx
API function.

TCustomListBox::CreateWnd
TCustomListBox See also
CreateWnd creates a Windows control corresponding to the list box component.
virtual void __fastcall CreateWnd(void);
Description
CreateWnd is called automatically by CreateHandle (a protected method inherited from
TWinControl). CreateWnd calls the inherited CreateWnd, which calls:
• CreateParams to initialize the window-creation parameters.
• CreateWindowHandle to create the window handle for the control.
TCustomListBox::CreateWnd additionally sets up the list box position, tabs, items, and columns.

TCustomListBox::DestroyWnd
TCustomListBox See also
DestroyWnd saves the list box Items in a string list before calling the inherited DestroyWnd.
virtual void __fastcall DestroyWnd(void);
Description
DestroyWnd saves the list box text string items, in the Items property, to internal storage in a
TStringList object that it creates. Then it calls the inherited DestroyWnd to destroy the windowed
control’s window handle and free associated device contexts.

TCustomListBox::DragCanceled
TCustomListBox See also
DragCanceled sends a mouse message cancelling the drag-and-drop operation.
virtual void __fastcall DragCanceled(void);
Description
DragCanceled is called in response to the cancellation of a drag-and-drop operation that had
started. Users can cancel the operation by dropping the item over a component that does not
accept the item, or by pressing Esc while dragging.
Borland C++Builder calls the DragCanceled method before invoking the OnEndDrag event.

TCustomListBox::DrawItem
TCustomListBox See also
DrawItem is the implementation method for the OnDrawItem event of owner-draw list boxes.
virtual void __fastcall DrawItem(int Index, const Windows::TRect &Rect,
TOwnerDrawState State);

Description
DrawItem is called whenever a visual aspect of an owner-draw list box changes. The list box
calls DrawItem for each visible item in its list, passing the index of the item in the Index
parameter.
By default, the DrawItem method for a list box calls any event handler attached to the
component's OnDrawItem event. If there is no handler attached, DrawItem fills the rectangle
passed in Rect and draws any text associated with the indexed item. The default drawing
ignores the State parameter, although State is passed along to attached event handlers.

TCustomListBox::ItemAtPos
TCustomListBox See also
ItemAtPos returns the index of the list box item indicated by the coordinates of a point on the
control.
int __fastcall ItemAtPos(const POINT &Pos, bool Existing);
Description
Use ItemAtPos to detect if an item exists at a particular point in the control.
The Pos parameter is the point in the control in window coordinates. If Pos is beyond the last
item in the list box, the value of the Existing variable determines the returned value. If Existing is
set to true, ItemAtPos returns –1, indicating that no item exists at that point. If Existing is set to
false, ItemAtPos returns the index of the last item in the list box plus one.

TCustomListBox::ItemRect
TCustomListBox See also
ItemRect returns the rectangle that surrounds the item specified in the Item parameter.
Windows::TRect __fastcall ItemRect(int Index);
Description
Use ItemRect to get the coordinates of a particular item in the list box. For example, ItemRect is
used internally by the ItemAtPos method.
The Index parameter is the ItemIndex of the item whose position is queried.

TCustomListBox::MeasureItem
TCustomListBox See also
MeasureItem is the implementation method for the OnMeasureItem event for an owner-draw list
box.
virtual void __fastcall MeasureItem(int Index, int &Height);
Description
MeasureItem is called whenever a visual aspect of a variable owner-draw list box, with the
csOwnerDrawVariable Style set, changes.
Before drawing its items, a variable owner-draw list box calls MeasureItem once for each visible
item, passing the index of the item to measure, and the default height of the item. Since Height
is a parameter passed by reference, MeasureItem can increase or reduce the height of each
item as needed.
By default the MeasureItem method does nothing except call any event handler attached to the
OnMeasureItem event. Override MeasureItem to change or add functionality to the default
behavior.

TCustomListBox::TCustomListBox
TCustomListBox See also
TCustomListBox instantiates a list box control.
__fastcall virtual TCustomListBox(Classes::TComponent* AOwner);
Description
Call TCustomListBox to instantiate a list box control at runtime. For list boxes created at design
time, TCustomListBox is called automatically.
TCustomListBox allocates memory for a list box control, and calls the constructor of its parent
object. Then it:
• Initializes values for its Width, Height and ItemHeight properties.
• Sets ParentColor to false, and TabStop and ExtendedSelect to true.
• Sets the ControlStyle for the list box.
• Sets the BorderStyle property to bsSingle.
• Creates a TControlCanvas object for the Canvas property.
• Creates a TStrings type of object for the Items property.

TCustomListBox::WndProc
TCustomListBox See also
WndProc provides some additional behavior for auto drag before calling the inherited method.
virtual void __fastcall WndProc(Messages::TMessage &Message);
Description
WndProc overrides the inherited WndProc to provide specialized responses to messages that
allows the list box to handle auto drag mode itself. Then it calls the inherited WndProc to handle
all other messages.
When overriding the WndProc method, be sure to call the inherited WndProc at the end to
dispatch any other messages.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TCustomListBox example
TCustomListBox

TCustomListView
Hierarchy Properties Methods Events
The TCustomListView component is the abstract base type for all list-view components,
including TListView.
Header
vcl/comctrls.hpp
Description
Most of the properties, methods, and events defined in TCustomListView are protected so that
you can choose whether to publish them in your own list-view components. TListView publishes
nearly all of then, so you can find their explanations in the VCL reference for TListView.

TCustomListView properties
TCustomListView Alphabetically Legend

In TCustomListView
AllocBy
BorderStyle

BoundingRect
Column

ColumnClick
Columns
DropTarget
HideSelection
IconOptions
ItemFocused
Items
LargeImages
MultiSelect
ReadOnly

SelCount
Selected
ShowColumnHeaders
SmallImages
SortType
StateImages

TopItem
ViewOrigin

ViewStyle
VisibleRowCount

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components

ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomListView properties
TCustomListView By object Legend

Align
AllocBy
BorderStyle

BoundingRect
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ColumnClick
Columns

Column
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
DropTarget
Enabled

Handle
Height
HelpContext
HideSelection
Hint
IconOptions
ItemFocused
Items
LargeImages
Left
MultiSelect
Name

Owner
Parent
ReadOnly

SelCount
Selected
ShowColumnHeaders

ShowHint
Showing

SmallImages
SortType
StateImages
TabOrder
TabStop
Tag

TopItem
Top

ViewOrigin
ViewStyle

VisibleRowCount
Visible
Width

TCustomListView::AllocBy
TCustomListView
The AllocBy property provides a list view control for adding a large number of items.
__property int AllocBy;
Description
The AllocBy property provides a list view control for adding a large number of items. Set AllocBy
before adding a large number of items. AllocBy enables a list view control to reallocate its
internal data structures only once rather than every time you add an item.

TCustomListView::BorderStyle
TCustomListView Example
The BorderStyle property controls the kind of border the component displays.
__property Forms::TBorderStyle BorderStyle;
Description
The BorderStyle property of list boxes determines whether it has a border. The possible values
are bsNone for no visible border and bsSingle for a single-line border.

TCustomListView::BoundingRect
TCustomListView See also
The BoundingRect property retrieves the bounding rectangle of all items in the list view control.
__property Windows::TRect BoundingRect;
Description
The BoundingRect property retrieves the bounding rectangle of all items in the list view control.
The list view’s ViewStyle property must be either vsIcon or vsSmallIcon. This property is
runtime and read only.

TCustomListView::Column
TCustomListView
The Column property returns the column with the given Index parameter.
virtual void __fastcall ColClick(TListColumn* Column);
Description
The Column property returns the column with the given Index parameter. This property is
runtime and read only.

TCustomListView::ColumnClick
TCustomListView See also
The ColumnClick property determines whether the column header behaves like a button.
__property bool ColumnClick;
Description
The ColumnClick property determines whether the column header behaves like a button. A
column header is a panel with a caption that identifies the category of its list of items. To display
the headers the ShowColumnHeaders property must be set to true and the ViewStyle property
must be set to vsReport.

TCustomListView::Columns
TCustomListView
The Columns property is used to add or delete columns to a list view, and to edit their display
properties.
__property TListColumns* Columns;
Description
The Columns property contains the optional column headers for a TListView control. To display
the columns you must set the list view ViewStyle property to vsReport (vsIcon is the default).
When setting Columns at design-time a ListView Columns Editor dialog appears. This dialog
displays an indexed list of the columns that is maintained by the TListColumns object. The
individual columns are TListColumn objects. You can use this dialog to add or delete columns
(TListColumn objects), and to edit their display properties. At runtime use the Caption,
Alignment, and Width properties to change the appearance of the column headers.

TCustomListView::DropTarget
TCustomListView
The DropTarget property returns whether the item in the list view is the target of a drag and drop
operation.
__property TListItem* DropTarget;
Description
The DropTarget property returns whether the item in the list view is the target of a drag and drop
operation.

TCustomListView::HideSelection
TCustomListView Example
The HideSelection property determines whether text that is selected in a list remains selected
when the focus shifts to another control.
__property bool HideSelection;
Description
The HideSelection property determines whether text that is selected in a list remains selected
when the focus shifts to another control. If true, the text is no longer selected until the focus
returns to the control. If false, the text remains selected. The default value is true.

TCustomListView::IconOptions
TCustomListView
The IconOptions property contains options pertaining to the icons displayed in a list view.
__property TIconOptions* IconOptions;
Description
The IconOptions property contains options pertaining to the icons displayed in a list view. The
ViewStyle of the list view must be set to either vsIcon or vsSmallIcons for these options to affect
the control. Use the Arrangement property to have the icons align at the top or the left of the list
view. Set AutoArrange to true to have the icons arranged automatically when icons are added,
moved, deleted or otherwise redrawn. Set WrapText to true to have the Caption of the item wrap
rather than display on one line when it exceeds the width of the icon.

TCustomListView::ItemFocused
TCustomListView
The ItemFocused property is used to determine which item, if any, has focus in a list view and to
make an item have focus.
__property TListItem* ItemFocused;
Description
Run-time only. The ItemFocused property for list views is used to determine which item, if any,
has focus in a list view and to make an item have focus. When an item has focus, it's surrounded
by a standard focus rectangle. If no item has focus, ItemFocused will return NULL. Only one item
can have focus.

TCustomListView::Items
TCustomListView Example
The Items property contains the list of items in a TListView control.
__property TListItems* Items;
Description
The Items property contains the list of items in a TListView control. When setting this property at
design-time a ListView Items Editor dialog appears. This dialog displays an indexed list of the
items that is maintained by the TListItems object. The individual items in a list view are TListItem
objects.
You can use this dialog to add or delete items or SubItems, and to edit their display properties.
At runtime, use each item's Caption, ImageIndex and StateIndex properties to change the
appearance of the list items.

TCustomListView::LargeImages
TCustomListView Example
The LargeImages property determines which image list (TImageList) is used by the list view
when the list view has a ViewStyle property of vsIcon.
__property Controls::TImageList* LargeImages;
Description
The LargeImages property for a list view determines which image list (TImageList) is used by the
list view when the list view has a ViewStyle property of vsIcon. An image list contains a list of
bitmaps that can be displayed next to the item's label.

TCustomListView::MultiSelect
TCustomListView Example
The MultiSelect property determines whether the user can select more than one element at a
time from the list.
__property bool MultiSelect;
Description
The MultiSelect property determines whether the user can select more than one element at a
time from the list. If MultiSelect is true, the user can select multiple items. If MultiSelect if false,
multiple items cannot be selected in the list box at the same time. The default value is false.

TCustomListView::ReadOnly
TCustomListView
The ReadOnly property determines if the user can change the contents of the control.
__property bool ReadOnly;
Description
The ReadOnly property determines if the user can change the contents of the control. If
ReadOnly is true, the user can't change the contents. If ReadOnly is false, the user can modify
the contents. The default value is false.
For data-aware controls, the ReadOnly property determines whether the user can use the data-
aware control to change the value of the field of the current record, or if the user can use the
control only to display data. If ReadOnly is false, the user can change the field's value as long as
the dataset is in edit mode.
When the ReadOnly property of a data grid is true, the user can no longer use the Insert key to
insert a new row in the grid, nor can the user append a new row at the end of the data grid with
the Down Arrow key.

TCustomListView::SelCount
TCustomListView
The SelCount property returns the number of selected items in a list view control.
__property int SelCount;
Description
Run-time and ready only. The SelCount property returns the number of selected items in a list
view control.

TCustomListView::Selected
TCustomListView Example
The Selected property returns the first selected item in the list view.
__property TListItem* Selected;
Description
Run-time only. The Selected property returns the first selected item in the list view. If an item
becomes selected, the list view’s OnChanging and OnChange events will be triggered.

TCustomListView::ShowColumnHeaders
TCustomListView Example
The ShowColumnHeaders property determines whether the column headers on a list view are
displayed.
__property bool ShowColumnHeaders;
Description
The ShowColumnHeaders property determines whether the column headers on a list view are
displayed. A column header is a panel with a caption that identifies the category of its list of
items. Headers are useful for labeling the columns of subitems that provide additional
information in a list view.
Use the Columns property to create or add headers. To display the headers the
ShowColumnHeaders property must be set to true and the ViewStyle property must be set to
vsReport.

TCustomListView::SmallImages
TCustomListView Example
The SmallImages property determines which image list (TImageList) is used by the list view
when the list view has a ViewStyle property of vsSmallIcon
__property Controls::TImageList* SmallImages;
Description
The SmallImages property determines which image list (TImageList) is used by the list view
when the list view has a ViewStyle property of vsSmallIcon. An image list contains a list of
bitmaps that can be displayed next to the item's label.

TCustomListView::SortType
TCustomListView
The SortType property determines if and how the items in a tree view or list view are
automatically sorted.
__property TSortType SortType;
Description
The SortType property determines if and how the items in a tree view or list view are
automatically sorted. The default is stNone.
Once a list view or tree view is sorted, the original hierarchy is lost. That is, setting the SortType
back to stNone will not restore the original order of items. These are the possible values:
stNone No sorting is done.
stData The items are sorted when the Data object or SortType is
changed.
stText The items are sorted when the Caption or SortType is changed.
stBoth The items are sorted when either the Data object, the Caption or
SortType is changed

TCustomListView::StateImages
TCustomListView Example
The StateImages property determines which image list (TImageList component) to use for state
images.
__property Controls::TImageList* StateImages;
Description
Run-time only. The StateImages property determines which image list (TImageList component)
to use for state images. A state image is for when you want to display an additional image to the
left of the item's icon.

TCustomListView::TopItem
TCustomListView Example
The TopItem property returns the topmost visible item in the list view control.
__property TListItem* TopItem;
Description
Run-time and read-only. The TopItem property returns the topmost visible item in the list view
control. This information can be useful when a list view is scrolled to show more items than can
fit in the client area of the control. TopItem should only be used when ViewStyle is vsReport or
vsList. For vsIcon and vsSmallIcon view styles, use the ViewOrigin property to determine the
scroll position of the list view. If ViewStyle is set to vsIcon or vsSmallIcon, an access violation
exception will be returned when retrieving TopItem.

TCustomListView::ViewOrigin
TCustomListView
The ViewOrigin property returns the set of coordinates, relative to the visible area of the list view
control, that correspond to the view coordinates (0, 0).
__property POINT ViewOrigin;
Description
Run-time and read-only. ViewOrigin returns the set of coordinates, relative to the visible area of
the list view control, that correspond to the view coordinates (0, 0). This information can be
useful when the list view is scrolled to show more items than can fit in the client area of the
control. ViewOrigin should be used only when ViewStyle is vsIcon or vsSmallIcon; it returns
random data when ViewStyle is vsReport or vsList. In list or report view, the current scroll
position is determined by the TopItem property.

TCustomListView::ViewStyle
TCustomListView
The ViewStyle property controls the visual display of items in a list view.
__property TViewStyle ViewStyle;
Description
The ViewStyle property controls the visual display of items in a list view. The ViewStyle can be
vsList, vsIcon, vsReport or vsSmallIcon. vsIcon displays each item as a full-sized icon, vsList
displays items in columns and each item as a small icon with the label to the right of it,
vsSmallIcon displays each item as a small icon with the label to right of it, vsReport displays
each item on its own line with information arranged in columns, the leftmost column contains the
small icon and label, and subsequent columns contain subitems. These are the possible values:
vsIcon: Each item appears as a full-sized icon with a label below
it. The user can drag the items to any location in the list view window.
vsSmallIcon: Each item appears as a small icon with the label
to the right of it. The user can drag the items to any location.
vsList : Each item appears as a small icon with a label to the right of it.
Items are arranged in columns and cannot be dragged to any arbitrary location by the user.
vsReport: Each item appears on its own line with information
arranged in columns. The leftmost column contains the small icon and label, and subsequent
columns contain subitems as specified by the application. Unless ShowColumnHeaders is false,
each column has a header.

TCustomListView::VisibleRowCount
TCustomListView Example
The VisibleRowCount property returns the number of items that can fit vertically in the visible
area of a list view control when the ViewStyle is either vsList or vsReport.
__property int VisibleRowCount;
Description
Run-time and read-only. The VisibleRowCount property returns the number of items that can fit
vertically in the visible area of a list view control when the ViewStyle is either vsList or vsReport.
Only fully-visible items are counted.

TCustomListView events
TCustomListView Alphabetically Legend

In TCustomListView
OnChange
OnChanging
OnColumnClick
OnCompare
OnDeletion
OnEdited
OnEditing
OnInsert

TCustomListView events
TCustomListView By object Legend

OnChange
OnChanging
OnColumnClick
OnCompare
OnDeletion
OnEdited
OnEditing
OnInsert

TCustomListView::OnChange
TCustomListView
The OnChange event occurs whenever the selection has changed from one item to another, or
its state, text, or image has changed.
enum TItemChange { ctText, ctImage, ctState };
typedef void __fastcall (__closure *TLVChangeEvent)(System::TObject*
Sender, TListItem* Item, TItemChange Change);

__property TLVChangeEvent OnChange;
Description
Write an OnChange event handler to respond to any changes in the list. OnChange allows a
response once the list has been successfully changed.

TCustomListView::OnChanging
TCustomListView
The OnChanging event occurs when the selection is about to change from one item to another,
or its state, text, or image is about to change.
enum TItemChange { ctText, ctImage, ctState };
typedef void __fastcall (__closure *TLVChangingEvent)(System::TObject*
Sender, TListItem* Item, TItemChange Change, bool &AllowChange);

__property TLVChangingEvent OnChanging;
Description
Write an OnChanging event handler to respond just before any changes are made in the list.
OnChanging allows a response before the list has been successfully changed.

TCustomListView::OnColumnClick
TCustomListView
The OnColumnClick event occurs when the user clicks on a column header in a list view.
typedef void __fastcall (__closure *TLVColumnClickEvent)(System::
TObject* Sender, TListColumn* Column);

__property TLVColumnClickEvent OnColumnClick;
Description
The OnColumnClick event occurs when the user clicks on a column header in a list view.
ViewStyle must be set to vsReport and ColumnClick must be set to true.

TCustomListView::OnCompare
TCustomListView
The OnCompare event occurs when a request is made by the list view control’s parent window
to sort an item.
typedef void __fastcall (__closure *TLVCompareEvent)(System::TObject*
Sender, TListItem* Item1, TListItem* Item2, int Data, int &Compare);

__property TLVCompareEvent OnCompare;
Description
The OnCompare event occurs when a request is made by the list view control’s parent window
to sort an item.

TCustomListView::OnDeletion
TCustomListView
The OnDeletion event occurs when an item in the list view is deleted.
typedef void __fastcall (__closure *TLVDeletedEvent)(System::TObject*
Sender, TListItem* Item);

__property TLVDeletedEvent OnDeletion;
Description
The OnDeletion event occurs when an item in the list view is deleted. Write an OnDeletion event
handler to respond when an item in the list is deleted.

TCustomListView::OnEdited
TCustomListView
The OnEdited event occurs at the end of label editing of an item’s Caption property.
typedef void __fastcall (__closure *TLVEditedEvent)(System::TObject*
Sender, TListItem* Item, System::AnsiString &S);

__property TLVEditedEvent OnEdited;
Description
The OnEdited event occurs at the end of label editing of an item’s Caption property. The event
can occur only if ReadOnly is set to false.

TCustomListView::OnEditing
TCustomListView
The OnEditing event occurs at the start of label editing of an item's Caption property in the
TListView components.
typedef void __fastcall (__closure *TLVEditingEvent)(System::TObject*
Sender, TListItem* Item, bool &AllowEdit);

__property TLVEditingEvent OnEditing;
Description
The OnEditing event occurs at the start of label editing of an item's Caption property in the
TListView components. This event can occur only if the component's ReadOnly property is set to
false.
The TLVEditingEvent type points to a method that is called at the start of label editing of an item
(OnEditing event) in the component. The AllowEdit parameter determines whether the editing is
allowed. If AllowEdit is false, the user won't be able to change the label of the item in the tree
view control.

TCustomListView::OnInsert
TCustomListView
The OnInsert event occurs when a new list item is inserted.
typedef void __fastcall (__closure *TLVDeletedEvent)(System::TObject*
Sender, TListItem* Item);

__property TLVDeletedEvent OnInsert;
Description
The OnInsert event occurs when a new list item is inserted.

TCustomListView methods
TCustomListView Alphabetically Legend

In TCustomListView
~TCustomListView
AlphaSort
Arrange

CreateParams
CustomSort
FindCaption
FindData
GetDragImages
GetItemAt
GetNearestItem
GetNextItem
GetSearchString
IsEditing
Notification
Scroll
StringWidth

TCustomListView
UpdateColumn
UpdateColumns
UpdateItems
WndProc

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf

GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomListView methods
TCustomListView By object Legend

~TCustomListView
AlphaSort
Arrange
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos

CreateParams
CustomSort
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindCaption
FindComponent
FindData
Focused
FreeInstance

FreeNotification
Free

GetDragImages
GetItemAt
GetNearestItem
GetNextItem
GetParentComponent
GetSearchString
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom

InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate

IsEditing
MethodAddress
MethodName
NewInstance

Notification
PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint

ScaleBy
ScreenToClient
ScrollBy
Scroll
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
StringWidth
TCustomListView

UpdateColumns
UpdateColumn
UpdateControlState
UpdateItems
Update
WndProc

TCustomListView::~TCustomListView
TCustomListView
The ~TCustomListView method destroys the component and releases the memory allocated to
it.
__fastcall virtual ~TCustomListView(void);
Description
Do not call ~TCustomListView directly. Instead, an application should call Free, which verifies
that the TListItem component is not already freed before calling ~TCustomListView.
~TCustomListView sets OnStateChange to NULL and frees the list before calling the inherited
destructor for the component.

TCustomListView::AlphaSort
TCustomListView
The AlphaSort method for a list sorts all list items alphabetically in the list view control. If
successful, the method returns true.
bool __fastcall AlphaSort(void);
Description
The Alpha Sort method for a list sorts all list items alphabetically in the list view control. If
successful, the method returns true.

TCustomListView::Arrange
TCustomListView
The Arrange method arranges icons in a list view that has a ViewStyle of vsIcon or vsSmallIcon.
void __fastcall Arrange(TListArrangement Code);
Description
Run-time only. The Arrange method arranges icons in a list view that has a ViewStyle of vsIcon
or vsSmallIcon. The Code parameter specifies how to arrange the icons.These are the possible
values for the Code parameter.
Value Meaning

arAlignBottom: Aligns items along the bottom edge of the window
arAlignLeft: Aligns items along the left edge of the window
arAlignRight: Aligns items along the right edge of the window
arAlignTop: Aligns items along the top edge of the window
arDefault: Aligns items according to the list view control's current alignment styles

(the default value)
arSnapToGrid: Snaps all icons to the nearest grid position

TCustomListView::CreateParams
TCustomListView
The CreateParams method initializes the window-creation parameter record passed in the
Params parameter.
virtual void __fastcall CreateParams(Controls::TCreateParams &Params);
Description
The CreateParams method initializes the window-creation parameter record passed in the
Params parameter. TWinControl implements CreateParams by setting all the fields of Params to
generic base values. A number of the standard controls override CreateParams to change one
or more of the default values in Params.
The CreateWnd method calls CreateParams to initialize the parameters it will pass to
CreateWindowHandle. By overriding CreateParams, you can customize the way a component
creates its Windows representation. When overriding CreateParams, you should always call the
inherited method first to set the default values, then make any desired adjustments.

TCustomListView::CustomSort
TCustomListView
The CustomSort method allows you to sort list items based on criteria that you define.
bool __fastcall CustomSort(Commctrl::TLVCompare SortProc, long lParam)
;

Description
The CustomSort method allows you to sort list items based on criteria that you define. When you
use this method, you specify an application-defined callback function that the list view can call
whenever the relative order of two list items needs to be decided. The parameter SortProc is a
pointer to the application defined callback function. The IParam parameter is optional for passing
a data value into the function.
The callback function receives the two items being compared and a third 32-bit value that you
specify.
The callback function must return a negative value if the first item should precede the second, a
positive value if the first item should follow the second, or zero if the two items are equivalent.
The Item1 and Item2 parameters are the two items being compared.
If the parameter SortProc is NULL, the default AlphaSort method is called. This can be useful
since CustomSort has the IParam parameter that AlphaSort doesn't.

TCustomListView::FindCaption
TCustomListView
The FindCaption method searches for and returns a list view item with the specified
characteristics.
TListItem* __fastcall FindCaption(int StartIndex, System::AnsiString
Value, bool Partial, bool Inclusive, bool Wrap);

Description
The FindCaption method searches for and returns a list view item with the specified
characteristics. The search will start at the list item specified by StartIndex. It will search for the
caption specified by Value. If no item is found, NULL is returned.

TCustomListView::FindData
TCustomListView
The FindData method searches for and returns a list view item with the specified characteristics.
T
TListItem* __fastcall FindData(int StartIndex, void * Value, bool
Inclusive, bool Wrap);

Description
Run-time only. The FindData method searches for and returns a list view item with the specified
characteristics. The search will start at the list item specified by StartIndex. It will search for the
data item specified by Value. If no item is found, NULL is returned.

TCustomListView::GetDragImages
TCustomListView
The GetDragImages method returns the control’s image list containing the image to be
displayed while dragging.
virtual Controls::TCustomImageList* __fastcall GetDragImages(void);
Description
The GetDragImages method returns the control’s image list containing the image to be
displayed while dragging. The image list normally contains only one image, and the VCL
automatically creates and maintains the image list.

TCustomListView::GetItemAt
TCustomListView
The GetItemAt method returns the list item that is found at the position specified by the
parameters X and Y in pixels relative to the top left corner of the list view.
TListItem* __fastcall GetItemAt(int X, int Y);
Description
Run-time only. The GetItemAt method returns the list item that is found at the position specified
by the parameters X and Y in pixels relative to the top left corner of the list view. If there is no
item at the location, then NULL is returned.

TCustomListView::GetNearestItem
TCustomListView
The GetNearestItem method searches for and returns the list item nearest the list view item at
the Point specified, in the direction given by the parameter Direction.
TListItem* __fastcall GetNearestItem(const POINT &Point,
TSearchDirection Direction);

Description
Run-time only. The GetNearestItem method searches for and returns the list item nearest the list
view item at the Point specified, in the direction given by the parameter Direction. Direction can
be sdLeft, sdRight, sdAbove, sdBelow, and sdAll. If no item is found, NULL is returned.

TCustomListView::GetNextItem
TCustomListView
The GetNextItem method returns the next list item after the StartItem in the direction given by
Direction and in a state included in the States parameter.
TListItem* __fastcall GetNextItem(TListItem* StartItem,
TSearchDirection Direction, TItemStates States);

Description
Run-time only. The GetNextItem method returns the next list item after the StartItem in the
direction given by Direction and in a state included in the States parameter. Direction can be
sdLeft, sdRight, sdAbove, sdBelow, and sdAll. These are the possible values for the States
parameter:
isNone : The item is in its default state.
isCut : The item is marked for a cut and paste operation
isDropHilited: The item is highlighted as a drag-and-drop target
isFocused : The item has the focus, so it is surrounded by a
standard focus rectangle. Although more than one item may be selected, only one item can have
the focus
isSelected: The item is selected. The appearance of a
selected item depends on whether it has the focus and on the system colors used for selection.

TCustomListView::GetSearchString
TCustomListView
The GetSearchString method retrieves the incremental search string of a list view control.
System::AnsiString __fastcall GetSearchString(void);
Description
Run-time only. The GetSearchString method retrieves the incremental search string of a list view
control. The return string is the character sequence that the user types while the list view has the
input focus. Each time the user types a character, the system appends the character to the
search string and then searches for a matching item. A timeout period of less than a second is
associated with each character that the user types. If the timeout period elapses before the user
types another character, the incremental search string is reset. If the system finds a match, it
selects the item and, if necessary, scrolls it into view.

TCustomListView::IsEditing
TCustomListView
The IsEditing method returns true if any list item in the list view is being edited.
bool __fastcall IsEditing(void);
Description
Run-time. The IsEditing method returns true if any list item in the list view is being edited.

TCustomListView::Notification
TCustomListView
The Notification method notifies the component that the component specified by AComponent is
about to be inserted or removed, as specified by Operation.
virtual void __fastcall Notification(Classes::TComponent* AComponent,
Classes::TOperation Operation);

Description
The Notification method notifies the component that the component specified by AComponent is
about to be inserted or removed, as specified by Operation. By default, components pass along
the notification to their owned components, if any.
A component can, if needed, act on the notification that a component is being inserted or
removed. In particular, if a component has object fields or properties that contains references to
other components, it might check the notifications of component removals and invalidate those
references as needed.

TCustomListView::Scroll
TCustomListView
The Scroll method scrolls the content of a list view control.
void __fastcall Scroll(int DX, int DY);
Description
The Scroll method scrolls the content of a list view control. DX and DY specify the amount of
horizontal and vertical scrolling respectively.

TCustomListView::StringWidth
TCustomListView
The StringWidth method returns the width of a specified string, using the specified list view
control’s current font.
int __fastcall StringWidth(System::AnsiString S);
Description
Run-time only. The StringWidth method returns the width of a specified string, using the
specified list view control’s current font.

TCustomListView::TCustomListView
TCustomListView
The TCustomListView method creates an instance of a TListItems component.
__fastcall virtual TCustomListView(Classes::TComponent* AOwner);
Description
The TCustomListView method allocates memory to create the component and initializes as
needed.

TCustomListView::UpdateColumn
TCustomListView
The UpdateColumn method causes the list view control to update the column indicated by Index.
void __fastcall UpdateColumn(int Index);
Description
The UpdateColumn method causes the list view control to update the column indicated by Index.

TCustomListView::UpdateColumns
TCustomListView
The UpdateColumns method causes the list view control to update all columns.
void __fastcall UpdateColumns(void);
Description
The UpdateColumns method causes the list view control to update all columns.

TCustomListView::UpdateItems
TCustomListView
The UpdateItems method causes the list view control to redraw a range of items, starting at
FirstIndex and ending at LastIndex.
void __fastcall UpdateItems(int FirstIndex, int LastIndex);
Description
The UpdateItems method causes the list view control to redraw a range of items, starting at
FirstIndex and ending at LastIndex.

TCustomListView::WndProc
TCustomListView
The WndProc method provides specific message responses for the control.
virtual void __fastcall WndProc(Messages::TMessage &Message);
Description
The WndProc method provides specific message responses for the control. WndProc is the first
method that receives messages for a Borland C++Builder control.
The WndProc for TControl defines mouse-message responses for basic clicks and drags, and
sends all other messages on to the Dispatch method. TWinControl overrides WndProc to define
responses for focus, mouse, and keyboard messages, and sends all others to its inherited
WndProc.
If you override WndProc in your own components to provide specialized responses to
messages, be sure to call the inherited WndProc at the end to dispatch any other messages.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TCustomListView example
TCustomListView

TCustomMaskEdit
Hierarchy Properties Methods See also
TCustomMaskEdit is the abstract base type for edit controls that provide a mask for checking the
validity of text typed into the control.
Header
vcl/mask.hpp
Description
TCustomMaskEdit introduces new properties and methods to expand the capabilities of
TCustomEdit for validity checking using an edit mask. To an edit control that takes advantage of
the masking capabilities of TCustomMaskEdit, use a TMaskEdit object. To create an edit control
that does not validate the input, use the TEdit object instead.
Do not create instances of TCustomMaskEdit. Use TCustomMaskEdit as a base class when
creating new control objects that implement a masked edit control. Properties and methods of
TCustomMaskEdit provide basic behavior that descendent classes inherit as well as behavior
that components can override to customize their behavior.

TCustomMaskEdit properties
TCustomMaskEdit Alphabetically Legend

In TCustomMaskEdit
EditMask
EditText

IsMasked
MaskState
MaxLength
Text

Derived from TCustomEdit
Modified
SelLength
SelStart
SelText

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomMaskEdit properties
TCustomMaskEdit By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
EditMask
EditText
Enabled

Handle
Height
HelpContext
Hint

IsMasked
Left
MaskState
MaxLength

Modified
Name

Owner
Parent
SelLength
SelStart
SelText
ShowHint

Showing
TabOrder
TabStop
Tag
Text
Top
Visible
Width

TCustomMaskEdit::EditMask
TCustomMaskEdit See also Example
EditMask is the mask that represents what text is valid for the masked edit control.
__property System::AnsiString EditMask;
Description
Use EditMask to restrict the characters a user can enter into the masked edit control to valid
characters and formats. If the user attempts to enter an invalid character, the edit control does
not accept the character. Validation is performed on a character-by-character basis by the
ValidateEdit method.
A mask consists of three fields with semicolons separating the fields. The first part of the mask is
the mask itself. The second part is the character that determines whether the literal characters of
a mask are saved as part of the data. The third part of the mask is the character used to
represent unentered characters in the mask.
These are the special characters used in the first field of the mask:
Character Meaning in mask

! If a ! character appears in the mask, optional characters are represented
in the EditText as leading blanks. If a ! character is not present, optional
characters are represented in the EditText as trailing blanks.

> If a > character appears in the mask, all characters that follow are in
uppercase until the end of the mask or until a < character is encountered.

< If a < character appears in the mask, all characters that follow are in
lowercase until the end of the mask or until a > character is encountered.

<> If these two characters appear together in a mask, no case checking is
done and the data is formatted with the case the user uses to enter the
data.

\ The character that follows a \ character is a literal character. Use this
character to use any of the mask special characters as a literal in the
data.

L The L character requires an alphabetic character only in this position. For
the US, this is A-Z, a-z.

l The l character permits only an alphabetic character in this position, but
doesn't require it.

A The A character requires an alphanumeric character only in this position.
For the US, this is A-Z, a-z, 0-9.

a The a character permits an alphanumeric character in this position, but
doesn't require it.

C The C character requires an arbitrary character in this position.
c The c character permits an arbitrary character in this position, but doesn't

require it.
0 The 0 character requires a numeric character only in this position.
9 The 9 character permits a numeric character in this position, but doesn't

require it.
The # character permits a numeric character or a plus or minus sign in

this position, but doesn't require it.
: The : character is used to separate hours, minutes, and seconds in times.

If the character that separates hours, minutes, and seconds is different in
the regional settings of the Control Panel utility on your computer system,
that character is used instead.

/ The / character is used to separate months, days, and years in dates. If
the character that separates months, days, and years is different in the
regional settings of the Control Panel utility on your computer system, that
character is used instead.

; The ; character is used to separate the three fields of the mask.
_ The _ character automatically inserts spaces into the text. When the user

enters characters in the field, the cursor skips the _ character.
Any character that does not appear in the preceding table can appear in the first part of the
mask as a literal character. Literal characters must be matched exactly in the edit control. They

are inserted automatically, and the cursor skips over them during editing. The special mask
characters can also appear as literal characters if preceded by a backslash character (\).
The second field of the mask is a single character that indicates whether literal characters from
the mask should be included as part of the text for the edit control. For example, the mask for a
telephone number with area code could be the following string:
(000)_000-0000;0;*
The 0 in the second field indicates that the Text property for the edit control would consist of the
10 digits that were entered, rather than the 14 characters that make up the telephone number as
it appears in the edit control.
A 0 in the second field indicates that literals should not be included, any other character
indicates that they should be included. The character to indicate whether literals should be
included can be changed in the EditMask property editor, or programmatically by changing the
MaskNoSave typed constant.
The third field of the mask is the character that appears in the edit control for blanks (characters
that have not been entered). By default, this is the same as the character that stands for literal
spaces. The two characters appear the same in an edit window. However, when a user edits the
text in a masked edit control, the cursor selects each blank character in turn, and skips over the
space character.
Setting EditMask to an empty string removes the mask.

TCustomMaskEdit::EditText
TCustomMaskEdit See also
EditText is the text that appears in the window of the masked edit control.
__property System::AnsiString EditText;
Description
EditText is the value of the text for the edit control after it is formatted using the EditMask. Before
the text is fully entered into a masked edit control, the EditText includes a blank character for
each unentered character. As characters are entered, the blank characters in the EditText are
replaced by the values that the user types.
If literal mask characters are included in the text, and no character is substituted for blanks, the
values of EditText and Text are the same.
Note
EditText only applies at runtime.

TCustomMaskEdit::IsMasked
TCustomMaskEdit See also Example
IsMasked indicates whether a mask exists for the edit control.
__property bool IsMasked;
Description
Read IsMasked to determine whether the EditMask property has been set. If IsMasked is true,
the control has a mask, and input is validated at runtime. If IsMasked is false, the control does
not restrict editing at runtime.

TCustomMaskEdit::MaskState
TCustomMaskEdit See also
MaskState indicates state information about how the mask is being applied.
__property TMaskedState MaskState;
Description
MaskState is used internally to determine appropriate actions based on how the mask is
currently being applied. MaskState is a set drawn from among the following values:
Value Meaning

msMasked A mask has been assigned. MaskState includes msMasked when
IsMasked is true.

msReEnter An invalid character has been rejected and the next edit should be a valid
replacement character.

msDBSetText The text comes from a database field and should not be validated.
MaskState is exposed as a protected property so that derived classes can maintain and use this
state information in the implementation of properties and methods.

TCustomMaskEdit::MaxLength
TCustomMaskEdit See also Example
MaxLength specifies the maximum number of characters that can appear in the edit control.
__property int MaxLength;
Description
MaxLength is the length of the EditText. Set MaxLength to limit the number of characters that
can appear in the edit control when there is no EditMask. If there is an EditMask, MaxLength is
implied by the mask itself, and cannot be changed. The EditText contains blank characters for
each character that has not been entered, padding the end or beginning of every optional
section, so it remains constant in length.

TCustomMaskEdit::Text
TCustomMaskEdit See also Example
Text is the underlying text for the masked edit control before the mask has been applied.
__property System::AnsiString Text;
Description
Use Text to determine the underlying value of the text before it has been formatted by the mask.
Text may differ from the EditText visible in the masked edit control if the mask specifies that
literal characters should be removed, if the mask includes spaces, or if the mask includes
characters that have not yet been filled in by the user. Text will not contain the blank characters,
spaces will not be replaced by _, and literal characters in the mask will be removed if the mask
indicates they should be.
When setting Text, the value of the text is formatted using the mask, and the resulting EditText is
used to update the window.
If there is no mask, Text is the text that appears in the edit control.

TCustomMaskEdit methods
TCustomMaskEdit Alphabetically Legend

In TCustomMaskEdit
~TCustomMaskEdit

CheckCursor
Clear
EditCanModify
GetFirstEditChar
GetLastEditChar
GetMaxChars
GetNextEditChar
GetPriorEditChar
GetSel
GetTextLen
KeyDown
KeyPress
KeyUp
ReformatText
Reset
SetCursor
SetSel
TCustomMaskEdit
ValidateEdit
ValidateError

Derived from TCustomEdit
ClearSelection
CopyToClipboard
CutToClipboard
GetSelTextBuf
PasteFromClipboard
SelectAll
SetSelTextBuf

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomMaskEdit methods
TCustomMaskEdit By object Legend

~TCustomMaskEdit
Assign
BeginDrag
BringToFront
Broadcast
CanFocus

CheckCursor
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClearSelection
Clear
ClientToScreen
ContainsControl

ControlAtPos
CopyToClipboard
CutToClipboard
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging

EditCanModify
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused

FreeInstance
FreeNotification
Free

GetFirstEditChar
GetLastEditChar
GetMaxChars
GetNextEditChar
GetParentComponent
GetPriorEditChar
GetSel
GetSelTextBuf
GetTabOrderList
GetTextBuf
GetTextLen

HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent

InsertControl
InstanceSize
Invalidate

KeyDown
KeyPress
KeyUp
MethodAddress
MethodName
NewInstance

PaintTo
PasteFromClipboard
Perform
Realign

ReformatText
Refresh
RemoveComponent
RemoveControl
Repaint
Reset
ScaleBy
ScreenToClient
ScrollBy
SelectAll
SendToBack
SetBounds
SetCursor

SetFocus
SetSel
SetSelTextBuf
SetTextBuf
Show
TCustomMaskEdit
UpdateControlState
Update
ValidateEdit
ValidateError

TCustomMaskEdit::~TCustomMaskEdit
TCustomMaskEdit
~TCustomMaskEdit frees the memory associated with the TCustomMaskEdit object. Do not call
~TCustomMaskEdit directly. Instead, use the delete keyword on the object, which causes ~
TCustomMaskEdit to be invoked automatically.
__fastcall virtual ~TCustomMaskEdit(void);

TCustomMaskEdit::CheckCursor
TCustomMaskEdit See also
CheckCursor moves the cursor to the closest editable character and selects it if nothing is
currently selected.
void __fastcall CheckCursor(void);
Description
CheckCursor is called whenever the position of the cursor may have changed. It ensures that at
least one character is always selected. Because editing a masked edit control consists of
replacing the blank characters in the mask, there must always be a selection to replace. The
selection corresponds to one or more nonliteral characters in the mask, which are either blank or
contain characters for the user to re-enter.

TCustomMaskEdit::Clear
TCustomMaskEdit See also
Clear sets the Text property to an empty string.
void __fastcall Clear(void);
Description
Use Clear to remove all text that was entered into the masked edit control. Clear sets the value
of Text to an empty string. It does not clear the EditMask. If the edit control has a mask, EditText
will not be empty, but will have all non-literal characters replaced by blanks.

TCustomMaskEdit::EditCanModify
TCustomMaskEdit See also
EditCanModify permits the user to edit the Text.
virtual bool __fastcall EditCanModify(void);
Description
The EditCanModify method defined by TCustomMaskEdit always returns true, allowing the Text
to be edited. EditCanModify exists primarily to provide an interface for a method that can
conditionally disallow changes to the Text by returning false.

TCustomMaskEdit::GetFirstEditChar
TCustomMaskEdit See also
GetFirstEditChar returns the index in the EditMask of the first nonliteral character, where zero is
the first character.
int __fastcall GetFirstEditChar(void);
Description
Use GetFirstEditChar to find the first position of the EditMask where the user can modify the
EditText. If there is no mask, GetFirstEditChar returns zero.
Use GetFirstEditChar as a starting point for programmatically processing all the nonliteral
characters in the EditText. Use GetNextEditChar to continue to loop through the editable
characters in the EditText, and GetLastEditChar to determine when all nonliteral characters have
been processed.

TCustomMaskEdit::GetLastEditChar
TCustomMaskEdit See also
GetLastEditChar returns the index in the EditMask of the last nonliteral character, where zero is
the first character.
int __fastcall GetLastEditChar(void);
Description
Use GetLastEditChar to find the last position of the EditMask where the user can modify the
EditText. If there is no mask, GetLastEditChar returns the length of the text.

TCustomMaskEdit::GetMaxChars
TCustomMaskEdit See also
GetMaxChars returns the length of the EditText.
int __fastcall GetMaxChars(void);
Description
If there is a mask, GetMaxChars returns the length of the EditText, including all blanks. This is
the same as MaxLength, because editing in a masked edit control consists of replacing nonliteral
characters. If there is no mask, GetMaxChars returns the length of the text in the window. In this
case, the value returned by GetMaxChars may be less than MaxLength, which is the maximum
number of characters that can be entered into the edit control.

TCustomMaskEdit::GetNextEditChar
TCustomMaskEdit See also
GetNextEditChar returns the first index of a non-literal character equal to or greater than Offset,
where zero is the first character.
int __fastcall GetNextEditChar(int Offset);
Description
Call GetNextEditChar to find the first position of the EditMask at or following Offset where the
user can modify the EditText. If there is no nonliteral character at or following Offset,
GetNextEditChar returns MaxLength.
Use GetNextEditChar to loop through the editable characters in the EditText, starting with the
value returned by GetFirstEditChar and using GetLastEditChar to determine when all nonliteral
characters have been processed.

TCustomMaskEdit::GetPriorEditChar
TCustomMaskEdit See also
GetPriorEditChar returns the first index of a nonliteral character equal to or less than Offset,
where zero is the first character.
int __fastcall GetPriorEditChar(int Offset);
Description
Call GetPriorEditChar to find the first position of the EditMask at or preceding Offset, where the
user can modify the EditText. If there is no nonliteral character at or preceding Offset,
GetPriorEditChar returns the index of the first editable character following Offset.

TCustomMaskEdit::GetSel
TCustomMaskEdit See also
GetSel returns the endpoints of the current selection in the EditText.
void __fastcall GetSel(int &SelStart, int &SelStop);
Description
Use GetSel to obtain the indexes of the first and last selected characters of the EditText, where
0 is the index of the first character. Not all the characters in the selection will necessarily be
editable, if the mask contains literal characters. Do not use the resulting indexes on the Text
property if there is a mask, because the EditText may contain blanks or nonliteral characters not
found in the Text.
To programmatically change the selected text, use GetNextEditChar to cycle through the
editable characters of the selection from SelStart to SelStop.

TCustomMaskEdit::GetTextLen
TCustomMaskEdit See also Example
GetTextLen returns the length of the underlying text.
int __fastcall GetTextLen(void);
Description
Use GetTextLen to determine the length of the underlying text for the masked edit control. The
underlying text has not been formatted for display by the mask, and may differ from the EditText
that appears in the window of the control.

TCustomMaskEdit::KeyDown
TCustomMaskEdit See also
KeyDown supplements the inherited KeyDown to process navigation keys and the Del key.
virtual void __fastcall KeyDown(unsigned short &Key, Classes::
TShiftState Shift);

Description
After calling the inherited KeyDown, KeyDown ensures that moving the cursor within the masked
edit control places the cursor on an editable character, and that deleting the current selection
replaces nonliteral characters with blanks. Derived objects can override this method to further
supplement the processing that takes place when the user presses a key down.

TCustomMaskEdit::KeyPress
TCustomMaskEdit See also
KeyPress supplements the inherited method to process the Esc and Enter keys.
virtual void __fastcall KeyPress(char &Key);
Description
After calling the inherited method, KeyPress calls the Reset method in response to the Esc key,
or calls the ValidateEdit method in response to the Enter key. Derived classes can override this
method to further supplement the processing of specific keystrokes.

TCustomMaskEdit::KeyUp
TCustomMaskEdit See also
KeyUp supplements the inherited method to process the Ctrl+Left and Ctrl+Right key
combinations.
virtual void __fastcall KeyUp(unsigned short &Key, Classes::
TShiftState Shift);

Description
After calling the inherited method, KeyUp makes sure that selection using the Ctrl+Left and Ctrl+
Right key combinations ends with an editable selection in the edit window. Derived classes can
override this method to further supplement the processing that takes place when the user
releases a key.

TCustomMaskEdit::ReformatText
TCustomMaskEdit See also
ReformatText applies the mask NewMask to the underlying text, and updates the internal
representation of the mask.
void __fastcall ReformatText(const System::AnsiString NewMask);
Description
ReformatText does the bulk of the work of setting the EditMask property at runtime.
ReformatText should not be used in place of the EditMask property, however, as it does not deal
with the MaskState property or the positioning of the cursor.

TCustomMaskEdit::Reset
TCustomMaskEdit See also
Reset returns the EditText to its value at the time when the edit control last lost focus.
virtual void __fastcall Reset(void);
Description
Reset cancels the most recent edits to the masked edit control. The EditText returns to the value
at the time the control last lost focus, not the time when it first regained focus. Thus, any
changes to the EditText that occurred programmatically while the edit control did not have focus
will also be discarded.

TCustomMaskEdit::SetCursor
TCustomMaskEdit See also
SetCursor moves the cursor to the first editable character at or before Pos, and selects that
character.
void __fastcall SetCursor(int Pos);
Description
SetCursor handles positioning of the cursor within the EditText so that it is always on an editable
character. It also ensures that at least one character is always selected. Because editing a
masked edit control consists of replacing the blank characters in the mask, there must always be
a selection to replace. The selection corresponds to one or more nonliteral characters in the
mask, which are either blank or contain characters for the user to re-enter.

TCustomMaskEdit::SetSel
TCustomMaskEdit See also
SetSel selects characters in the EditText from SelStart to SelStop.
void __fastcall SetSel(int SelStart, int SelStop);
Description
SetSel selects the indicated range of characters in the EditText, regardless of whether any of
them are editable. If SelStart is the same as SelStop, SetSel positions the cursor at the SelStart
character. When using SetSel, leave the cursor in an editable position if the intent is to create a
selection for the user to replace.
SetSel can be used to select non-editable characters that can then be captured by using the
SelText property or by copying to the Clipboard. Once the selection has been captured, return
the cursor to an editable position by calling CheckCursor.

TCustomMaskEdit::TCustomMaskEdit
TCustomMaskEdit See also
TCustomMaskEdit creates an instance of TCustomMaskEdit.
__fastcall virtual TCustomMaskEdit(Classes::TComponent* AOwner);
Description
Call TCustomEdit to instantiate a TCustomMaskEdit object. TCustomMaskEdit initializes the
MaskState and blank substitution character after calling the constructor of its parent object.

TCustomMaskEdit::ValidateEdit
TCustomMaskEdit See also
ValidateEdit attempts to validate the EditText against the current mask.
void __fastcall ValidateEdit(void);
Description
ValidateEdit attempts to validate the EditText after each keystroke, and when the user attempts
to leave the masked edit field. If the EditText does not match the specifications of the EditMask,
ValidateEdit calls ValidateError to raise an exception, and returns the cursor to the first position
where the EditText did not comply with the EditMask.

TCustomMaskEdit::ValidateError
TCustomMaskEdit See also
ValidateError beeps and raises an EDBEditError exception.
void __fastcall ValidateError(void);
Description
ValidateEdit calls ValidateError when the EditText fails to comply with the EditMask.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomEdit

TCustomMaskEdit example
TCustomMaskEdit

TCustomMemo
Hierarchy Properties Methods See also
TCustomMemo is the abstract base type for memo components, which are multiline edit boxes,
including TMemo and TDBMemo.
Header
vcl/stdctrls.hpp
Description
TCustomMemo introduces new properties and methods to expand the capabilities of
TCustomEdit for handling multiline edit boxes.
Do not create instances of TCustomMemo. Use TCustomMemo as a base class when creating
new control objects that implement a multiline edit control. Properties and methods of
TCustomMemo provide basic behavior that descendant classes inherit as well as behavior that
components can override to customize their behavior.

TCustomMemo properties
TCustomMemo Alphabetically Legend

In TCustomMemo
Alignment
Lines
ScrollBars
WantReturns
WantTabs
WordWrap

Derived from TCustomEdit
Modified
SelLength
SelStart
SelText

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Text
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomMemo properties
TCustomMemo By object Legend

Alignment
Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
Left
Lines
Modified
Name

Owner
Parent
ScrollBars
SelLength
SelStart
SelText
ShowHint

Showing
TabOrder
TabStop
Tag
Text
Top
Visible
WantReturns
WantTabs
Width
WordWrap

TCustomMemo::Alignment
TCustomMemo See also
Alignment determines how the text is aligned within the edit control.
__property Classes::TAlignment Alignment;
Description
Use Alignment to change the way the text is formatted by the edit control. Alignment can take
one of the following values:
Value Meaning

taLeftJustify Align text to the left side of the control
taCenter Center text horizontally in the control.
taRightJustify Align text to the right side of the control.

TCustomMemo::Lines
TCustomMemo See also
Lines contains the individual lines of text in the edit control.
__property Classes::TStrings* Lines;
Description
Use Lines to manipulate text in an edit control on a line-by-line basis. Lines is a TStrings object,
so the TStrings methods may be used for Lines to perform manipulations such as counting the
lines of text, adding new lines, deleting lines, or replacing lines with new text.
To work with all the text at once, use the Text property. To manipulate individual lines of text, the
Lines property works better.

TCustomMemo::ScrollBars
TCustomMemo See also Example
ScrollBars determines whether the edit control has any scroll bars.
__property TScrollStyle ScrollBars;
Description
Use ScrollBars to give a multiline edit control horizontal or vertical scroll bars. ScrollBars can
take one of the following values:
Value Meaning

ssNone The control has no scroll bars.
ssHorizontal The control has a single scroll bar on the bottom edge.
ssVertical The control has a single scroll bar on the right edge.
ssBoth The control has a scroll bar on both the bottom and right edges.

TCustomMemo::WantReturns
TCustomMemo See also Example
WantReturns determines whether the user can insert return characters into the text.
__property bool WantReturns;
Description
Set WantReturns to true to allow users to enter return characters into the text. Set WantReturns
to false to allow the form to handle return characters instead.
For example, in a form with a default button (such as an OK button) and a memo control, if
WantReturns is false, pressing Enter chooses the default button. If WantReturns is true, pressing
Enter inserts a return character in the text.
Note
If WantReturns is false, users can still enter return characters into the text by pressing Ctrl+
Enter.

TCustomMemo::WantTabs
TCustomMemo See also Example
WantTabs determines whether the user can insert tab characters into the text.
__property bool WantTabs;
Description
Set WantTabs to true to allow users to enter tab characters into the text. Set WantTabs to false if
you want the tab character to select the next control on the form instead.
Note
If WantTabs is true, users can tab into the edit control, but they can’t tab out.

TCustomMemo::WordWrap
TCustomMemo See also Example
WordWrap determines whether the edit control inserts soft carriage returns so text wraps at the
right margin.
__property bool WordWrap;
Description
Set WordWrap to true to make the edit control wrap text at the right margin so it fits in the client
area. The wrapping is cosmetic only--the text does not include any return characters that were
not explicitly entered. Set WordWrap to false to have the edit control show a separate line only
where return characters were explicitly entered into the text.
Note
There should be no use for a horizontal scroll bar if WordWrap is true.

TCustomMemo methods
TCustomMemo Alphabetically Legend

In TCustomMemo
~TCustomMemo

CreateParams
CreateWindowHandle
KeyPress
Loaded
SetAlignment
SetLines
SetScrollBars
SetWordWrap
TCustomMemo

Derived from TCustomEdit
Clear
ClearSelection
CopyToClipboard
CutToClipboard
GetSelTextBuf
PasteFromClipboard
SelectAll
SetSelTextBuf

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf

GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomMemo methods
TCustomMemo By object Legend

~TCustomMemo
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClearSelection
Clear
ClientToScreen
ContainsControl
ControlAtPos
CopyToClipboard

CreateParams
CreateWindowHandle
CutToClipboard
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused

FreeInstance
FreeNotification
Free
GetParentComponent
GetSelTextBuf
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate

KeyPress

Loaded
MethodAddress
MethodName
NewInstance
PaintTo
PasteFromClipboard
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient

ScrollBy
SelectAll
SendToBack

SetAlignment
SetBounds
SetFocus
SetLines
SetScrollBars
SetSelTextBuf
SetTextBuf
SetWordWrap
Show
TCustomMemo
UpdateControlState
Update

TCustomMemo::~TCustomMemo
TCustomMemo See also
~TCustomMemo frees the memory associated with the TCustomMemo object. Do not call ~
TCustomMemo directly. Instead, use the delete keyword on the object, which causes ~TCustomMemo
to be invoked automatically.
__fastcall virtual ~TCustomMemo(void);
Description
~TCustomMemo frees the TStrings object that implements the Lines property before calling the
destructor of its parent object.

TCustomMemo::CreateParams
TCustomMemo See also
The CreateParams method initializes a window-creation parameter record passed in the Params
parameter.
virtual void __fastcall CreateParams(Controls::TCreateParams &Params);
Description
The CreateWnd method calls CreateParams to initialize the parameters it passes to
CreateWindowHandle. TCustomEdit overrides the inherited method to specify a scrollable
multiline edit control. The Params parameter is updated to reflect the current values of the
Alignment, ScrollBars, and WordWrap properties, in addition to the BorderStyle, HideSelections,
PasswordChar, and ReadOnly properties that the inherited method specifies.

TCustomMemo::CreateWindowHandle
TCustomMemo See also
CreateWindowHandle creates a window handle for the edit control.
virtual void __fastcall CreateWindowHandle(const Controls::
TCreateParams &Params);

Description
CreateWindowHandle overrides the inherited method to interpret the Caption in Params as the
initial text rather than as the window caption.

TCustomMemo::KeyPress
TCustomMemo See also
KeyPress overrides the default method to ensure that return characters are not entered into the
text when WantReturns is false.
virtual void __fastcall KeyPress(char &Key);
Description
After calling the inherited KeyPress, which calls the OnKeyPress event handler, KeyPress
discards return characters when WantReturns is false.

TCustomMemo::Loaded
TCustomMemo See also
Loaded initializes the Modified property to false.
virtual void __fastcall Loaded(void);
Description
Loaded overrides the default so that the Modified property is set to false after loading the control
from a stream. Derived classes can override the Loaded method to perform additional
initializations after the control is loaded from a stream.

TCustomMemo::SetAlignment
TCustomMemo See also
SetAlignment sets the Alignment property.
void __fastcall SetAlignment(Classes::TAlignment Value);
Description
SetAlignment is exposed as a protected method so derived classes can customize their
implementation of the Alignment property.

TCustomMemo::SetLines
TCustomMemo See also
SetLines sets the Lines property.
void __fastcall SetLines(Classes::TStrings* Value);
Description
SetLines is exposed as a protected method so derived classes can customize their
implementation of the Lines property.

TCustomMemo::SetScrollBars
TCustomMemo See also
SetScrollBars sets the ScrollBars property.
void __fastcall SetScrollBars(TScrollStyle Value);
Description
SetScrollBars is exposed as a protected method so derived classes can customize their
implementation of the ScrollBars property.

TCustomMemo::SetWordWrap
TCustomMemo See also
SetWordWrap sets the WordWrap property.
void __fastcall SetWordWrap(bool Value);
Description
SetWordWrap is exposed as a protected method so derived classes can customize their
implementation of the WordWrap property.

TCustomMemo::TCustomMemo
TCustomMemo See also
TCustomMemo creates and initializes an instance of TCustomMemo.
__fastcall virtual TCustomMemo(Classes::TComponent* AOwner);
Description
Call TCustomMemo to instantiate a TCustomMemo object. After calling the constructor of its
parent object, TCustomMemo adjusts some of the properties so that the control starts with the
following values:
• AutoSelect is true.
• AutoSize is false.
• BorderStyle is bsSingle.
• ControlStyle is [csClickEvents, csDoubleClicks, csFixedHeight, csSetCaption]
• Height and Width are 89 and 188.
• HideSelection is true.
• ParentColor is false.
• TabStop is true.
• WantReturns is true.
• WordWrap is true.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomEdit

TCustomMemo example
TCustomMemo

TCustomMemoryStream
Hierarchy Properties Methods See also
TCustomMemoryStream is an abstract base class used as the common ancestor for memory
streams.
Header
vcl/classes.hpp
Description
Use TCustomMemoryStream as a base class when defining a stream object that can transfer
data that is stored in memory. Memory streams are useful for providing I/O access to data that is
stored in a less accessible medium. Data can be moved to an internal memory buffer when the
memory stream is created. After manipulating the data in a memory stream, the data can be
written out to its actual storage medium when the memory stream is destroyed.
Do not instantiate an instance of TCustomMemoryStream. It is an abstract class that implements
behavior common to all memory streams. To work with an instance of a memory stream, use
one of the descendants of TCustomMemoryStream, such as TMemoryStream or
TResourceStream.

TCustomMemoryStream properties
TCustomMemoryStream Alphabetically Legend

In TCustomMemoryStream
Memory

Derived from TStream
Position

Size

TCustomMemoryStream properties
TCustomMemoryStream By object Legend

Memory
Position

Size

TCustomMemoryStream::Memory
TCustomMemoryStream See also
Memory provides direct access to the memory pool allocated for the memory stream.
__property void * Memory;
Description
Use Memory to get access to the memory for the stream. The memory for the stream holds the
data that is being transferred by means of the memory stream. Size is the number of bytes of
Memory that were allocated, and Position is the current position within Memory.
Note
Memory is a read-only property. Memory can be used to change the contents of the memory, but
to set the actual memory the stream works with, descendants of TCustomMemoryStream must
assign a pointer to a memory buffer by calling the SetPointer method.

TCustomMemoryStream methods
TCustomMemoryStream Alphabetically Legend

In TCustomMemoryStream
~TCustomMemoryStream
Read
SaveToFile
SaveToStream
Seek

SetPointer
TCustomMemoryStream

Derived from TStream
CopyFrom
ReadBuffer
ReadComponent
ReadComponentRes
ReadResHeader
Write
WriteBuffer
WriteComponent
WriteComponentRes
WriteDescendent
WriteDescendentRes

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomMemoryStream methods
TCustomMemoryStream By object Legend

~TCustomMemoryStream
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CopyFrom
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
ReadBuffer
ReadComponentRes
ReadComponent
ReadResHeader
Read
SaveToFile
SaveToStream
Seek

SetPointer
TCustomMemoryStream
WriteBuffer
WriteComponentRes
WriteComponent
WriteDescendentRes

WriteDescendent
Write

TCustomMemoryStream::~TCustomMemoryStream
TCustomMemoryStream See also
~TCustomMemoryStream frees the memory associated with the TCustomMemoryStream object.
__fastcall virtual ~TCustomMemoryStream(void);
Description
Do not call ~TCustomMemoryStream directly. Instead, use the delete keyword on the object,
which causes ~TCustomMemoryStream to be invoked automatically.

TCustomMemoryStream::Read
TCustomMemoryStream See also
Read reads up to Count bytes from the memory stream into Buffer, and advances the current
position of the stream by the number of bytes read.
virtual long __fastcall Read(void *Buffer, long Count);
Description
Use Read to read the contents of the memory stream into a buffer, starting at the current
position. Read will read up to Count bytes from the current position in Memory. If Count bytes
extends beyond the end of the memory buffer, Read will only transfer the data up to the end of
the associated memory buffer. Read returns the number of bytes actually transferred to Buffer,
and advances the current position accordingly. If the return value is less than Count, it means
that reading reached the end of the stream data.
All the other data-reading methods of the memory stream (ReadBuffer, ReadComponent) call
Read to do the actual reading.
Note
Read treats Count as an upper bound. The ReadBuffer method, by contrast, raises an exception
if Count bytes cannot be read.

TCustomMemoryStream::SaveToFile
TCustomMemoryStream See also
SaveToFile writes the entire contents of the memory stream to the file with a given file name.
void __fastcall SaveToFile(const System::AnsiString FileName);
Description
Use SaveToFile to write the contents of Memory to a file. SaveToFile allows an application to
write out the contents of the memory stream without having to explicitly create and free a file
stream object. If the named file cannot be created or opened, SaveToFile raises an
EFCreateError exception.

TCustomMemoryStream::SaveToStream
TCustomMemoryStream See also
SaveToStream writes the entire contents of the memory stream to the stream object specified by
Stream.
void __fastcall SaveToStream(TStream* Stream);
Description
Use SaveToStream to copy data that is stored in memory into another storage medium.
SaveToStream writes the entire contents of Memory into the indicated stream object, starting at
the current position in the stream that was passed as a parameter.
When the Stream parameter is a TFileStream object, SaveToStream does much the same thing
as the SaveToFile method. However, SaveToStream writes to the current position in the target
stream. Thus, for example, SaveToStream can be used to append the contents of Memory to a
file stream, rather than replace the contents of the file the way SaveToFile does.
If the entire contents of the memory stream cannot be written to the target stream,
SaveToStream raises an EWriteError exception.

TCustomMemoryStream::Seek
TCustomMemoryStream See also
Seek moves the current position of the stream by Offset bytes, relative to the origin specified by
Origin.
virtual long __fastcall Seek(long Offset, unsigned short Origin);
Description
Use Seek to move the current position within the memory stream by the indicated offset. Seek
allows an application to read from or write to a particular location within the Memory associated
with the memory stream.
If Offset is a negative number, the seek is backward from the specified origin. The following table
shows the different values of Origin and their meanings for seeking.
Table 0.1

Value Meaning
soFromBeginning Offset is from the beginning of Memory. Seek moves to the position

Offset. Offset must be >= 0.
soFromCurrent Offset is from the current position. Seek moves to Position + Offset.
soFromEnd Offset is from the end of Memory. Offset must be <= 0 to indicate a

number of bytes before the end of the memory buffer.
Seek returns the new value of the Position property.
Note
Seek does no error checking on the value provided for Offset. Do not call seek with an offset that
would move the current position less than 0 (before the start of Memory) or greater than Size
(beyond the end of the memory buffer).

TCustomMemoryStream::SetPointer
TCustomMemoryStream See also
SetPointer replaces the memory buffer associated with the memory stream.
void __fastcall SetPointer(void * Ptr, long Size);
Description
Use SetPointer to set the internal memory buffer, Memory, to be the value passed in by Ptr. Size
is the number of bytes Ptr points to.
Descendants of TCustomMemoryStream should use SetPointer to associate the memory stream
with the memory buffer that holds the data for the memory stream.
Note
SetPointer does not free the existing value of Memory, if any, when it replaces the memory
buffer. Descendants of TCustomMemoryStream that use SetPointer to replace the stream’s
memory pool should free the memory pointed to by the Memory property before calling
SetPointer to replace the memory buffer.

TCustomMemoryStream::TCustomMemoryStream
TCustomMemoryStream See also
TCustomMemoryStream creates a new TCustomMemoryStream object.
__fastcall TCustomMemoryStream(void);

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TStream

TCustomMemoryStream example
TCustomMemoryStream

TCustomOutline
Hierarchy Properties Methods Events See also
TCustomOutline is the base class for controls that display outline nodes (TOutlineNode objects).
Header
vcl/outline.hpp
Description
Use TCustomOutline as a base class when defining a control that dispays outline nodes in a
two-dimensional layout. TCustomOutline introduces the ability to manage a hierarchy of outline
nodes, including the ability to control the appearance and layout of those nodes and the ability to
expand or collapse branches of the outline tree.
Do not create instances of TCustomOutline. To add an outline control to a form, use the TOutline
object, which publishes many of the properties, events, and methods of TCustomOutline.

TCustomOutline properties
TCustomOutline Alphabetically Legend

In TCustomOutline
ItemCount

ItemHeight
Items

ItemSeparator
Lines
Options
OutlineStyle
PictureClosed
PictureLeaf
PictureMinus
PictureOpen
PicturePlus
SelectedItem
Style

Derived from TCustomGrid
Row

Derived from TCustomControl
Canvas

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
ParentWindow

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

WindowProc
Derived from TComponent

ComponentCount
ComponentIndex

Components
ComponentState
ComponentStyle

DesignInfo

Owner
Tag

TCustomOutline properties
TCustomOutline By object Legend

Align
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint

ItemCount
ItemHeight
ItemSeparator

Items
Left
Lines
Name
Options
OutlineStyle

Owner
Parent
ParentWindow
PictureClosed
PictureLeaf
PictureMinus
PictureOpen
PicturePlus
Row
SelectedItem
ShowHint

Showing
Style
TabOrder
TabStop
Tag
Top
Visible
Width
WindowProc

TCustomOutline::ItemCount
TCustomOutline See also
ItemCount is the number of nodes in the outline.
__property long ItemCount;
Description
Read ItemCount to determine the number of nodes in the outline. ItemCount may be used with
the Items property array to iterate over all nodes in the outline.
Note
Reading ItemCount can be computationally expensive, as it causes all the indexes used by the
outline to be updated.

TCustomOutline::ItemHeight
TCustomOutline See also
ItemHeight is the height of each node in the outline.
__property int ItemHeight;
Description
Set ItemHeight to the height, in pixels, of each node in the outline. Changing the ItemHeight
property also changes the font used to display the nodes.

TCustomOutline::Items
TCustomOutline See also
Items is an indexed array of all the nodes in the outline.
__property TOutlineNode* Items[long Index];
Description
Use Items to access a node in the outline. Each item is a TOutlineNode object.
Index is a number specifying the node to return, where Items[0] refers to the root and Items[1] is
the first (topmost) node, and so on.

TCustomOutline::ItemSeparator
TCustomOutline See also
ItemSeparator is a delimiting string for outline nodes.
__property System::AnsiString ItemSeparator;
Description
Set ItemSeparator to the string that should appear between node names in the path description
of any individual node in the outline. ItemSeparator is used by the TOutlineNode.GetFullPath
method.
ItemSeparator is initialized to the backslash (‘\’) character when the TCustomOutline object is
created.

TCustomOutline::Lines
TCustomOutline See also
Lines contains the Text property values of all nodes in the outline.
__property Classes::TStrings* Lines;
Description
Read Lines to obtain a text representation of the outline. Set Lines to fill the outline from a set of
text strings. Each string in the Lines property represents a node in the outline. Lines does not
include the root node.
Leading tabs and spaces are converted into levels of the outline. Text without any leading tabs
or spaces becomes level 1 items. For example, the following set of strings represents an outline
with three first level children descended from the root, and an additional, second level child on
the first and third nodes:
ChildA
ChildA1
ChildB
ChildC
ChildC1

The Lines property is primarily useful for filling an outline with items at design time. While Lines
can be used to access the individual nodes at run time, it is much quicker to access an item with
the Items property.

TCustomOutline::Options
TCustomOutline See also
Options determines how the nodes in the outline are drawn.
__property TOutlineOptions Options;
Description
Set Options to any combination of the following values:
Value Meaning

ooDrawTreeRoot The first item (Index value of 1) is connected to the root item by the
outline tree. This means that the tree will extend from the top of the
outline to all the first level items. Without ooDrawTreeRoot, all first level
items appear leftmost in the outline, not connected by the tree.

ooDrawFocusRect The outline draws a focus rectangle around the selected item.
ooStretchBitmaps The outline stretches the standard bitmaps (PictureLeaf, PictureOpen,

PictureClosed, PicturePlus, PictureMinus) to fit in the size of the item,
determined by the size of the Font of the Text. Without ooStretchBitmap,
the bitmaps will be cropped if larger than the height of the item text, or
won't fill up the entire item space if smaller than the text.

TCustomOutline::OutlineStyle
TCustomOutline See also
OutlineStyle specifies how the outline tree is displayed.
__property TOutlineStyle OutlineStyle;

osTreeText, osTreePictureText);
Description
Set OutlineStyle to one of the following values:
Value Meaning

osText Displays node text (specified in TOutlineNode.Text) only.
osPlusMinusText Displays plus picture (specified in PicturePlus), minus picture (specified in

PictureMinus), and node text (specified in TOutlineNode.Text).
osPictureText Displays open picture (specified in PictureOpen), closed picture (specified

in PictureClosed), leaf picture (specified in PictureLeaf) and node text
(specified in TOutlineNode.Text).

osPlusMinusPictureTextDisplays plus picture (specified in PicturePlus), minus picture (specified
in PictureMinus), open picture (specified in PictureOpen), closed picture
(specified in PictureClosed), leaf picture (specified in PictureLeaf), and
node text (specified in TOutlineNode.Text).

osTreeText Displays lines connecting outline nodes and node text (specified in
TOutlineNode.Text).

osTreePictureText Displays lines connecting outline nodes, open picture (specified in
PictureOpen), closed picture (specified in PictureClosed), leaf picture
(specified in PictureLeaf), and node text (specified in TOutlineNode.Text)
.

Note
if the Style property is otOwnerDraw, the value of OutlineStyle is ignored. The connecting lines,
node bitmaps, and node text must all be drawn in an OnDrawItem event handler.

TCustomOutline::PictureClosed
TCustomOutline See also
PictureClosed is the bitmap used to represent a collapsed node that has subitems.
__property Graphics::TBitmap* PictureClosed;
Description
By default, PictureClosed is a closed file folder bitmap. Set PictureClosed to change the bitmap
used for collapsed nodes.
Note
The bitmap will not be displayed in the outline unless the OutlineStyle property is set to
osPictureText, osPlusMinusPictureText, or osTreePictureText.

TCustomOutline::PictureLeaf
TCustomOutline See also
PictureLeaf is the bitmap used to represent an item that does not have subitems.
__property Graphics::TBitmap* PictureLeaf;
Description
By default, PictureLeaf is a document bitmap. Set PictureLeaf to change the bitmap used for leaf
nodes.
Note
The bitmap will not be displayed in the outline unless the OutlineStyle property is set to
osPictureText, osPlusMinusPictureText, or osTreePictureText.

TCustomOutline::PictureMinus
TCustomOutline See also
PictureMinus is the bitmap used to represent an expanded item that has subitems.
__property Graphics::TBitmap* PictureMinus;
Description
By default, PictureMinus is a minus sign (-). Set PictureMinus to change the bitmap used for
collapsible nodes.
Note
The bitmap will not be displayed in the outline unless the OutlineStyle property is set to
osPlusMinusPictureText or osPlusMinusText.

TCustomOutline::PictureOpen
TCustomOutline See also
PictureOpen is the bitmap used to represent an expanded item that has subitems.
__property Graphics::TBitmap* PictureOpen;
Description
By default, the PictureOpen property is an open file folder. Set PictureOpen to change the
bitmap used for expanded nodes.
Note
The bitmap will not be displayed in the outline unless the OutlineStyle property is set to
osPictureText, osPlusMinusPictureText, or osTreePictureText.

TCustomOutline::PicturePlus
TCustomOutline See also
PicturePlus is the bitmap used to represent a collapsed item that has subitems.
__property Graphics::TBitmap* PicturePlus;
Description
By default, the PicturePlus property is a plus sign (+). Set PicturePlus to change the bitmap used
for collapsed nodes.
Note
The bitmap will not be displayed in the outline unless the OutlineStyle property is set to
osPlusMinusPictureText or osPlusMinusText.

TCustomOutline::SelectedItem
TCustomOutline See also
SelectedItem is the index of the selected node.
__property long SelectedItem;
Description
Read SelectedItem to determine the Index of the selected node. If no node is selected,
SelectedItem is 0. Set SelectedItem to set focus to a particular node in the outline.

TCustomOutline::Style
TCustomOutline See also
Style determines whether the nodes and tree are drawn automatically.
__property TOutlineType Style;
Description
By default, Style is osStandard, meaning that the outline displays items in the style determined
by the OutlineStyle property. Set Style to otOwnerDraw to create owner-draw outlines, meaning
that items must be drawn on the canvas of the outline by code in an OnDrawItem event handler.
These are the possible values for Style:
Value Meaning

otStandardItems Items are drawn according to the setting of OutlineStyle..
otOwnerDraw Items are drawn on the Canvas by your code.
Owner-draw outlines can display items other than the Text of a node and the standard bitmaps
specified in the PictureClosed, PictureOpen, PictureMinus, PicturePlus, and PictureLeaf
properties. Owner-draw outlines require more programming, however, as the application must
specify how to render the image for each node in an OnDrawItem event handler.

TCustomOutline events
TCustomOutline Alphabetically Legend

In TCustomOutline
OnCollapse
OnDrawItem
OnExpand

TCustomOutline events
TCustomOutline By object Legend

OnCollapse
OnDrawItem
OnExpand

TCustomOutline::OnCollapse
TCustomOutline See also
OnCollapse occurs immediately after a node in the outline is collapsed.
__property EOutlineChange OnCollapse;
Description
Write an OnCollapse event handler to perform special processing when a node in the outline is
collapsed. The Sender parameter is the outline, and the Index parameter is the index of the node
that was just collapsed.

TCustomOutline::OnDrawItem
TCustomOutline See also
OnDrawItem occurs when a node must be drawn in an owner-draw outline.
__property Stdctrls::TDrawItemEvent OnDrawItem;
Description
When the Style property is set to otOwnerDraw, specifiy an OnDrawItem event handler to render
the image of each node in the outline. An OnDrawItem event handler can display items other
than the Text of a node and the standard bitmaps specified in the PictureClosed, PictureOpen,
PictureMinus, PicturePlus, and PictureLeaf properties.
Draw the image of the node specified by the Index parameter onto the canvas of the outline. The
Control parameter is the outline control that contains the node and that owns the canvas. The
Rect parameter gives the boundaries of the image to be drawn on the canvas. The State
parameter indicates whether the node is selected, and if it has input focus.

TCustomOutline::OnExpand
TCustomOutline See also
OnExpand occurs immediately after a node in the outline is expanded.
__property EOutlineChange OnExpand;
Description
Write an OnExpand event handler to perform special processing when a node in the outline is
expanded. The Sender parameter is the outline, and the Index parameter is the index of the
node that was just expanded.

TCustomOutline methods
TCustomOutline Alphabetically Legend

In TCustomOutline
~TCustomOutline
Add
AddChild
AddChildObject
AddObject

BadIndex
BeginUpdate
Clear
Click
Collapse
DblClick
DefineProperties
Delete
DeleteNode
DrawCell
EndUpdate
Expand
FullCollapse
FullExpand
GetDataItem
GetItem
GetNodeDisplayWidth
GetTextItem
GetVisibleNode
Insert
InsertObject
KeyDown
KeyPress
Loaded
LoadFromFile
LoadFromStream
MouseDown
Move
SaveToFile
SaveToStream
SetDisplayWidth
SetGoodIndex
SetLevel
SetUpdateState
TCustomOutline

Derived from TCustomGrid
MouseCoord

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate

PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize

MethodAddress
MethodName
NewInstance

TCustomOutline methods
TCustomOutline By object Legend

~TCustomOutline
AddChildObject
AddChild
AddObject
Add
Assign

BadIndex
BeginDrag
BeginUpdate
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType

CleanupInstance
Clear

Click
ClientToScreen
Collapse
ContainsControl
ControlAtPos
DblClick
DefaultHandler
DefineProperties
DeleteNode
Delete
DestroyComponents
Destroying
DisableAlign

Dispatch
DragDrop
Dragging

DrawCell
EnableAlign
EndDrag
EndUpdate
Expand
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
FullCollapse
FullExpand
GetDataItem

GetItem
GetNodeDisplayWidth
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextItem
GetTextLen

GetVisibleNode
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InsertObject
Insert
InstanceSize
Invalidate

KeyDown
KeyPress
Loaded
LoadFromFile
LoadFromStream
MethodAddress
MethodName
MouseCoord
MouseDown
Move
NewInstance
PaintTo

Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
SaveToFile
SaveToStream
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds

SetDisplayWidth
SetFocus
SetGoodIndex
SetLevel

SetTextBuf
SetUpdateState
Show
TCustomOutline
UpdateControlState
Update

TCustomOutline::~TCustomOutline
TCustomOutline See also
Destroy destroys an instance of TCustomOutline.
__fastcall virtual ~TCustomOutline(void);
Description
Do not call Destroy directly; instead, call Free. Free verifies that the TCustomOutline object is
not already freed, and only then calls Destroy.
Destroy frees all memory associated with the outline. While Destroy frees the TOutlineNode
objects that comprise the outline, any objects associated with those nodes are not freed.

TCustomOutline::Add
TCustomOutline See also
Add adds an node to the outline.
long __fastcall Add(long Index, const System::AnsiString Text);
Description
Use Add to add a TOutlineNode object to the outline. Text specifies the Text property value of
the new node.
Index specifies where to add the new node. The new node is positioned in the outline as the last
sibling of the node identified by Index. To add nodes to the beginning of the outline, specify zero
(0) as the Index parameter.
Nodes that appear after the new node are moved down one row and reindexed in the Items
property array with valid Index values. If BeginUpdate has been called, the Items array is not
reindexed until the EndUpdate method is called.
Add returns the Index property of the new node.

TCustomOutline::AddChild
TCustomOutline See also
AddChild adds a child node to a node in the outline.
long __fastcall AddChild(long Index, const System::AnsiString Text);
Description
Use AddChild to add a TOutlineNode object as the child of a node in the outline. Text specifies
the Text property value of the new node.
Index specifies where to add the new node. The new node is positioned in the outline as the last
child of the node identified by Index. To add nodes to the top level of the outline (off the root),
specify zero (0) as the Index parameter.
Nodes that appear after the new node are moved down one row and reindexed in the Items
property array with valid Index values. If BeginUpdate has been called, the Items array is not
reindexed until the EndUpdate method is called.
AddChild returns the Index property of the new node.

TCustomOutline::AddChildObject
TCustomOutline See also
AddChild adds a child node containing data to a node in the outline.
long __fastcall AddChildObject(long Index, const System::AnsiString
Text, void * const Data);

Description
Use AddChild to add a TOutlineNode object as the child of a node in the outline and assign it a
data pointer. Text specifies the value of the Text property for the new node. Data specifies the
value of the Data property for the new node.
Index specifies where to add the new node. The new node is positioned in the outline as the last
child of the node identified by Index. To add nodes to the top level of the outline (off the root),
specify zero (0) as the Index parameter.
Nodes that appear after the new node are moved down one row and reindexed in the Items
property array with valid Index values. If BeginUpdate has been called, the Items array is not
reindexed until the EndUpdate method is called.
AddChildObject returns the Index property of the new node.

TCustomOutline::AddObject
TCustomOutline See also
AddObject adds a node containing data to the outline.
long __fastcall AddObject(long Index, const System::AnsiString Text,
void * const Data);

Description
Use Add to add a TOutlineNode object to the outline and assign it a data pointer. Text specifies
the value of the Text property for the new node. Data specifies the value of the Data property for
the new node.
Index specifies where to add the new node. The new node is positioned in the outline as the last
sibling of the node identified by Index. To add nodes to the beginning of the outline, specify zero
(0) as the Index parameter.
Nodes that appear after the new node are moved down one row and reindexed in the Items
property array with valid Index values. If BeginUpdate has been called, the Items array is not
reindexed until the EndUpdate method is called.
AddChild returns the Index property of the new node.

TCustomOutline::BadIndex
TCustomOutline See also
BadIndex indicates whether a node’s index is up to date.
bool __fastcall BadIndex(TOutlineNode* Value);
Description
Use BadIndex to determine whether the Index property of the TOutlineNode object specified by
the Value parameter acurately reflects the position of the node in the outline.
If nodes are added or removed after a call to BeginUpdate, the indexes may be out of date until
the EndUpdate method is called.

TCustomOutline::BeginUpdate
TCustomOutline See also
BeginUpdate prevents the updating of the outline until the EndUpdate method is called.
void __fastcall BeginUpdate(void);
Description
Call BeginUpdate before adding, removing, or moving multiple outline items. BeginUpdate
speeds processing time by deferring repaints and the adjustment of index values until
EndUpdate is called.
Note
Make sure that EndUpdate is called after all changes have been made to the nodes in the Items
array.

TCustomOutline::Clear
TCustomOutline
Clear removes all items from the outline.
void __fastcall Clear(void);

TCustomOutline::Click
TCustomOutline See also
Click updates the SelectedItem property.
virtual void __fastcall Click(void);
Description
Click is called automatically when the user clicks the mouse on a node in the outline. Click
updates the SelectedItem property before the OnClick event handler is called by the inherited
method.

TCustomOutline::Collapse
TCustomOutline See also
Collapse generates an OnCollapse event.
virtual void __fastcall Collapse(long Index);
Description
The Collapse method is called automatically after a node in the outline is collapsed. It calls the
OnCollapse event handler if it is assigned.
Override the Collapse method to provide additional processing after nodes in the outline have
been collapsed, or to block the OnCollapse event.

TCustomOutline::DblClick
TCustomOutline See also
DblClick expands or collapses the selected node.
virtual void __fastcall DblClick(void);
Description
DblClick is called automatically when the user double clicks the mouse on a node in the outline.
After calling the OnDblClick event handler, DblClick updates the SelectedItem property and
expands the selected node if it is collapsed or collapses the selected node if it is expanded.

TCustomOutline::DefineProperties
TCustomOutline See also
DefineProperties creates a new binary property for customized bitmap values.
virtual void __fastcall DefineProperties(Classes::TFiler* Filer);
Description
The streaming system calls DefineProperties to allow the outline to define new properties that
should be saved with the outline object. DefineProperties checks whether the outline uses any
bitmaps other than the default values of PictureClosed, PictureLeaf, PictureMinus, PictureOpen,
and PicturePlus. If the outline has customized any of these bitmaps, DefineProperties uses the
DefineBinaryProperty method of the Filer parameter to create a binary property for the
customized values.

TCustomOutline::Delete
TCustomOutline See also
Delete deletes a node from the outline.
void __fastcall Delete(long Index);
Description
Call Delete to remove a node and all its descendants from the outline. Index is the index of the
node to delete.
Delete removes the node and its children, frees all associated memory, and then calls
DeleteNode to update the indexes and make sure that SelectedItem is valid.

TCustomOutline::DeleteNode
TCustomOutline See also
DeleteNode fixes up the outline after a node has been deleted.
void __fastcall DeleteNode(TOutlineNode* Node, long CurIndex);
Description
DeleteNode is called automatically whenever a node in the outline is destroyed. It fixes up the
index and makes sure that the SelectedItem property is valid.
To Delete a node from the outline, call the DeleteNode method of the outline or the Free method
of the TOulineNode object.

TCustomOutline::DrawCell
TCustomOutline See also
DrawCell draws a node in the outline.
virtual void __fastcall DrawCell(long ACol, long ARow, const Windows::
TRect &ARect, Grids::TGridDrawState AState);

Description
DrawCell is called automatically whenever the outline needs to draw a node. If the Style property
is otOwnerDraw and an OnDrawItem event handler has been supplied, DrawCell generates an
OnDrawItem event. Otherwise, DrawCell draws the node in the manner indicated by the
OutlineStyle property.

TCustomOutline::EndUpdate
TCustomOutline See also
EndUpdate performs the reindexing and repaints deferred by a call to BeginUpdate.
void __fastcall EndUpdate(void);
Description
Call EndUpdate at the end of a segment of code that began with a call to BeginUpdate. Every
time BeginUpdate is called, an internal counter is incremented. When EndUpdate is called, the
counter is decremented. When every call to BeginUpdate has been matched by a call to
EndUpdate, EndUpdate fixes up the indexes and repaints the outline.

TCustomOutline::Expand
TCustomOutline See also

virtual void __fastcall Expand(long Index);
Expand generates an OnExpand event.
Description
The Expand method is called automatically after a node in the outline is expanded. It calls the
OnExpand event handler if it is assigned.
Override the Expand method to provide additional processing after nodes in the outline have
been expanded, or to block the OnExpand event.

TCustomOutline::FullCollapse
TCustomOutline See also
FullCollapse causes all top-level nodes in the outline to collapse.
void __fastcall FullCollapse(void);
Description
Call FullCollapse to shrink the outline as much as possible. FullCollapse sets the Expanded
property of each TOutlineNode that is a direct descendant of the root of the outline to false. This
causes all the descendants of these top-level nodes to be hidden. Depending on the value of
OutlineStyle, each collapsed top-level node is then represented with the PictureClosed bitmap
and/or the PicturePlus bitmap.

TCustomOutline::FullExpand
TCustomOutline See also
FullExpand expands every node in the outline.
void __fastcall FullExpand(void);
Description
Call FullExpand to show all nodes in the outline. FullExpand calls the FullExpand method of the
root node. This causes the Expanded property of all nodes in the outline to be set to true. Every
node in the Items array appears fully expanded in the outline. Depending on the value of
OutlineStyle, each node that has descendants is then represented with the PictureOpen bitmap
and/or the PictureMinus bitmap. The appearance of leaf nodes is unaffected.

TCustomOutline::GetDataItem
TCustomOutline See also
GetDataItem returns the index of the first node in the outline that has the Value pointer as its
Data property.
long __fastcall GetDataItem(void * Value);
Description
Call GetDataItem to locate the node that corresponds to the Value parameter. GetDataItem
returns an index into the Items property array.

TCustomOutline::GetItem
TCustomOutline See also
GetItem returns the index of the node at the position indicated by the X and Y parameters.
long __fastcall GetItem(int X, int Y);
Description
Call GetItem to locate the node at the specified screen pixel coordinates. GetItem returns an
index into the Items property array.

TCustomOutline::GetNodeDisplayWidth
TCustomOutline See also
GetNodeDisplayWidth returns the length of the row containing a specified node.
int __fastcall GetNodeDisplayWidth(TOutlineNode* Node);
Description
Call GetNodeDisplayWidth to determine the length, in pixels, of the line in the outline that
contains the node specified by the Node parameter. GetNodeDisplayWidth adjusts for the lines
and bitmaps specified by the OutlineStyle property.

TCustomOutline::GetTextItem
TCustomOutline See also
GetTextItem returns the index of the first node in the outline with the Value parameter as its Text
property.
long __fastcall GetTextItem(const System::AnsiString Value);
Description
Call GetTextItem to locate the node that corresponds to the Value parameter. GetTextItem
returns an index into the Items property array.

TCustomOutline::GetVisibleNode
TCustomOutline See also
GetVisibleNode returns the TOutlineNode object for the node indicated by a position in the
image of the outline.
TOutlineNode* __fastcall GetVisibleNode(long Index);
Description
Call GetVisibleNode to locate a node with the position given by the Index parameter, where all
nodes that are hidden because their parent node is collapsed are ignored. An Index of 0
indicates the first visible node, an Index of 1 indicates the second visible node, and so on. If the
outline is fully expanded, GetVisibleNode returns the value of Items[Index+1].

TCustomOutline::Insert
TCustomOutline See also
Insert adds a node to the outline at a specified position.
long __fastcall Insert(long Index, const System::AnsiString Text);
Description
Use Insert to add a TOutlineNode object to the outline. Text specifies the Text property value of
the new node.
Index specifies where to add the new node. The new node is positioned in the outline in the
position currently occupied by the node identified by Index. The new node is inserted at the
same level as the node currently identified by Index, so that the original node and the new node
are siblings and share the same parent. To add nodes to the beginning of the outline, specify
zero (0) as the Index parameter.
Nodes that appear after the new node, including the one specified by Index before Insert is
called, are moved down one row and reindexed in the Items property array with valid Index
values. If BeginUpdate has been called, the Items array is not reindexed until the EndUpdate
method is called.
Insert returns the Index property of the new node.

TCustomOutline::InsertObject
TCustomOutline See also
Insert adds a node containing data to the outline at a specified position.
long __fastcall InsertObject(long Index, const System::AnsiString Text,
void * const Data);

Description
Use InsertObject to add a TOutlineNode object to the outline and assign it a data pointer. Text
specifies the value of the Text property for the new node. Data specifies the value of the Data
property for the new node.
Index specifies where to add the new node. The new node is positioned in the outline in the
position currently occupied by the node identified by Index. The new node is inserted at the
same level as the node currently identified by Index, so that the original node and the new node
are siblings and share the same parent. To add nodes to the beginning of the outline, specify
zero (0) as the Index parameter.
Nodes that appear after the new node, including the one specified by Index before Insert is
called, are moved down one row and reindexed in the Items property array with valid Index
values. If BeginUpdate has been called, the Items array is not reindexed until the EndUpdate
method is called.
Insert returns the Index property of the new node.

TCustomOutline::KeyDown
TCustomOutline See also
KeyDown provides special processing when the user presses a key.
virtual void __fastcall KeyDown(unsigned short &Key, Classes::
TShiftState Shift);

Description
KeyDown is called automatically when the user presses a key. After calling the inherited method,
which generates an OnKeyDown event, KeyDown processes the following keystrokes:
Key Behavior

Home Selects the first node in the outline.
End Selects the last node in the outline.
Return Toggles the selected node between its collapsed and expanded states.
Ctrl+* Fully expands the outline.
Right arrow Selects the first child of the selected node.
Left arrow Selects the parent of the selected node.
Ctrl+Up arrow Selects the node following the selected node.
Ctrl+Down arrow Selects the node preceding the selected node.

TCustomOutline::KeyPress
TCustomOutline See also
KeyPress provides special processing when a key is pressed.
virtual void __fastcall KeyPress(char &Key);
Description
KeyPress is called automatically after the user presses a key but before it is released. After
calling the inherited method, which generates an OnKeyPress event, KeyPress processes the
following characters :
Key Behavior

+ Expands the selected node.
- Collapses the selected node.
* Fully expands the outline.

TCustomOutline::Loaded
TCustomOutline See also
Loaded sets up the outline after it has been streamed in.
virtual void __fastcall Loaded(void);
Description
The streaming system calls Loaded after the outline has been fully loaded into memory. Loaded
makes sure that all indexes are correct, loads any custom bitmaps that replaced the default
values, and selects the first node in the outline.

TCustomOutline::LoadFromFile
TCustomOutline See also
LoadFromFile loads the outline from a text image stored in a file.
void __fastcall LoadFromFile(const System::AnsiString FileName);
Description
Call LoadFromFile to fill an outline from the file specified by the FileName parameter. Each line
in the file represents a node in the outline. The file does not include the root node.
Leading tabs and spaces are converted into levels of the outline. Text without any leading tabs
or spaces becomes level 1 items. For example, the following set of strings represents an outline
with three first level children descended from the root, and an additional, second level child on
the first and third nodes:
ChildA
ChildA1
ChildB
ChildC
ChildC1

To fill the outline from a text image read from a stream, use the LoadFromStream method. To fill
the outline from a text image represented as a TStrings object, use the Lines property.

TCustomOutline::LoadFromStream
TCustomOutline See also
LoadFromStream loads the outline from a text image read from a stream.
void __fastcall LoadFromStream(Classes::TStream* Stream);
Description
Call LoadFromStream to fill an outline from the stream specified by the Stream parameter. For
example, use LoadFromStream to load an outline from an image stored in a database table,
using a TBlobStream object. Each node in the outline is separated by a newline character. The
stream does not provide the root node.
Leading tabs and spaces are converted into levels of the outline. Text without any leading tabs
or spaces becomes level 1 items. For example, the following set of strings represents an outline
with three first level children descended from the root, and an additional, second level child on
the first and third nodes:
ChildA
ChildA1
ChildB
ChildC
ChildC1

To fill the outline from a text image read from a file, use the LoadFromFile method. To fill the
outline from a text image represented as a TStrings object, use the Lines property.

TCustomOutline::MouseDown
TCustomOutline See also
MouseDown updates the SelectedItem property.
virtual void __fastcall MouseDown(Controls::TMouseButton Button,
Classes::TShiftState Shift, int X, int Y);

Description
After calling the inherited method to generate an OnMouseDown event and locate the line under
the mouse, MouseDown sets the SelectedItem property to the node in the line under the mouse.

TCustomOutline::Move
TCustomOutline See also
Move repositions a node in the outline.
void __fastcall Move(long Destination, long Source, TAttachMode
AttachMode);

Description
Call Move to reposition the node with the index specified by the Source parameter to the position
indicated by the Destination parameter. The meaning of the Destination parameter depends on
the value of the AttachMode parameter.
AttachMode has one of the following values:
Key Behavior

oaAdd The item is attached as if added with the Add method. The moved item
becomes the last sibling of the item specified by the Destination
parameter, sharing the same parent as the Destination item.

oaAddChild The item is attached as if added with the AddChild method. The moved
item becomes the last child of the item specified by the Destination
parameter. The Destination item becomes the parent of the moved item.

oaInsert The item is attached as if inserted with the Insert method. The moved
item replaces the Destination item in the outline, while the Destination
item and all other following items are moved down one row.

TCustomOutline::SaveToFile
TCustomOutline See also
SaveToFile saves the Lines property to a file.
void __fastcall SaveToFile(const System::AnsiString FileName);
Description
Call SaveToFile to save a text image of the outline to the file specified by the FileName
parameter. The image saved is the value of the Lines property, where each line of the file
represents a node, and each level of the outline is represented by a tab character.
To write the outline to an arbitrary stream, use the SaveToStream method.

TCustomOutline::SaveToStream
TCustomOutline See also
SaveToStream writes the Lines property to a stream.
void __fastcall SaveToStream(Classes::TStream* Stream);
Description
Call SaveToStream to write a text image of the outline to the stream specified by the Stream
parameter. The image saved is the value of the Lines property, where each line of text
represents a node, and each level of the outline is represented by a tab character.
To write the outline to a file, use the SaveToFile method.

TCustomOutline::SetDisplayWidth
TCustomOutline See also
SetDisplayWidth sets the display width of the outline.
void __fastcall SetDisplayWidth(int Value);
Description
Call SetDisplayWidth to set the width of the image of the outline to the number of pixels specified
by the Value parameter. Value should large enough to display the most deeply nested node. Use
the GetNodeDisplayWidth method to determine the size needed to display the visible nodes.
If the display width is greater than the client width of the control, users can scroll the image to
view the entire width.

TCustomOutline::SetGoodIndex
TCustomOutline See also
SetGoodIndex returns the first node in the Items array that must be re-indexed to make the index
of the Value parameter correct.
TOutlineNode* __fastcall SetGoodIndex(TOutlineNode* Value);
Description
Call SetGoodIndex to determine how much of the Items array must be re-indexed after changing
the nodes in the outline. All nodes from the root to the value returned by SetGoodIndex do not
need to be re-indexed.

TCustomOutline::SetLevel
TCustomOutline See also
SetLevel sets the level of an outline node.
void __fastcall SetLevel(TOutlineNode* Node, unsigned int CurLevel,
unsigned int NewLevel);

Description
Call SetLevel to change the nesting depth of the node specified by the Node parameter.
CurLevel is the node’s current level and NewLevel is the node’s new level.
For example, consider the outline specified by the following value of Lines:
NodeA
NodeB
NodeC
NodeD

Calling SetLevel for NodeD with CurLevel set to 2 and NewLevel set to 4 results in the outline
with the following value of Lines:
NodeA
NodeB
NodeC
NodeD

That is, the parent of NodeD was changed from NodeA to NodeC.

TCustomOutline::SetUpdateState
TCustomOutline See also
SetUpdateState enables or disables the maintenance of the node indexes.
void __fastcall SetUpdateState(bool Value);
Description
Call SetUpdateState with Value set to true to block the recomputation of indexes. Call
SetUpdateState with Value set to false to recompute all indexes in the outline and enable the
maintenance of indexes with every change to the nodes in the outline.
Unlike calls to BeginUpdate and EndUpdate, calls to SetUpdateState do not nest: Calling
SetUpdateState with Value set to false always recomputes the indexes regardless of the number
of previous calls to SetUpdateState with Value set to true.
Note
Calling SetUpdateState takes precedence over any enabling or disabling of index maintenance
provided by BeginUpdate or EndUpdate.

TCustomOutline::TCustomOutline
TCustomOutline See also
TCustomOutline creates an instance of TCustomOutline.
__fastcall virtual TCustomOutline(Classes::TComponent* AOwner);
Description
Call TCustomOutline to instantiate a TCustomOutline object at runtime. Outlines placed on forms
at design time are created automatically.
After calling the constructor of its parent object, TCustomOutline initializes the outline object,
setting the values of some internal properties, as well as setting
• Color to clWindow and ParentColor to false.
• Height to 97 and Width to 121.
• ItemSeparator to ‘\’.
• Options to [ooDrawTreeRoot, ooDrawFocusRect].
• OutlineStyle to osTreePictureText.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl
TCustomGrid

TCustomOutline example
TCustomOutline

TCustomPanel
Hierarchy Properties Methods Events See also
The TCustomPanel component is the abstract base component type for all panel components in
Borland C++Builder.
Header
vcl/extctrls.hpp
Description
Panel components are controls that are intended to contain other controls, grouping them
together. Derive windowed controls that are made up of subcontrols from TCustomPanel.
A panel can be aligned with the form using the Align property so that it maintains the same
relative position to the form even when the form is resized. For example, a panel can be aligned
so that it always remains on the top of the form no matter how much the user changes the shape
and size of the form. This makes panels useful for implementing components that act like tool
bars or status bars. For example, construct a tool bar or tool palette by adding speed buttons to
a panel that execute commands or set modes in your application.

TCustomPanel properties
TCustomPanel Alphabetically Legend

In TCustomPanel
Alignment
BevelInner
BevelOuter
BevelWidth
BorderStyle
BorderWidth
FullRepaint
Locked

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth

Color
ControlState
ControlStyle
Cursor
Enabled
Height
Hint
Left
Name
Parent
ParentColor
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomPanel properties
TCustomPanel By object Legend

Alignment
Align
BevelInner
BevelOuter
BevelWidth
BorderStyle
BorderWidth
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled
FullRepaint

Handle
Height
HelpContext
Hint
Left
Locked
Name

Owner
ParentColor
Parent
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Visible
Width

TCustomPanel::Alignment
TCustomPanel See also
The Alignment property determines how the caption is aligned within the panel.
__property Classes::TAlignment Alignment;
Description
Use the Alignment property to specify if the caption of a panel appears on the left, right, or
center of the panel. For example, to use a panel as a status bar and assign the TApplication.
Hint property to the panel’s Caption property, set Alignment to taLeftJustify to place the hint text
on the left side of the panel.
These are the possible values:
Value Meaning

taLeftJustify Align text to the left side of the panel
taCenter Center text horizontally in the panel
taRightJustify Align text to the right side of the panel

TCustomPanel::BevelInner
TCustomPanel See also Example
The BevelInner property determines the style of the inner bevel of a panel.
__property TPanelBevel BevelInner;
Description
Use the BevelInner property to provide the panel with the desired three-dimensional bevelled
look.
A panel component has two bevels, an outer bevel drawn next to the border of the control, and
an inner bevel drawn inside the outer bevel the number of pixels specified in the BorderWidth
property. The width of the bevels, if they are drawn, is the BevelWidth property.
The BevelInner property determines the style of the inner bevel of a panel component. These
are the possible values:
Value Meaning

bvNone No inner bevel exists.
bvLowered The inner bevel is lowered.
bvRaised The inner bevel is raised.

TCustomPanel::BevelOuter
TCustomPanel See also Example
The BevelOuter property determines the style of the outer bevel of a panel.
__property TPanelBevel BevelOuter;
Description
Use the BevelOuter property to provide the panel with the desired three-dimensional bevelled
look.
A panel component has two bevels, an outer bevel drawn next to the border of the control, and
an inner bevel drawn inside the outer bevel by the number of pixels specified in the BorderWidth
proprety. The width of the outer bevel is specified in the BevelWidth property in pixels.
These are the possible values:
Value Meaning

bvNone No outer bevel exists.
bvLowered The outer bevel is lowered.
bvRaised The outer bevel is raised.

TCustomPanel::BevelWidth
TCustomPanel See also Example
The BevelWidth property determines the width in pixels of both the inner and the outer bevels of
a panel.
__property TBevelWidth BevelWidth;
Description
Use the BevelWidth to specify how wide the inner or outer bevel should be. Don’t confuse
BevelWidth, which is the width of the bevels, with BorderWidth, which is the space between the
bevels.
If both the BevelInner and BevelOuter properties are bvNone, BevelWidth has no effect. To
remove both bevels, set the BevelInner and BevelOuter properties to bvNone, rather than setting
the BevelWidth to 0, as this involves less overhead when painting.

TCustomPanel::BorderStyle
TCustomPanel See also Example
The BorderStyle property determines the style of the line drawn around the perimeter of the
panel control.
__property Forms::TBorderStyle BorderStyle;
Description
Use the BorderStyle to specify that the panel have no line or have a single-line drawn around the
panel. When BorderStyle is bsSingle, a single line is drawn around the panel outside of the outer
bevel. These are the possible values:
Value Meaning

bsNone No visible border
bsSingle Single-line border
Don’t confuse the line drawn around the panel with the BorderWidth of the panel. The
BorderWidth of the panel is the distance between the outer and inner bevels.

TCustomPanel::BorderWidth
TCustomPanel See also Example
The BorderWidth property determines the distance, in pixels, between the outer and inner
bevels.
__property TBorderWidth BorderWidth;
Description
Use the BorderWidth property to specify how wide the border around the panel should be in
pixels. A value of 0 means no border should appear.
The border of a panel is the area between the outer and inner bevels. It is visible only if the inner
bevel is raised or lowered, but affects the inset of the caption within the panel even if BevelInner
is bvNone. If the Alignment property is not taCenter, the Caption will be aligned to the inner edge
of the border. This is BorderWidth pixels in from the outer bevel if BevelInner is bvNone, or the
inner edge of the inner bevel otherwise.
Don’t confuse the border of the panel with line drawn around the panel itself referenced by the
BorderStyle property.

TCustomPanel::FullRepaint
TCustomPanel See also
The FullRepaint method determines whether the Invalidate method is called when the custom
panel receives a WM_SIZE message.
__property bool FullRepaint;
Description
Set FullRepaint to true when you want the panel and all the controls it contains to be repainted
when the panel is resized. If FullRepaint is false, the panel and the controls it contains are not
repainted.

TCustomPanel::Locked
TCustomPanel See also
The Locked property determines whether a panel that is being used as a toolbar is replaced by
the OLE object's server's toolbar.
__property bool Locked;
Description
Set the Locked property to false when the panel is used as a toolbar by a TOleContainer
component. Any panels aligned to a TOleContainer are assumed to be replaceable toolbars
unless the Locked property is true. Prevent the panel from being replaced by an OLE server’s
toolbar by setting the panel's Locked property to true.
Note
An application's toolbars must be in panels aligned to a side of the form (that is, their Align
properties must be set to alTop, alBottom, alLeft, or alRight).

TCustomPanel events
TCustomPanel Alphabetically Legend

In TCustomPanel
OnResize

TCustomPanel events
TCustomPanel By object Legend

OnResize

TCustomPanel::OnResize
TCustomPanel See also
The OnResize event occurs whenever the panel is resized while an application is running.
__property Classes::TNotifyEvent OnResize;
Description
Use the OnResize event handler to make something happen when the panel is resized. For
example, the panel may want to reposition its child controls when it is resized.

TCustomPanel methods
TCustomPanel Alphabetically Legend

In TCustomPanel
~TCustomPanel

AlignControls
CreateParams
Paint
Resize
TCustomPanel

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification

GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomPanel methods
TCustomPanel By object Legend

~TCustomPanel
AlignControls
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
CreateParams

DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance

Paint
PaintTo

Perform
Realign

Refresh
RemoveComponent
RemoveControl
Repaint

Resize
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TCustomPanel
UpdateControlState

Update

TCustomPanel::~TCustomPanel
TCustomPanel
~TCustomPanel frees the memory associated with the TCustomPanel object. Do not call ~
TCustomPanel directly. Instead, use the delete keyword on the object, which causes ~
TCustomPanel to be invoked automatically.
__fastcall virtual ~TCustomPanel(void);

TCustomPanel::AlignControls
TCustomPanel See also
The AlignControls method aligns any controls contained within the panel.
virtual void __fastcall AlignControls(Controls::TControl* AControl,
Windows::TRect &Rect);

Description
Use AlignControls to align all controls within a panel all at once. Specify the area in which you
want the controls aligned as the value of the Rect parameter.
AlignControls uses the Align property value for each child control to determine how to align it.
The AControl parameter can be NULL. If you specify a control in AControl, that control takes
precedence in alignment over other, similarly-aligned controls.

TCustomPanel::CreateParams
TCustomPanel See also
The CreateParams method initializes a window-creation parameter record passed in the Params
parameter.
virtual void __fastcall CreateParams(Controls::TCreateParams &Params);
Description
The CreateWnd method calls CreateParams to initialize the parameters it passes to
CreateWindowHandle. Override CreateParams to customize the way a custom panel creates its
Windows representation. When overriding CreateParams, always call the inherited method first
to set the default values, then make any desired adjustments. The overriding method should
specify the fields of the Params record as desired for the parameters to a call to the
CreateWindowEx API function.

TCustomPanel::Paint
TCustomPanel See also
The Paint method renders the image of a panel.
virtual void __fastcall Paint(void);
Description
Override the Paint method to change the way the panel is drawn. The Paint method for custom
panels draws the bevels of the panel, sets the brush and font for the panel, and fills in the
interior of the panel before calling the Windows API DrawText function to draw the Caption.

TCustomPanel::Resize
TCustomPanel See also
The Resize method is the protected implementation method for the OnResize event of a custom
panel control.
virtual void __fastcall Resize(void);
Description
Override Resize to provide other responses in addition to the call to the OnResize event handler.
The custom control calls Resize in response to the WM_SIZE message, indicating a change in
the size of the control or form.
If the panel’s FullRepaint property is true, Resize invalidates the panel before it calls the
method assigned to the OnResize event, if one exists.

TCustomPanel::TCustomPanel
TCustomPanel See also
The TCustomPanel method is the constructor for TCustomPanel.
__fastcall virtual TCustomPanel(Classes::TComponent* AOwner);
Description
The TCustomPanel method constructs and initializes a new custom panel instance and inserts
the newly-constructed control into its owner, as specified by the AOwner parameter, by calling
that owner's InsertComponent method.
After calling the inherited constructor, TCustomPanel initializes the following properties:

Property Value

Alignment taCenter
BevelOuter bvRaised
BevelWidth 1
BorderStyle bsNone
Color BtnFace
ControlStyle [csAcceptsControls, csCaptureMouse, csClickEvents, csOpaque,

csSetCaption, csDoubleClick, cdReplicatable]
FullRepaint true
Height 41
Width 185

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl

TCustomPanel example
TCustomPanel

TCustomRadioGroup
Hierarchy Properties Methods See also
TCustomRadioGroup is the base class for radio-group components.
Header
vcl/extctrls.hpp
Description
Radio groups are collections of radio buttons in a single group box. TCustomRadioGroup is the
class from which radio-group components—including TRadioGroup and
TDBRadioGroup—descend.
Radio buttons that are contained directly in the same control component are said to be
“grouped.” When the user checks a radio button, all other radio buttons in its group become
unchecked. Hence, two radio buttons on a form can be checked at the same time only if they are
placed in separate containers, such as group boxes.

TCustomRadioGroup properties
TCustomRadioGroup Alphabetically Legend

In TCustomRadioGroup
Columns
ItemIndex
Items

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomRadioGroup properties
TCustomRadioGroup By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Columns

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
ItemIndex
Items
Left
Name

Owner
Parent
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Visible
Width

TCustomRadioGroup::Columns
TCustomRadioGroup
The number of columns in the radio group.
__property int Columns;
Description
The Columns property determines the number of columns in the radio group. Its value can range
from 1 to 16. The default value is 1, which means that the radio buttons are arranged in a single
vertical line.

TCustomRadioGroup::ItemIndex
TCustomRadioGroup Example
Indicates which radio button in the group is currently selected.
__property int ItemIndex;
Description
ItemIndex holds the ordinal number of the selected radio button in the Items list. (The first button
is 0.) The value of ItemIndex changes at runtime as the user selects radio buttons. If you want
one of the buttons to appear selected when the application starts, assign that button to
ItemIndex at design time; otherwise, leave ItemIndex set to the default value of -1, which means
that no button is selected.

TCustomRadioGroup::Items
TCustomRadioGroup See also
A list of the radio buttons in the radio group.
__property Classes::TStrings* Items;
Description
Items holds a TStrings object that lists the captions of the radio buttons in the group. In
TCustomRadioGroup descendants TRadioGroup and TDBRadioGroup, where this property is
published, radio buttons can be added or removed by editing the Items list from the Object
Inspector.
Note
The items in a radio-group object are special instances of TRadioButton generated by
TCustomRadioGroup. Independently created TRadioButton instances cannot be included in a
radio group.

TCustomRadioGroup methods
TCustomRadioGroup Alphabetically Legend

In TCustomRadioGroup
~TCustomRadioGroup

CanModify
GetChildren
ReadState
TCustomRadioGroup

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification

GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomRadioGroup methods
TCustomRadioGroup By object Legend

~TCustomRadioGroup
Assign
BeginDrag
BringToFront
Broadcast
CanFocus

CanModify
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler

DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free

GetChildren
GetParentComponent
GetTabOrderList

GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

ReadState

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TCustomRadioGroup
UpdateControlState
Update

TCustomRadioGroup::~TCustomRadioGroup
TCustomRadioGroup
~TCustomRadioGroup frees the memory associated with the TCustomRadioGroup object. Do
not call ~TCustomRadioGroup directly. Instead, use the delete keyword on the object, which
causes ~TCustomRadioGroup to be invoked automatically.
__fastcall virtual ~TCustomRadioGroup(void);
Description
~TCustomRadioGroup frees the memory for each item in the group, then calls the destructor of
its parent object.

TCustomRadioGroup::CanModify
TCustomRadioGroup See also
Determines whether the user can select a different radio button in the group.
virtual bool __fastcall CanModify(void);
Description
Event handlers call CanModify to verify that the user is allowed to select a different radio button
in the group. As defined in TCustomRadioGroup, this method always returns true; override it to
return false in situations where the user should not be able to make changes.

TCustomRadioGroup::GetChildren
TCustomRadioGroup See also
The GetChildren method for TCustomRadioGroup is inoperative.
virtual void __fastcall GetChildren(Classes::TGetChildProc Proc);
Description
TCustomRadioGroup overrides TWinControl to disable the GetChildren method.

TCustomRadioGroup::ReadState
TCustomRadioGroup See also
Reads the radio group’s data from a stream.
virtual void __fastcall ReadState(Classes::TReader* Reader);
Description
ReadState calls the inherited ReadState method to read the radio group’s published properties
and other stored data to a reader object. It then redraws the buttons in the group.

TCustomRadioGroup::TCustomRadioGroup
TCustomRadioGroup See also
Creates and initializes a TCustomRadioGroup instance.
__fastcall virtual TCustomRadioGroup(Classes::TComponent* AOwner);
Description
TCustomRadioGroup calls the constructor of its parent object and initializes
TCustomRadioGroup’s properties. It sets the ControlStyle property’s csSetCaption and
csDoubleClicks flags.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl
TCustomGroupBox

TCustomRadioGroup example
TCustomRadioGroup

TCustomRichEdit
Hierarchy Properties Methods Events See also
The TCustomRichEdit object is the abstract base type for rich edit controls such as TRichEdit.
Header
vcl/comctrls.hpp
Description
TCustomRichEdit introduces new properties and methods to expand the capabilities of
TCustomMemo for rich text.
Do not create instances of TCustomRichEdit. Use TCustomRichEdit as a base class when
declaring control objects that implement rich text capabilities in an edit control. Properties and
methods of TCustomRichEdit provide basic behavior that descendent classes inherit as well as
behavior that components can override to customize their behavior.

TCustomRichEdit properties
TCustomRichEdit Alphabetically Legend

In TCustomRichEdit
DefAttributes
DefaultConverter

HideScrollBars
HideSelection
Lines
PageRect

Paragraph
PlainText
SelAttributes

Derived from TCustomEdit
Modified
SelLength
SelStart
SelText

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Text
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomRichEdit properties
TCustomRichEdit By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DefAttributes
DefaultConverter
DesignInfo
Enabled

Handle
Height
HelpContext
HideScrollBars
HideSelection
Hint
Left
Lines

Modified
Name

Owner
PageRect

Paragraph
Parent
PlainText
SelAttributes
SelLength
SelStart
SelText
ShowHint

Showing
TabOrder
TabStop
Tag

Text
Top
Visible
Width

TCustomRichEdit::DefAttributes
TCustomRichEdit See also
DefAttributes is a TTextAttributes object that describes the rich text characteristics of the default
font for the rich edit control.
__property TTextAttributes* DefAttributes;
Description
Use DefAttributes to discover or set the default font characteristics that the rich edit control uses
for newly inserted text. These are the characteristics of the text before any special attributes
have been applied. Once any special attributes are applied to a portion of text, no text from that
point on is considered to have the default attributes, even if the attributes match the
DefAttributes.
For example, if a rich edit control has had no attributes applied, the entire text has the default
attributes. Selecting a portion of text in the middle and applying a specific attribute (such as a
font change) results in three sections: a first section with the default attributes, a middle section
with the applied attribute, and a final section with a non-default set of attributes that match the
default attributes. Changing the DefAttributes property affects only the first section.
When inserting new text, the font characteristics of the new text will match the font
characteristics at the cursor position, or, if the typing replaces a selection, the font characteristics
of the selected text. New text will only have the default attributes when typed into the section of
text that has the default attributes.
Note
DefAttributes is available only at runtime.

TCustomRichEdit::DefaultConverter
TCustomRichEdit See also
DefaultConverter is the actual class of the TConversion object that is used to convert between
native file format and the internal format of a rich text control, when working with files that do not
have a registered extension.
__property System::TMetaClass* DefaultConverter;
Description
Use DefaultConverter to specify the type of conversion to use when streaming text to or from
files that do not have a registered extension. If DefaultConverter is not set, TCustomRichEdit
uses TConversion, which performs no actual conversion. TCustomRichEdit encodes text
attributes in rich-text format (RTF). Thus, unrecognized file extensions lead to no conversion,
which works for files that contain plain text or any subset of RTF format.
To support streaming to or from files that encode rich text characteristics in some other format,
register a conversion format with the file extension used by those files. Use DefaultConverter
only to change the conversion that is used for unrecognized file extensions.
Note
Use the Lines property to stream the text to or from a file.

TCustomRichEdit::HideScrollBars
TCustomRichEdit See also
HideScrollBars determines whether the scroll bars disappear when not needed.
__property bool HideScrollBars;
Description
Use HideScrollBars to determine whether the scroll bars disappear from the edit control when
the text appears completely within the edit window. Set HideScrollBars to false to prevent the
scroll bars from flashing on and off when the contents of the rich edit control change.
HideScrollBars does nothing when the ScrollBars property is set to ssNone (The default for
TRichEdit).

TCustomRichEdit::HideSelection
TCustomRichEdit See also Example
HideSelection determines whether the visual indication of the selected text remains when focus
shifts to another control.
__property bool HideSelection;
Description
Set HideSelection to false when it is important to provide visual feedback of the selected portion
of the text even when the edit control does not have focus. Set HideSelection to true to make the
visual indication of selection appear only when the edit control has focus. HideSelection does not
affect the actual value of the selection, only the visual indication. Always setting HideSelection to
false can make forms containing many edit controls look busy.

TCustomRichEdit::Lines
TCustomRichEdit See also
Lines contains the individual lines of text in the rich text edit control.
__property Classes::TStrings* Lines;
Description
Use Lines to manipulate the text in the rich text edit control on a line by line basis. Lines is a
TStrings object, so TStrings methods may be used for Lines to perform manipulations such as
counting the lines of text, adding lines, deleting lines, or replacing the text in lines.
To work with the text as one chunk, use the Text property. To manipulate individual lines of text,
the Lines property works better.

TCustomRichEdit::PageRect
TCustomRichEdit See also
PageRect specifies the dimensions, in twips, of the logical page size used when printing the
contents of a rich text edit control.
__property Windows::TRect PageRect;
Description
Use PageRect to specify the logical page size used when formatting the contents of the rich edit
control for printing. Specify the dimensions in twips (1/20 of a point).

TCustomRichEdit::Paragraph
TCustomRichEdit See also Example
Paragraph specifies the formatting information for the current paragraphs.
__property TParaAttributes* Paragraph;
Description
Read Paragraph to get the TParaAttributes object used by the rich edit control to specify
paragraph formatting information. Use the TParaAttributes object to read or write the paragraph
formatting information for the current paragraph. Paragraph formatting information includes
alignment, indentation, numbering, and tabs.
Paragraph is a read-only property, because a TCustomRichEdit object has only one
TParaAttributes object, which cannot be changed. The attributes of the current paragraphs,
however, can be changed, by setting the properties of the TParaAttributes object. These can be
set one by one, or all can be set to the value of an existing TParaAttributes object by using
Paragraph.Assign.
The current paragraphs are the paragraphs that contain the selected text. If no text is selected,
the current paragraph is the one containing the cursor.
Note
Paragraph is available only at runtime.

TCustomRichEdit::PlainText
TCustomRichEdit See also
PlainText controls whether the rich edit control treats the text as plain text or rich text when
streaming to or from a file.
__property bool PlainText;
Description
To write the rich text in the control to a plain text file, set PlainText to true before streaming the
text to a file. To ignore the rich text information encoded in a file, set PlainText to true before
streaming the text to the control. To stream in the rich text attributes encoded in a file, or save
the encoding of the rich text attributes to a file, set PlainText to false.
If the rich text attributes of a file are encoded in some format other than rich text format (RTF), it
is necessary to use a converter on the text, even when PlainText is true.
Note
Rich edit controls do not directly support streaming. Use the Lines property to stream to or from
a file.

TCustomRichEdit::SelAttributes
TCustomRichEdit See also
SelAttributes is a TTextAttributes object that describes the rich text characteristics of the
selected text in the rich edit control.
__property TTextAttributes* SelAttributes;
Description
Use SelAttributes to discover or set the font characteristics of the currently selected text.
SelAttributes is a TTextAttributes object, which specifies characteristics such as font face, color,
size, style, and pitch. To change a single attribute of the currently selected text, read
SelAttributes, and set one of its properties. To change all of the attributes of the currently
selected text, set SelAttributes to a TTextAttributes object that represents the desired
configuration of attributes. If no text is selected, SelAttributes represents the attributes of the
cursor position.
When inserting new text, the font characteristics of the new text will match SelAttributes.
Note
SelAttributes is available only at runtime.

TCustomRichEdit events
TCustomRichEdit Alphabetically Legend

In TCustomRichEdit
OnProtectChange
OnResizeRequest
OnSaveClipboard
OnSelectionChange

TCustomRichEdit events
TCustomRichEdit By object Legend

OnProtectChange
OnResizeRequest
OnSaveClipboard
OnSelectionChange

TCustomRichEdit::OnProtectChange
TCustomRichEdit See also
OnProtectChange occurs when a user attempts to modify text that is marked as protected.
typedef void __fastcall (__closure *TRichEditProtectChange)(System::
TObject* Sender, int StartPos, int EndPos, bool &AllowChange);

__property TRichEditProtectChange OnProtectChange;
Description
Write an OnProtectChange event handler to allow modification of text with the protected
attribute. The StartPos and EndPos parameters indicate the beginning and end of the range of
text that would be affected by the modification, where 0 is the first character in the text. To allow
modification of protected text, set AllowChange to true.
To set or unset the protected attribute for a section of text, select the text and use the Protected
property of the rich edit control’s SelAttributes property. To cause text to have the protected
attribute by default, use the Protected property of the rich edit object’s DefAttributes property.

TCustomRichEdit::OnResizeRequest
TCustomRichEdit See also Example
OnResizeRequest occurs when the text has grown either smaller or larger than the control’s
window size.
typedef void __fastcall (__closure *TRichEditResizeEvent)(System::
TObject* Sender, const Windows::TRect &Rect);

__property TRichEditResizeEvent OnResizeRequest;
Description
Write an OnResizeRequest event handler to respond to notifications that the edit control is trying
to resize due to changes in the text. The Rect parameter gives the desired bounding rectangle
that will display all the text, in screen coordinates.

TCustomRichEdit::OnSaveClipboard
TCustomRichEdit See also
OnSaveClipboard occurs when the window of the edit control is about to be destroyed and the
Clipboard contains information from the edit control.
typedef void __fastcall (__closure *TRichEditSaveClipboard)(System::
TObject* Sender, int NumObjects, int NumChars, bool &SaveClipboard);

__property TRichEditSaveClipboard OnSaveClipboard;
Description
Write an OnSaveClipboard event handler to respond to notifications that the window of the edit
control is about to be destroyed and the Clipboard contains information from the edit control. The
parameter NumObjects is the number of objects on the Clipboard, and NumChars is the number
of characters on the Clipboard. To clear all information about the edit control from the Clipboard,
set SaveClipboard to false.

TCustomRichEdit::OnSelectionChange
TCustomRichEdit See also
OnSelectionChange occurs when the current selection changes.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnSelectionChange;
Description
Write an OnSelectionChange event handler to respond to changes in the selected text. Changes
in selection can occur when the user changes the selection using the mouse or keyboard, or
when the selection is changed through the SelText property. Portions of the selection can be
changed through the Lines property.

TCustomRichEdit methods
TCustomRichEdit Alphabetically Legend

In TCustomRichEdit
~TCustomRichEdit

CreateParams
CreateWnd
DestroyWnd
FindText
Print
RegisterConversionFormat
RequestSize
SelectionChange
TCustomRichEdit

Derived from TCustomEdit
Clear
ClearSelection
CopyToClipboard
CutToClipboard
GetSelTextBuf
PasteFromClipboard
SelectAll
SetSelTextBuf

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf

GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomRichEdit methods
TCustomRichEdit By object Legend

~TCustomRichEdit
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClearSelection
Clear
ClientToScreen
ContainsControl
ControlAtPos
CopyToClipboard

CreateParams
CreateWnd
CutToClipboard
DefaultHandler
DestroyComponents
Destroying
DestroyWnd
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent

FindText
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetSelTextBuf
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize

Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
PasteFromClipboard
Perform
Print
Realign
Refresh
RegisterConversionFormat
RemoveComponent
RemoveControl
Repaint

RequestSize
ScaleBy
ScreenToClient
ScrollBy
SelectAll

SelectionChange
SendToBack
SetBounds
SetFocus
SetSelTextBuf
SetTextBuf
Show
TCustomRichEdit
UpdateControlState
Update

TCustomRichEdit::~TCustomRichEdit
TCustomRichEdit See also
~TCustomRichEdit frees the memory associated with the TCustomRichEdit object. Do not call ~
TCustomRichEdit directly. Instead, use the delete keyword on the object, which causes ~
TCustomRichEdit to be invoked automatically.
__fastcall virtual ~TCustomRichEdit(void);

TCustomRichEdit::CreateParams
TCustomRichEdit See also
The CreateParams method initializes a window-creation parameter record passed in the Params
parameter.
virtual void __fastcall CreateParams(Controls::TCreateParams &Params);
Description
The CreateWnd method calls CreateParams to initialize the parameters it passes to
CreateWindowHandle. TCustomRichEdit overrides the inherited method to specify a Windows
rich edit control.

TCustomRichEdit::CreateWnd
TCustomRichEdit See also
The CreateWnd method creates a Windows control corresponding to the edit control.
virtual void __fastcall CreateWnd(void);
Description
CreateWnd is called when the rich edit control is created, and whenever a change to the rich edit control
requires the window to be recreated. CreateWnd first calls the inherited CreateWnd, and then sends
the newly created window messages to request notification of Windows events, and, if the
window is being recreated, reloads the rich text from a memory stream.

TCustomRichEdit::DestroyWnd
TCustomRichEdit See also
The DestroyWnd method destroys the rich edit control’s window handle.
virtual void __fastcall DestroyWnd(void);
Description
Before the window handle is destroyed, DestroyWnd saves a copy of the control’s text in a
memory stream, frees any device contexts, and finally calls DestroyWindowHandle.

TCustomRichEdit::FindText
TCustomRichEdit See also
FindText searches a given range in the text for a target string.
int __fastcall FindText(const System::AnsiString SearchStr, int
StartPos, int Length, TSearchTypes Options);

Description
Use FindText to search a range of text in a rich edit control for a string. The search will start at
the position StartPos, where 0 is the first character. Use Options to specify whether the search
should match whole words only and whether the search should be case sensitive. Use FindText
rather than programmatically searching through the text of the control, to keep from being thrown
off by the encoding of rich text characteristics.

TCustomRichEdit::Print
TCustomRichEdit See also
Print formats and prints the contents of the rich edit control.
void __fastcall Print(const System::AnsiString Caption);
Description
Use Print to print the contents of a rich edit control. The Caption parameter specifies the title that
appears on the printed output.

TCustomRichEdit::RegisterConversionFormat
TCustomRichEdit See also
RegisterConversionFormat registers an association between a file extension and a TConversion
object that can convert between the native file format and rich text format (RTF).
static void __fastcall RegisterConversionFormat(const System::
TMetaClass* const vmt, const System::AnsiString AExtension, System::
TMetaClass* AConversionClass);

Description
Rich edit controls encode text attributes in RTF format. To read from or write to files that encode
text attributes in some other format, a converter is required. The converter is a descendant of
TConversion that translates between the native file format and RTF when the text is streamed in
or out. RegisterConversionFormat sets up an association between a file extension and a
converter, so that all attempts to stream between a file with that extension and a rich edit control
automatically invoke the appropriate converter.
Note
Use the Lines property to stream the text to or from a file.

TCustomRichEdit::RequestSize
TCustomRichEdit See also
RequestSize responds to messages from the window of the rich text edit control when the text
has grown either smaller or larger than the window size.
virtual void __fastcall RequestSize(const Windows::TRect &Rect);
Description
RequestSize merely calls the OnResizeRequest event handler. RequestSize is exposed as a
protected method so that derived classes can change the response to Windows messages about
an impending window resize. When overriding RequestSize, include a call to the
OnResizeRequest event handler.

TCustomRichEdit::SelectionChange
TCustomRichEdit See also
SelectionChange responds to messages from window of the edit control that the selection has
changed.
virtual void __fastcall SelectionChange(void);
Description
SelectionChange merely calls the OnSelectionChange event handler. SelectionChange is
exposed as a protected method so that derived classes can change the response to Windows
messages about selection changes. When overriding SelectionChange, include a call to the
OnSelectionChange event handler.

TCustomRichEdit::TCustomRichEdit
TCustomRichEdit See also
TCustomRichEdit creates an instance of TCustomRichEdit.
__fastcall virtual TCustomRichEdit(Classes::TComponent* AOwner);
Description
Call TCustomRichEdit to create an instance of TCustomRichEdit at runtime. For
TCustomRichEdit objects placed on forms at design time, TCustomRichEdit is called
automatically.
TCustomRichEdit overrides the inherited constructor to allocate helper objects that manage the
rich text attributes of the text.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomEdit
TCustomMemo

TCustomRichEdit example
TCustomRichEdit

TCustomTabControl
Hierarchy Properties Methods Events
The TCustomTabControl component is the abstract base type for tab-control components such
as TTabControl and TPageControl.
Header
vcl/comctrls.hpp
Description
Most of the properties, methods, and events defined in TCustomTabControl are protected so
that you can choose whether to publish them in your own tab control or page control
components.

TCustomTabControl properties
TCustomTabControl Alphabetically Legend

In TCustomTabControl
DisplayRect

MultiLine
TabHeight
TabIndex
Tabs
TabWidth

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomTabControl properties
TCustomTabControl By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo

DisplayRect
Enabled

Handle
Height
HelpContext
Hint
Left
MultiLine
Name

Owner
Parent

ShowHint
Showing

TabHeight
TabIndex
TabOrder
Tabs
TabStop
TabWidth
Tag
Top
Visible
Width

TCustomTabControl::DisplayRect
TCustomTabControl
Determine the size in pixels of a tab control client area.
__property Windows::TRect DisplayRect;
Description
DisplayRect returns the Top, Bottom, Left, and Right coordinates in one record of type TRect.

TCustomTabControl::MultiLine
TCustomTabControl See also
Determines whether the tabs appear on more than one row when the number of tabs exceeds
the number that fits across the top of the tab control.
__property bool MultiLine;
Description
Use MultiLine to determine how the tabs are displayed. If MultiLine is true, the tabs are displayed
on more than one row. How many rows is determined by how many tabs are in the tab control. If
MultiLine is false, the tabs are displayed on one row only, and the user must scroll the displayed
scroll arrows to view all the tabs.

TCustomTabControl::TabHeight
TCustomTabControl See also
Determines the height in pixels of the tabs in the tab control.
__property short TabHeight;
Description
The TabHeight property is the vertical size in pixels of the individual tabs. If zero is specified as
the TabHeight tabs automatically size themselves to fit their text.

TCustomTabControl::TabIndex
TCustomTabControl See also
Identifies the specific tab on a tab control.
__property int TabIndex;
Description
The individual tabs on a TTabControl are identified by their zero-based index. The first (leftmost)
tab has a TabIndex of 0, the next has 1, and so on. The value of the TabIndex property
determines which tab of a tab control is currently selected. If no tabs are selected, TabIndex has
a value of -1.

TCustomTabControl::Tabs
TCustomTabControl See also Example
Contains the list of text strings on the tabs of a tab control.
__property Classes::TStrings* Tabs;
Description
For each string in the Tabs property, a new tab is created to display the text string. At design
time, you enter the text strings you want to appear on the tabs using the String List editor.
Double-click the value column of the Tabs property to display the String List editor. You can also
change strings in the Tabs property at runtime.

TCustomTabControl::TabWidth
TCustomTabControl See also
The horizontal size in pixels of the individual tabs in a tab control.
__property short TabWidth;
Description
If zero is specified as the TabWidth tabs will automatically size themselves to fit their text.

TCustomTabControl events
TCustomTabControl Alphabetically Legend

In TCustomTabControl
OnChange
OnChanging

TCustomTabControl events
TCustomTabControl By object Legend

OnChange
OnChanging

TCustomTabControl::OnChange
TCustomTabControl See also
Occurs when a new tab is selected, immediately after the OnChanging event.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnChange;
Description
TNotifyEvent points to the method that responds to the OnChange event.

TCustomTabControl::OnChanging
TCustomTabControl See also Example
Occurs when a new tab is selected, before focus shifts to the new tab.
typedef void __fastcall (__closure *TTabChangingEvent)(System::
TObject* Sender, bool &AllowChange);

__property TTabChangingEvent OnChanging;
Description
The change can be allowed or disallowed.
The TTabChangingEvent points to the method the responds to the OnChanging event of the tab
control. The AllowChange parameter determines whether a change to a new tab can take place.
If AllowChange is false, the tab control does not change to a new page when the user selects a
new tab.

TCustomTabControl methods
TCustomTabControl Alphabetically Legend

In TCustomTabControl
~TCustomTabControl

AlignControls
CanChange
Change
CreateParams
CreateWnd
DestroyWnd
TCustomTabControl

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying

FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomTabControl methods
TCustomTabControl By object Legend

~TCustomTabControl
AlignControls
Assign
BeginDrag
BringToFront
Broadcast
CanChange
CanFocus
Change
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen

ContainsControl
ControlAtPos

CreateParams
CreateWnd
DefaultHandler
DestroyComponents
Destroying
DestroyWnd
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent

Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TCustomTabControl
UpdateControlState
Update

TCustomTabControl::~TCustomTabControl
TCustomTabControl See also
~TCustomTabControl frees the memory associated with the TCustomTabControl object. Do not
call ~TCustomTabControl directly. Instead, use the delete keyword on the object, which causes
~TCustomTabControl to be invoked automatically.
__fastcall virtual ~TCustomTabControl(void);
Description
The ~TCustomTabControl method frees the tab list that holds the list of text strings for the tabs
and calls the destructor of its parent object.

TCustomTabControl::AlignControls
TCustomTabControl See also
Aligns the controls on a tab control.
virtual void __fastcall AlignControls(Controls::TControl* AControl,
Windows::TRect &Rect);

Description
The AlignControls method aligns any controls for which the tab control is the parent within the
rectangle passed in Rect. AlignControls uses the Align property value for each child control to
determine how to align it. The AControl parameter can be NULL. If you specify a control in
AControl, that control takes precedence in alignment over other, similarly-aligned controls.

TCustomTabControl::CanChange
TCustomTabControl See also
Calls the OnChanging event handler.
virtual bool __fastcall CanChange(void);
Description
The CanChange method is the protected implementation method for the OnChanging event.
Override CanChange if you want to specify additional processing before the OnChanging event
handler executes.

TCustomTabControl::Change
TCustomTabControl See also
Calls the OnChange event handler.
virtual void __fastcall Change(void);
Description
The Change method is the protected implementation method for the OnChange event. Override
Change if you want to specify additional processing before the OnChange event handler
executes.

TCustomTabControl::CreateParams
TCustomTabControl
Sets up the initial parameters for the custom tab control.
virtual void __fastcall CreateParams(Controls::TCreateParams &Params);
Description
CreateParams calls the inherited CreateParams method, then sets the Style parameter in the
Params parameter.

TCustomTabControl::CreateWnd
TCustomTabControl See also
Creates a Windows tab control.
virtual void __fastcall CreateWnd(void);
Description
CreateWnd calls the inherited CreateWnd method, before assigning any saved tab text strings in
internal storage.

TCustomTabControl::DestroyWnd
TCustomTabControl See also
Destroys the tab control’s window handle.
virtual void __fastcall DestroyWnd(void);
Description
The DestroyWnd method destroys the windowed control's window handle, first saving a copy of
the tab text strings in internal storage.

TCustomTabControl::TCustomTabControl
TCustomTabControl See also
Constructs a custom tab control.
__fastcall virtual TCustomTabControl(Classes::TComponent* AOwner);
Description
TCustomTabControl calls the constructor of its parent object and sets the initial values for the
tab control, including the creation of a tab list that contains the text strings for the tabs.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TCustomTabControl example
TCustomTabControl

TCustomTreeView
Hierarchy Properties Methods Events See also
The TCustomTreeView component is the abstract base type for tree-view components such as
TTreeView.
Header
vcl/comctrls.hpp
Description
Most of the properties defined in TCustomTreeView are protected so that you can choose
whether to publish them in your own tree view components.

TCustomTreeView properties
TCustomTreeView Alphabetically Legend

In TCustomTreeView
BorderStyle
DropTarget
HideSelection
Images
Indent
Items
ReadOnly
Selected
ShowButtons
ShowLines
ShowRoot
SortType
StateImages
TopItem

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomTreeView properties
TCustomTreeView By object Legend

Align
BorderStyle
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
DropTarget
Enabled

Handle
Height
HelpContext
HideSelection
Hint
Images
Indent
Items
Left
Name

Owner
Parent
ReadOnly
Selected
ShowButtons
ShowHint

Showing
ShowLines
ShowRoot
SortType
StateImages
TabOrder
TabStop
Tag
TopItem
Top
Visible
Width

TCustomTreeView::BorderStyle
TCustomTreeView See also Example
Determines whether the control has a border.
__property Forms::TBorderStyle BorderStyle;
Description
These are the possible values:
Value Meaning

bsNone No visible border
bsSingle Single-line border

TCustomTreeView::DropTarget
TCustomTreeView
Specifies the item that is the target of a drag-and-drop operation.
__property TTreeNode* DropTarget;

TCustomTreeView::HideSelection
TCustomTreeView See also Example
The HideSelection property determines whether a selected node remains selected when the
focus shifts to another control.
__property bool HideSelection;
Description
If true, the node is no longer selected until the focus returns to the control. If false, the node
remains selected.

TCustomTreeView::Images
TCustomTreeView See also Example
Determines which image list is associated with the tree view.
__property Controls::TImageList* Images;
Description
An image list contains a list of bitmaps that can be displayed to the left of a node’s label.

TCustomTreeView::Indent
TCustomTreeView See also
Specifies the amount of indentation in pixels when a list of child nodes is expanded.
__property int Indent;
Description
When a list of child nodes is expanded, they are indented relative to the parent node.

TCustomTreeView::Items
TCustomTreeView See also Example
The Items property contains the individual nodes that appear in the tree view control.
__property TTreeNodes* Items;
Description
Individual nodes in a tree view are TTreeNode objects. These individual nodes can be accessed
by using the Items property along with the item's index into the tree view. For example, to access
the second item in the tree view, you could use the following code.
MyTreeNode = TreeView1.Items[1];
When setting this property at design-time in the Object Inspector the TreeView Items Editor
appears. Use the New Item and New SubItem buttons to add items to the tree view. Use the
Text property to modify what text is displayed in the label of the item.
At runtime nodes can be added and inserted by using the TTreeNodes methods AddChildFirst,
AddChild, AddChildObjectFirst, AddChildObject, AddFirst, Add, AddObjectFirst, AddObject and
Insert.
Note
Accessing tree view items by index can be time-intensive, particularly when the tree view
contains many items. For optimal performance, try to design your application so that it has as
few dependencies on the tree view’s item index as possible.

TCustomTreeView::ReadOnly
TCustomTreeView See also
Determines if the user can change the contents of the control.
__property bool ReadOnly;
Description
If ReadOnly is true, the user can't change the contents. If ReadOnly is false, the user can modify
the contents. The default value is false.

TCustomTreeView::Selected
TCustomTreeView Example
Specifies the selected item in the tree view.
__property TTreeNode* Selected;

TCustomTreeView::ShowButtons
TCustomTreeView See also
The ShowButtons property specifies whether to display plus (+) and minus (-) buttons to the left
side of each parent item.
__property bool ShowButtons;
Description
If ShowButtons is set to true, a button will appear to the left of each parent item. The user can
click the button to expand or collapse the child items as an alternative to double-clicking the
parent item.

TCustomTreeView::ShowLines
TCustomTreeView See also
The ShowLines property specifies whether lines that link child items to their corresponding
parent items are displayed.
__property bool ShowLines;
Description
If ShowLines is set to true, lines linking child nodes to their parent nodes will be displayed.
Nodes at the root of the hierarchy are not automatically linked. To link nodes at the root, the
ShowRoot property must also be set to true.

TCustomTreeView::ShowRoot
TCustomTreeView See also
The ShowRoot property specifies whether lines connecting root (top-level) nodes are displayed.
__property bool ShowRoot;
Description
To show lines connecting root nodes, set the tree view's ShowRoot and ShowLines properties to
true.

TCustomTreeView::SortType
TCustomTreeView See also
The SortType property determines if and how the nodes in a tree view are automatically sorted.
__property TSortType SortType;
Description
Once a tree view is sorted, the original hierarchy is lost. That is, setting the SortType back to
stNone will not restore the original order of items. These are the possible values:
Value Meaning

nsNone No sorting is done.
nsData The items are sorted when the Data object or SortType is changed.
nsText The items are sorted when the Caption or SortType is changed.
nsBoth The items are sorted when either the Data object, the Caption or

SortType is changed
Optionally, the OnCompare event can be hooked to handle comparisons. The OnCompare event
will be called to compare two nodes for sorting.

TCustomTreeView::StateImages
TCustomTreeView See also Example
The StateImages property determines which image list to use for state images.
__property Controls::TImageList* StateImages;
Description
A state image is for when you want to display an additional image to the left of the item's icon.

TCustomTreeView::TopItem
TCustomTreeView Example
The TopItem property specifies the top item in the tree view.
__property TTreeNode* TopItem;

TCustomTreeView events
TCustomTreeView Alphabetically Legend

In TCustomTreeView
OnChange
OnChanging
OnCollapsed
OnCollapsing
OnCompare
OnDeletion
OnEdited
OnEditing
OnExpanded
OnExpanding
OnGetImageIndex
OnGetSelectedIndex

TCustomTreeView events
TCustomTreeView By object Legend

OnChange
OnChanging
OnCollapsed
OnCollapsing
OnCompare
OnDeletion
OnEdited
OnEditing
OnExpanded
OnExpanding
OnGetImageIndex
OnGetSelectedIndex

TCustomTreeView::OnChange
TCustomTreeView See also
The OnChange event occurs whenever the selection has changed from one node to another.
typedef void __fastcall (__closure *TTVChangedEvent)(System::TObject*
Sender, TTreeNode* Node);

__property TTVChangedEvent OnChange;
Description
The TTVChangedEvent type points to a method that is called when the selection has changed
from one item to another (OnChange event) in the TTreeView component.

TCustomTreeView::OnChanging
TCustomTreeView See also
The OnChanging event occurs whenever the selection is about to be changed from one node to
another.
typedef void __fastcall (__closure *TTVChangingEvent)(System::TObject*
Sender, TTreeNode* Node, bool &AllowChange);

__property TTVChangingEvent OnChanging;
Description
The TTVChangingEvent type points to a method that is called when the selection is about to be
changed from one node to another (OnChanging event) in the TTreeView component. The
AllowChange parameter determines whether the change is permitted. If AllowChange is set to
false, the user won't be able to select this node.

TCustomTreeView::OnCollapsed
TCustomTreeView See also
The OnCollapsed event occurs after a node has been collapsed.
typedef void __fastcall (__closure *TTVExpandedEvent)(System::TObject*
Sender, TTreeNode* Node);

__property TTVExpandedEvent OnCollapsed;
Description
Use the OnCollapsed event to trigger the execution of some code to be executed when a node
in the tree view is collapsed.

TCustomTreeView::OnCollapsing
TCustomTreeView See also
The OnCollapsing event occurs when a node is about to be collapsed.
typedef void __fastcall (__closure *TTVCollapsingEvent)(System::
TObject* Sender, TTreeNode* Node, bool &AllowCollapse);

__property TTVCollapsingEvent OnCollapsing;
Description
The TTVCollapsingEvent type points to a method that is called when a node is about to be
collapsed (OnCollapsing event). The AllowCollapse parameter determines whether the parent
node can be collapsed. If AllowCollapse is set to false, the user won't be able to collapse the
node.

TCustomTreeView::OnCompare
TCustomTreeView See also
The OnCompare event occurs when a request is made by the tree view control's parent window
to sort a node.
typedef void __fastcall (__closure *TTVCompareEvent)(System::TObject*
Sender, TTreeNode* Node1, TTreeNode* Node2, int Data, int &Compare);

__property TTVCompareEvent OnCompare;
Description
The TTVCompareEvent type points to a method that is called when two nodes in the tree view
need to be compared (OnCompare event).

TCustomTreeView::OnDeletion
TCustomTreeView See also
The OnDeletion event occurs when a node in the tree view is deleted.
typedef void __fastcall (__closure *TTVExpandedEvent)(System::TObject*
Sender, TTreeNode* Node);

__property TTVExpandedEvent OnDeletion;
Description
Use the OnDeletion event to trigger the execution of some code when a node is deleted in the
tree view control.

TCustomTreeView::OnEdited
TCustomTreeView See also
The OnEdited event occurs at the end of label editing of a node’s Text property and if the text in
the label has been changed.
typedef void __fastcall (__closure *TTVEditedEvent)(System::TObject*
Sender, TTreeNode* Node, System::AnsiString & S);

__property TTVEditedEvent OnEdited;
Description
The event can occur only if ReadOnly is set to false.

TCustomTreeView::OnEditing
TCustomTreeView See also
The OnEditing event occurs at the start of label editing of a node's Text property in the
TTreeView component
typedef void __fastcall (__closure *TTVEditingEvent)(System::TObject*
Sender, TTreeNode* Node, bool &AllowEdit);

__property TTVEditingEvent OnEditing;
Description
This event can occur only if the component's ReadOnly property is set to false.
The TTVEditingEvent types point to a method that is called at the start of label editing of a node
(OnEditing event) in the component. The AllowEdit parameter determines whether the editing is
allowed. If AllowEdit is false, the user won't be able to change the label of the node in the tree
view control.

TCustomTreeView::OnExpanded
TCustomTreeView See also
The OnExpanded event occurs whenever a node has been expanded.
typedef void __fastcall (__closure *TTVExpandedEvent)(System::TObject*
Sender, TTreeNode* Node);

__property TTVExpandedEvent OnExpanded;
Description
Use the OnExpanded event to trigger the execution of some code to be executed when a node
in the tree view is expanded.

TCustomTreeView::OnExpanding
TCustomTreeView See also
The OnExpanding event occurs whenever a node is about to be expanded.
typedef void __fastcall (__closure *TTVExpandingEvent)(System::
TObject* Sender, TTreeNode* Node, bool& AllowExpansion);

__property TTVExpandingEvent OnExpanding;
Description
The TTVExpandingEvent type points to a method that is called when an item is about to be
expanded (OnExpanding event). The AllowExpansion parameter determines whether the item
can be expanded. If AllowExpansion is set to false, the user won't be able to expand the item.

TCustomTreeView::OnGetImageIndex
TCustomTreeView See also
The OnGetImageIndex event occurs when the control inquires about the ImageIndex of an item.
typedef void __fastcall (__closure *TTVExpandedEvent)(System::TObject*
Sender, TTreeNode* Node);

__property TTVExpandedEvent OnGetImageIndex;
Description
The OnGetImageIndex event gives the programmer an opportunity to change the image index
for the particular node being drawn. For example, the bitmap of a node can be changed to
indicate a different state for the node.

TCustomTreeView::OnGetSelectedIndex
TCustomTreeView See also
The OnGetSelectedIndex event occurs when the control inquires about the SelectedIndex of the
node.
typedef void __fastcall (__closure *TTVExpandedEvent)(System::TObject*
Sender, TTreeNode* Node);

__property TTVExpandedEvent OnGetSelectedIndex;
Description
The event gives the programmer the opportunity to change the selected node's SelectedIndex,
the index of the selected node's bitmap in the image list.

TCustomTreeView methods
TCustomTreeView Alphabetically

In TCustomTreeView
~TCustomTreeView
AlphaSort
CustomSort
FullCollapse
FullExpand
GetHitTestInfoAt
GetNodeAt
IsEditing
LoadFromFile
LoadFromStream
SaveToFile
SaveToStream
TCustomTreeView

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient

SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomTreeView methods
TCustomTreeView By object

~TCustomTreeView
AlphaSort
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
CustomSort
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
FullCollapse
FullExpand
GetHitTestInfoAt
GetNodeAt
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize

Invalidate
IsEditing
LoadFromFile
LoadFromStream
MethodAddress
MethodName
NewInstance
PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
SaveToFile
SaveToStream
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TCustomTreeView
UpdateControlState
Update

TCustomTreeView::~TCustomTreeView
TCustomTreeView See also
~TCustomTreeView frees the memory associated with the TCustomTreeView object. Do not call
~TCustomTreeView directly. Instead, use the delete keyword on the object, which causes ~
TCustomTreeView to be invoked automatically.
__fastcall virtual ~TCustomTreeView(void);

TCustomTreeView::AlphaSort
TCustomTreeView See also
The AlphaSort method sorts all nodes alphabetically by label in the tree view control.
bool __fastcall AlphaSort(void);
Description
If successful, AlphaSort returns true

TCustomTreeView::CustomSort
TCustomTreeView See also
Allows you to sort nodes based on criteria that you define.
bool __fastcall CustomSort(Commctrl::TTVCompare SortProc, long Data);
Description
When you use this method, you may specify an application-defined callback function that the
tree view and tree node can call whenever the relative order of two child nodes needs to be
decided. The parameter SortProc is a pointer to the application defined callback function. The
Data parameter is optional for passing a data value into the function.
The tree node's CustomSort will sort all child nodes of the node that called it. The tree view's
CustomSort method will sort all nodes in the tree view.
The callback function receives two nodes for the nodes being compared and a third 32-bit value
that you specify.
The callback function has the following form:
int __fastcall CompareFunc(TTreeNode Node1,TTreeNode Node2, int
ParamSort);

The callback function must return a negative value if the first node should precede the second, a
positive value if the first node should follow the second, or zero if the two nodes are equivalent.
The Node1 and Node2 parameters are the two nodes being compared.
If the parameter SortProc is NULL, the default AlphaSort method is called. This can be useful
since CustomSort has the Data parameter which AlphaSort doesn't.
Example
The following example orders a tree view in reverse alphabetical order on the click of a button.
The callback function CustomSortProc calls the Windows API function lstrcmp and negates its
return value.
int __fastcall CustomSortProc(TTreeNode Node1, TTreeNode Node2,int
ParamSort)

{
Result = -lstrcmp(PChar(Item1.Text), PChar(Item2.Text));

}
void TForm1::Button1Click(TObject *Sender)
{
TreeView1.CustomSort(&CustomSortProc, 0);

}

TCustomTreeView::FullCollapse
TCustomTreeView See also
The FullCollapse method collapses all the nodes within a tree view control.
void __fastcall FullCollapse(void);
Description
When collapsed, all nodes except the root are hidden.

TCustomTreeView::FullExpand
TCustomTreeView See also
The FullExpand method expands all nodes within the tree view control.
void __fastcall FullExpand(void);
Description
When expanded, each node is displayed below its corresponding parent node. If ShowButtons is
true, then any buttons will change from '+' to '-'.

TCustomTreeView::GetHitTestInfoAt
TCustomTreeView See also
The GetHitTestInfoAt method of the TTreeView component returns information about where a
point is, relative to the client area of a tree view control.
THitTests __fastcall GetHitTestInfoAt(int X, int Y);
Description
GetHitTestInfoAt returns a THitTests type which is a set of values indicating where the location
X,Y is relative to the tree view control. The possible return values of GetHitTestInfoAt are:
Value Meaning

htAbove The point is above the client area of the tree view control.
htBelow The point is below the client area of the tree view control.
htNowhere The point is in the client area of the tree view control but below the last

item.
htOnItem The point is on the bitmap or label associated with an item.
htOnButton The point is on the button associated with an item.
htOnIcon The point is on the bitmap associated with an item.
htOnIndent The point is on the indentation associated with an item.
htOnLabel The point is on the label (text) associated with an item.
htOnRight The point is in the area to the right of an item.
htOnStateIcon The point is on the state icon for a tree view item that is in a user-defined

state.
htToRight The point is to the right of the client area of the tree view control.
htToLeft The point is to the left of the client area of the tree view control.
Example
The following code checks a list of htHitTest types and adds the ones that occur when the
mouse was pressed while on the tree view.
void __fastcall TForm1::TreeView1MouseDown(TObject *Sender,
TMouseButton Button,
TShiftState Shift, int x, int y)

{
THitTests MyHitTest;
MyHitTest << TreeView1->GetHitTestInfoAt(X, Y);
if (MyHitTest.Contains(htNowhere))
ListBox1->Items.Add("NoWhere");
if (MyHitTest.Contains(htOnItem))

ListBox1->Items.Add("OnItem");
if (MyHitTest.Contains(htOnButton))

ListBox1->Items.Add("OnButton");
if (MyHitTest.Contains(htOnIndent))

ListBox1->Items.Add("OnIndent");
if (MyHitTest.Contains(htOnLabel))

ListBox1->Items.Add("OnLabel");
if (MyHitTest.Contains(htOnRight))

ListBox1->Items.Add("OnRight");
}

TCustomTreeView::GetNodeAt
TCustomTreeView See also
The GetNodeAt method returns the node that is found at the position specified by the
parameters X and Y in pixels relative to the top left corner of the tree view.
TTreeNode* __fastcall GetNodeAt(int X, int Y);
Description
If there is no node at the location, then NULL is returned.
Example
void __fastcall TForm1::TreeView1DragDrop(TObject *Source, TObject *
Sender, int X, int Y)

{
TTreeNode AnItem;
TNodeAttachMode AttachMode;
THitTests HT, HTTest;
if (TreeView1->Selected == nil)
return;

HT = TreeView1->tHitTestInfoAt(X, Y);
HTTest << htOnItem << htOnIcon << htNowhere << htOnIndent;
AnItem = TreeView1->tNodeAt(X, Y);
if (HT - HTTest != HT)
{
if (HT.Contains(htonitem) || HT.Contains(onIcon))

AttachMode = naAddChild;
else if (HT.Contains(htNowhere))

AttachMode = naAdd;
else if (HT.Contains(htOnIndent))

AttachMode = naInsert;
TreeView1->Selected.MoveTo(AnItem, AttachMode);

}
}

TCustomTreeView::IsEditing
TCustomTreeView See also
The IsEditing method indicates whether a node is currently being edited.
bool __fastcall IsEditing(void);
Description
The IsEditing method returns true if any node in the tree view is being edited.

TCustomTreeView::LoadFromFile
TCustomTreeView See also
The LoadFromFile method reads the file specified in FileName and loads the data into the tree
view.
void __fastcall LoadFromFile(const System::AnsiString FileName);
Description
Use the LoadFromFile method to retrieve tree view data from a file and load into a tree view.

TCustomTreeView::LoadFromStream
TCustomTreeView See also
The LoadFromStream method reads tree view data from a stream and stores the contents in the
tree view.
void __fastcall LoadFromStream(Classes::TStream* Stream);
Description
Use the LoadFromStream method to read Stream and store the contents in the tree view.

TCustomTreeView::SaveToFile
TCustomTreeView See also
The SaveToFile method saves a the tree view to the file specified in FileName.
void __fastcall SaveToFile(const System::AnsiString FileName);
Description
Use the SaveToFile method to store tree view data to a text file.

TCustomTreeView::SaveToStream
TCustomTreeView See also
The SaveToStream method writes a stream with the name passed in Stream with the contents
of the tree view.
void __fastcall SaveToStream(Classes::TStream* Stream);
Description
Use the SaveToStream method to stream out tree view data.

TCustomTreeView::TCustomTreeView
TCustomTreeView See also
The TCustomTreeView method creates an instance of a TCustomTreeView control.
__fastcall virtual TCustomTreeView(Classes::TComponent* AOwner);
Description
The TCustomTreeView method first calls the inherited TCustomTreeView method and initializes
many properties the control.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TCustomTreeView example
TCustomTreeView

TCustomUpDown
Hierarchy Properties Methods Events
The TCustomUpDown component is the abstract base type for up-down components such as
TUpDown.
Header
vcl/comctrls.hpp

TCustomUpDown properties
TCustomUpDown Alphabetically Legend

In TCustomUpDown
AlignButton
ArrowKeys
Associate
Increment
Max
Min
Orientation
Position
Thousands
Wrap

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TCustomUpDown properties
TCustomUpDown By object Legend

AlignButton
Align
ArrowKeys
Associate
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
Increment
Left
Max
Min
Name
Orientation

Owner
Parent
Position
ShowHint

Showing
TabOrder
TabStop
Tag
Thousands
Top
Visible
Width
Wrap

TCustomUpDown::AlignButton
TCustomUpDown See also
Determines the position of the TUpDown component relative to its companion control specified
by the Associate property.
__property TUDAlignButton AlignButton;
Description
These are the possible values:
Value Meaning

udLeft The updown control aligns itself to the left edge of the companion control.
udRight The updown control aligns itself to the right edge of the companion

control.
The default value is udRight. The TUpDown control resizes itself as it aligns.

TCustomUpDown::ArrowKeys
TCustomUpDown See also
Provides a keyboard interface so that the TCustomUpDown component can process the Up
arrow and Down arrow keys.
__property bool ArrowKeys;
Description
The ArrowKeys property is used only when a TCustomUpDown component is associated with a
companion window. The component can process the arrow keys even when its companion
window has the focus. The default value is true. To set a companion window use the Associate
property.

TCustomUpDown::Associate
TCustomUpDown See also
Specifies a companion window, or buddy window, for the TCustomUpDown component.
__property Controls::TWinControl* Associate;
Description
The up-down component automatically positions itself on the edge of the buddy window and
resizes itself.
At design-time the companion control does not move with the up-down control. You must either
multi-select or first move the companion control and specify it as the value of the Associate
property for the up-down control.

TCustomUpDown::Increment
TCustomUpDown See also
Determines the amount to increment or decrement the Position value each time an Up or Down
arrow is used.
__property int Increment;
Description
The default value is 1. By specifying a larger value, you can increase the interval between
displayed values.

TCustomUpDown::Max
TCustomUpDown See also
Sets the maximum value for the Position property.
__property short Max;
Description
Together, the Min and Max property values define a range of values the Position property can
assume.

TCustomUpDown::Min
TCustomUpDown See also
Sets the minimum value for the Position property.
__property short Min;
Description
Together, the Min and Max property values define a range of values the Position property can
assume.

TCustomUpDown::Orientation
TCustomUpDown
Determines the orientation of the up-down component.
__property TUDOrientation Orientation;
Description
These are the possible values:
Value Meaning

udHorizontal Arrows on the updown control point to the left and right.
udVertical Arrows on the updown control point up and down.
The default value is udVertical.

TCustomUpDown::Position
TCustomUpDown See also Example
Contains the numeric value to adjust up or down by clicking on the up-down control arrow
buttons.
__property short Position;
Description
Specifying an edit control, for example, with the Associate property automatically sets its text to
the value of Position.
If an Associate property value is not specified Position can be used as an assigned value.

TCustomUpDown::Thousands
TCustomUpDown See also
Determines whether a thousands separate appears between every three digits of a decimal
string.
__property bool Thousands;
Description
If Thousands is true, a decimal separator appears. The default value is true. The decimal value
is held in the Position property.

TCustomUpDown::Wrap
TCustomUpDown
Determines what happens when the up-down control is incremented beyond the value of the
Max property.
__property bool Wrap;
Description
If the value of Wrap is true, the value of Position becomes the value of the Min property when
the user increments Position beyond the value of Max.

Max property, Min property, Position property

TCustomUpDown events
TCustomUpDown Alphabetically Legend

In TCustomUpDown
OnChanging
OnClick

TCustomUpDown events
TCustomUpDown By object Legend

OnChanging
OnClick

TCustomUpDown::OnChanging
TCustomUpDown See also
Occurs when an Up or Down arrow is clicked, immediately after the OnClick event.
typedef void __fastcall (__closure *TUDChangingEvent)(System::TObject*
Sender, bool &AllowChange);

__property TUDChangingEvent OnChanging;
Description
TUDChangingEvent points to the method that responds to the OnChanging event. The value of
the AllowChange parameter determines whether a change in the Position value actually occurs
when the user clicks an Up or Down arrow.

TCustomUpDown::OnClick
TCustomUpDown See also Example
Occurs when an Up or Down arrow is clicked, immediately preceding the OnChanging event.
enum TUDBtnType { btNext, btPrev };
typedef void __fastcall (__closure *TUDClickEvent)(System::TObject*
Sender, TUDBtnType Button);

__property TUDClickEvent OnClick;
Description
TUDClickEvent points to the method that responds to the OnClick event. The Button parameter
specifies which button: btNext refers to the Up or Right arrow, and btPrev refers to the Down or
Left arrow.

TCustomUpDown methods
TCustomUpDown Alphabetically Legend

In TCustomUpDown
~TCustomUpDown

Click
CreateParams
TCustomUpDown

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent

HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TCustomUpDown methods
TCustomUpDown By object Legend

~TCustomUpDown
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance

Click
ClientToScreen
ContainsControl
ControlAtPos
CreateParams

DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo

Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TCustomUpDown
UpdateControlState
Update

TCustomUpDown::~TCustomUpDown
TCustomUpDown See also
~TCustomUpDown frees the memory associated with the TCustomUpDown object. Do not call ~
TCustomUpDown directly. Instead, use the delete keyword on the object, which causes ~
TCustomUpDown to be invoked automatically.
__fastcall virtual ~TCustomUpDown(void);parameter in the Params
parameter.

CanChange
Calls the OnChanging event handler.
bool __fastcall CanChange(void);
Description
The CanChange method is the protected implementation method for the OnChanging event.
Override CanChange if you want to specify additional processing before the OnChanging event
handler executes.

TCustomUpDown::Click
TCustomUpDown See also
The protected implementation of the OnClick method.
virtual void __fastcall Click(TUDBtnType Button);
Description
Override the Click method if you want to specify special processing to before the OnClick event
handler executes.
TUDClickEvent points to the method that responds to the OnClick event. The Button parameter
specifies which button: btNext refers to the Up or Right arrow, and btPrev refers to the Down or
Left arrow.

TCustomUpDown::CreateParams
TCustomUpDown
Sets up the initial parameters for the up-down control.
virtual void __fastcall CreateParams(Controls::TCreateParams &Params);

TCustomUpDown::TCustomUpDown
TCustomUpDown
Constructs an up-down custom control.
__fastcall virtual TCustomUpDown(Classes::TComponent* AOwner);
Description
TCustomUpDown calls the inherited TCustomUpDown method, then sets the initial values for
the up-down control.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TCustomUpDown example
TCustomUpDown

TDatabase
Hierarchy Properties Methods Events See also
TDatabase provides discrete control over a connection to a single database in a database
application.
Header
vcl/db.hpp
Description
Use TDatabase when a database application requires any of the following control over a
database connection:
• Persistent database connections
• Customized database server logins
• Transaction control
• Application-specific BDE aliases
TDatabase is especially important for the control it permits over database transaction processing
with the BDE when connected to a remote SQL database server.
Note
Explicit declaration of a TDatabase component for each database connection in an application is
optional if the application does not require any of these controls for that connection. If a
TDatabase component is not explicitly declared and instantiated for a database connection, a
temporary database component with a default set of properties is created for it at runtime.

TDatabase properties
TDatabase Alphabetically Legend

In TDatabase
AliasName
Connected
DatabaseName

DataSetCount
DataSets

Directory
DriverName
Handle

InTransaction
IsSQLBased

KeepConnection
Locale

LoginPrompt
Params

Session
SessionAlias

SessionName
Temporary
TraceFlags
TransIsolation

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TDatabase properties
TDatabase By object Legend

AliasName
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

Connected
DatabaseName

DataSetCount
DataSets

DesignInfo
Directory
DriverName

Handle
InTransaction
IsSQLBased

KeepConnection
Locale

LoginPrompt
Name

Owner
Params

SessionAlias
SessionName

Session
Tag
Temporary

TraceFlags
TransIsolation

TDatabase::AliasName
TDatabase See also
Specifies the Borland Database Engine (BDE) alias used by this database connection.
__property System::AnsiString AliasName;
Description
Use AliasName to specify the name of an existing BDE alias for the database component. A
BDE alias contains database configuration information for connection to a specific kind of
database, such as InterBase, dBASE, or Paradox. The configuration information associated with
a BDE alias differs by database type.
If an application sets AliasName, any value previously assigned to the DriverName property is
cleared because the alias automatically specifies a driver name as one of its parameters. Other
alias connection information is stored in the Params property when AliasName is set.
Note
Attempting to set AliasName when the Connected property is true raises an exception.
Note
An application can specify the DatabaseName, DriverName, and Params properties rather than
setting AliasName if the desired BDE alias configuration does not already exist. An application
can also provide an application-specific “alias” name by setting DatabaseName when
AliasName is already set.
Tip
At design time double-click a TDatabase component to invoke the Database editor and set the
AliasName.

TDatabase::Connected
TDatabase See also
Indicates whether or not a database connection is active.
__property bool Connected;
Description
Set Connected to true to establish a database connection without opening a dataset. Set
Connected to false to close a database connection. An application can check Connected to
determine the current status of a database connection. If Connected is true, the database
connection is active; if false, and the KeepConnection property is also false, then the connection
is inactive.
Note
Set KeepConnection to true to avoid having to log in to the server each time a database
connection is reopened.

TDatabase::DatabaseName
TDatabase See also
Specifies the name of the database to associate with this database component.
__property System::AnsiString DatabaseName;
Description
Use DatabaseName to specify the name of the database to use with a database component. If
DatabaseName is the same as an existing Borland Database Engine (BDE) alias, then the
AliasName and DriverName properties need not be set. If DatabaseName does not match an
existing BDE alias, then either the application must also supply a valid alias in the AliasName
property in addition to the DatabaseName, or it must supply the DriverName and Params
properties.
DatabaseName can be a fully qualified path name when connecting to a Paradox or dBASE
database. If a full path name is provided, the application must supply the DriverName and
Params properties.
Note
Attempting to set DatabaseName when the Connected property is true raises an exception.
Tip
At design time double-click a TDatabase component to invoke the Database editor and set the
DatabaseName.

TDatabase::DataSetCount
TDatabase See also
Indicates the number of active datasets associated with the database component.
__property int DataSetCount;
Description
Use DataSetCount to determine the number of currently active datasets associated with the
database component. As datasets are opened and closed this value changes appropriately.

TDatabase::DataSets
TDatabase See also
Provides an indexed array of all active datasets for a database component.
void __fastcall ApplyUpdates(TDBDataSet* const *DataSets, const int
DataSets_Size);

Description
Use DataSets to access active datasets associated with a database component. An active
dataset is one that is currently open.

TDatabase::Directory
TDatabase See also
Specifies the working directory for a Paradox or dBASE database.
__property System::AnsiString Directory;
Description
Use Directory at runtime to change or retrieve the working directory for a Paradox or dBASE
database. This is the location these databases use to create temporary tables at runtime.
Ordinarily a directory location is specified in the PATH parameter of the database alias (specified
by the AliasName property). At runtime, however, some applications may need to change the
working directory after a database is opened.
To change the value of Directory at runtime, a database must already be open, or an exception
is raised. Clearing the current value of Directory sets its value to the original working directory
specified when the database was first opened.
Note
Do not use Directory when connected to remote databases. An exception is raised in these
circumstances. An exception is also raised if an application accesses Directory when the
database is closed.

TDatabase::DriverName
TDatabase See also
Specifies the name of the BDE driver for the database.
__property System::AnsiString DriverName;
Description
Use DriverName to specify the name of the BDE driver to use for databases connections that do
not specify an AliasName, but that do specify a DatabaseName. DriverName must be a valid
BDE driver (e.g., STANDARD, ORACLE, SYBASE, or INTERBASE).
Note
If an application sets DriverName, it must also specify connection parameters in the Params
property. Ordinarily the alias specified in the AliasName property supplies connection
parameters, but when DriverName is set, the AliasName property is automatically cleared to
avoid BDE driver name contention.
Attempting to set DriverName when the Connected property is true raises an exception.
Tip
At design time double-click a TDatabase component to invoke the Database editor and set the
DriverName.

TDatabase::Handle
TDatabase See also Example
Specifies the Borland Database Engine (BDE) database handle.
__property Bde::hDBIDb Handle;
Description
Use Handle only to bypass TDatabase methods and make direct calls to the directly to the BDE
API. Many BDE function calls require a handle parameter. Handle is assigned an initial value
when a database is opened.
Note
Do not use this property unless an application requires BDE functionality not available through
standard Borland C++Builder components.

TDatabase::InTransaction
TDatabase See also
Indicates whether a database transaction is in progress or not.
__property bool InTransaction;
Description
Examine InTransaction at runtime to determine if a database transaction is currently in progress.
InTransaction is true if a transaction is in progress, false otherwise.
The value of InTransaction cannot be changed directly. Calling StartTransaction sets
InTransaction to true. Calling Commit or Rollback sets InTransaction to false.

TDatabase::IsSQLBased
TDatabase See also
Indicates if a database component is using either the Borland Database Engine (BDE) SQL
Links driver or the BDE ODBC socket.
__property bool IsSQLBased;
Description
Examine IsSQLBased at runtime to determine if a database connection is using a BDE SQL
Links driver, the ODBC socket, or the Paradox, dBASE, and ASCII text file STANDARD driver. If
IsSQLBased is true, the connection is using an SQL Links driver or is using the ODBC socket to
communicate with a third-party ODBC driver. If the connection uses the STANDARD driver,
IsSQLBased is false.

TDatabase::KeepConnection
TDatabase See also
Specifies whether an application remains connected to a database even if no datasets are open.
__property bool KeepConnection;
Description
Use KeepConnection to specify whether an application remains connected to a database even if
no datasets are currently open. When KeepConnection is true (the default) the connection is
maintained. For connections to remote database servers, or for applications that frequently open
and close datasets, set KeepConnection to true to reduce network traffic, speed up applications,
and avoid logging in to the server each time the connection is reestablished.
When KeepConnection is false a connection is dropped when there are no open datasets.
Dropping a connection releases system resources allocated to the connection, but if a dataset is
later opened that uses the database, the connection must be reestablished and initialized.
Note
The KeepConnection setting for temporary database components created automatically by
Borland C++Builder as needed is determined by the KeepConnections property of TSession.

TDatabase::Locale
TDatabase See also
Identifies the Borland Database Engine (BDE) language driver for the database component.
__property void * Locale;
Description
Examine Locale to determine the BDE language driver used by the database component.
Applications that make direct calls to the BDE may also need to pass Locale information as an
API function parameter.
Language driver information may also be available as one of the values in the Params property
when a database component is using a BDE alias.
Note
Do not use this property unless an application requires BDE functionality not available through
standard Borland C++Builder components.

TDatabase::LoginPrompt
TDatabase See also
Indicates whether or not to display a standard Login dialog box when establishing a database
connection.
__property bool LoginPrompt;
Description
Use LoginPrompt to control the login method for remote database connections. If true, (the
default), the standard Borland C++Builder Login dialog box opens when the application attempts
to connect to a database. The standard Login dialog box prompts for a valid user name and
password. If the entries provided by the user are not valid, the connection fails.
If an application sets LoginPrompt to false, then user name and password values must be
supplied either in an OnLogin event, or as USERNAME and PASSWORD parameters in the
Params property.
Note
Storing hard-coded user name and password entries in the Params property or in code for an
OnLogin event can compromise server security.

TDatabase::Params
TDatabase See also
Contains database connection parameters for the Borland Database Engine (BDE) alias
associated with the database component.
__property Classes::TStrings* Params;
Description
Use Params to examine or specify database connection parameters, such as path name, server
name, schema-caching size, language driver, user name, and password. Actual parameters in
Params differ depending on the current BDE alias and driver for the database component.
Params is a list of string items, each representing a different database connection parameter. If
the AliasName property specifies a valid BDE alias, then Params automatically contains the
parameters defined for that alias. If, instead of providing an alias, an application uses the
DriverName property to provide a local alias, the application must provide Params values
directly.
Tip
At design time double-click a TDatabase component to invoke the Database editor and set
Params.

TDatabase::Session
TDatabase See also
Points to the session component with which this database component is associated.
__property TSession* Session;
Description
Use Session to determine the session component that controls the database component. By
default, a database component is associated with the default session component, Session, that
is automatically created for all database applications. To assign a database component to a
different session in a multi-threaded application, specify the name of a different session
component in the SessionName property.

TDatabase::SessionAlias
TDatabase See also
Specifies whether or not a database component is using a session alias.
__property bool SessionAlias;
Description
Examine SessionAlias to see if a database component is using a session alias. If SessionAlias is
true, a session alias is in use. If false, a session alias is not in use.
A session alias is automatically created for a database component if it uses the DriverName and
Params properties instead of the AliasName property, and the Params property contains any
parameters. A session alias may also be created if an application permits the user to log into a
server using a different user name than the one specified in the Params property.
A session alias exists only while the application is running. It is not stored in the BDE
configuration file, and cannot be accessed from outside the application.

TDatabase::SessionName
TDatabase See also
Identifies the name of the session used by this database component.
__property System::AnsiString SessionName;
Description
Use SessionName to specify the session with which a database component is associated. If
SessionName is blank, a database component is automatically associated with the default
session, Session.
To associate a database component with a different session in a database application
SessionName must matches the SessionName property of an existing session component.

TDatabase::Temporary
TDatabase See also
Indicates whether a database component is a temporary one, created by the system as needed,
or a persistent one explicitly created, managed, and freed within the application.
__property bool Temporary;
Description
Examine Temporary to determine if a database component is a temporary one, created by the
system as needed, or a persistent one explicitly created, managed, and freed within the
application. Temporary is true if the system created the component, false otherwise.
A temporary database component is created when a dataset is opened and the dataset is not
already associated with an existing database component. If Temporary remains true, then a
temporary database component is freed when the dataset is closed. An application can prevent
the destruction of a temporary database component by setting Temporary to false while the
dataset is active, but the application is then responsible for closing the database when it is no
longer needed.

TDatabase::TraceFlags
TDatabase See also
Specifies the database operations to track with the SQL Monitor at runtime.
__property TTraceFlags TraceFlags;
Description
Use TraceFlags to specify which database operations the SQL Monitor should track in an
application at runtime. TraceFlags is only meaningful for the SQL Monitor, which is provided to
enable performance tuning when working with remote SQL database servers.
Note
Normally trace options are set from the SQL Monitor rather than setting TraceFlags in
application code.
The initial value of a database component’s TraceFlags property is determined by the
TraceFlags property of the session component that owns it.
The TTraceFlags type defines the individual values that can be included in the TraceFlags
property. The following table summarizes those values:
Values Meaning

tfQPrepare Monitor Prepare statements.
tfQExecute Monitor ExecSQL statements.
tfError Monitor server error messages. Such messages may include an error

code.
tfStmt Monitor all SQL statements.
tfConnect Monitor database connect and disconnect operations, including allocation

of connection handles, and freeing connection handles.
tfTransact Monitor transaction statements, such as StartTransaction, Commit, and

Rollback.
tfBlob Monitor operations on blob data types.
tfMisc Monitor any statements not covered by other flag options.
tfVendor Monitor direct API function calls to the database server.
Because TraceFlags is a set property, an application can specify different combinations of flags
to monitor different combinations of statements.

TDatabase::TransIsolation
TDatabase See also
Specifies the transaction isolation level for transactions managed by the Borland Database
Engine (BDE).
__property TTransIsolation TransIsolation;
Description
Use TransIsolation to specify the transaction isolation level for database transactions managed
by the BDE. Transaction isolation level determines how a transaction interacts with other
simultaneous transactions when they work with the same tables, and how much a transaction
sees of the work performed by other transactions.
Note
Applications that use passthrough SQL for handling transactions must pass a transaction
isolation level directly to the database server using the appropriate SQL statement.
TransIsolation can be any one of the three values summarized in the following table:
Isolation level Meaning

tiDirtyRead Permits reading of uncommitted changes made to the database by other
simultaneous transactions. Uncommitted changes are not permanent,
and might be rolled back (undone) at any time. At this level a transaction
is least isolated from the effects of other transactions.

tiReadCommitted Permits reading of committed (permanent) changes made to the
database by other simultaneous transactions. This is the default
TransIsolation property value.

tiRepeatableRead Permits a single, one-time reading of the database. The transaction
cannot see any subsequent changes made by other simultaneous
transactions. This isolation level guarantees that once a transaction reads
a record, its view of that record does not change unless it makes a
modification to the record itself. At this level, a transaction is most isolated
from other transactions.

Different database servers support different levels of transaction isolation. If an application sets
TransIsolation to an unsupported level for a remote SQL server, the BDE uses the next highest
level supported by that server. The following table summarizes the isolation levels supported by
the servers recognized by the BDE:
Server Specified Level Actual Level

Oracle tiDirtyRead
tiReadCommitted
tiRepeatableRead tiReadCommitted
tiReadCommitted
tiRepeatableRead (READONLY)

Sybase, MS-SQL tiDirtyRead
tiReadCommitted
tiRepeatableRead tiReadCommitted
tiReadCommitted
Not supported

DB2 tiDirtyRead
tiReadCommitted
tiRepeatableRead tiDirtyRead
tiReadCommitted
tiRepeatableRead

Informix tiDirtyRead
tiReadCommitted
tiRepeatableRead tiDirtyRead
tiReadCommitted
tiRepeatableRead

InterBase tiDirtyRead
tiReadCommitted
tiRepeatableRead tiReadCommitted
tiReadCommitted

tiRepeatableRead
Paradox, dBASE tiDirtyRead

tiReadCommitted
tiRepeatableRead tiDirtyRead
Not supported
Not supported

Note
For local transactions against Paradox and dBASE, TransIsolation must be set to tiDirtyRead.
Otherwise, an exception is raised.
If an application uses ODBC to interface with a server, the ODBC driver must also support the
isolation level. For more information about supported isolation levels, see the documentation for
the ODBC driver in question.

TDatabase events
TDatabase Alphabetically Legend

In TDatabase
OnLogin

TDatabase events
TDatabase By object Legend

OnLogin

TDatabase::OnLogin
TDatabase See also
OnLogin occurs when an application connects to a database.
typedef void __fastcall (__closure *TLoginEvent)(TDatabase* Database,
Classes::TStrings* LoginParams);

__property TLoginEvent OnLogin;
Description
Write an OnLogin event handler to take specific actions when an application attempts to connect
to a database. By default, when an OnLogin event occurs, the current USERNAME is read from
the Params property, and a standard Login dialog box opens. The dialog prompts for a user
name and password combination, and then uses the values entered by the user to set the
USERNAME and PASSWORD values in the Params property. These values are then passed to
the remote server.
Applications that provide alternative OnLogin event handlers must set the USERNAME and
PASSWORD values in LoginParams, but once a connection is established, the PASSWORD
value can be discarded to avoid compromising server security.

TDatabase methods
TDatabase Alphabetically

In TDatabase
~TDatabase
ApplyUpdates
Close
CloseDataSets
Commit
FlushSchemaCache
Open
Rollback
StartTransaction
TDatabase
ValidateName

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDatabase methods
TDatabase By object

~TDatabase
ApplyUpdates
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CloseDataSets
Close
Commit
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FlushSchemaCache
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
Open
RemoveComponent
Rollback
StartTransaction
TDatabase
ValidateName

TDatabase::~TDatabase
TDatabase See also
~TDatabase frees the memory associated with the TDatabase object. Do not call ~TDatabase
directly. Instead, use the delete keyword on the object, which causes ~TDatabase to be invoked
automatically.
__fastcall virtual ~TDatabase(void);
Description
~TDatabase closes all active datasets and disconnects from the database server, if necessary. It
then frees the string resources allocated for the Params and DataSets properties before calling
the destructor of its parent object.

TDatabase::ApplyUpdates
TDatabase See also
Posts pending cached updates for specified datasets to the database server.
void __fastcall ApplyUpdates(TDBDataSet* const *DataSets, const int
DataSets_Size);

Description
Call ApplyUpdates to post pending cached updates for a specific set of open datasets to the
database server. ApplyUpdates is only meaningful if the CachedUpdates property of a specified
dataset is true.
DataSets is a list of dataset names specifying the datasets for which to post pending updates.
DataSets need not list every currently open dataset. For each listed dataset ApplyUpdates calls
the dataset’s ApplyUpdates and CommitUpdates methods to post that dataset’s pending
cached updates.
Applying updates is a two-phase process that takes place within the context of the database
component’s transaction control. When an application calls ApplyUpdates, the following events
take place:
1 A database transaction starts.
2 Cached updates are written to the database (Phase 1).

If the database write is successful:
1 Database changes are committed, ending the transaction.
2 Cached updates are committed, clearing the internal cache buffer (Phase 2).
If the database write fails database changes are rolled back, ending the transaction.

The two-phased approach allows for effective error recovery, especially when updating multiple
and interrelated datasets (for example, the datasets associated with a master/detail form).

TDatabase::Close
TDatabase See also
Closes all open datasets associated with the database component and disconnects from the
database server.
void __fastcall Close(void);
Description
Call Close to disconnect from a database server. Disconnecting frees system resources
allocated to the connection.
Note
Close is called automatically when there are no more open datasets associated with the
database component and the KeepConnection property is false. A database connection can also
be closed by setting the Connected property to false.

TDatabase::CloseDataSets
TDatabase See also
Closes all datasets associated with the database component without disconnecting from the
database server.
void __fastcall CloseDataSets(void);
Description
Call CloseDataSets to close all active datasets without disconnecting from the database server.
Ordinarily, when an application calls Close, all datasets are closed, and the connection to the
database server is dropped. Calling CloseDataSets instead of Close ensures that an application
can close all active datasets without having to reconnect to the database server at a later time.

TDatabase::Commit
TDatabase See also
Permanently stores updates, insertions, and deletions of data associated with the current
transaction, and ends the current transactions.
void __fastcall Commit(void);
Description
Call Commit to permanently store to the database server all updates, insertions, and deletions of
data associated with the current transaction and then end the transaction. The current
transaction is the last transaction started by calling StartTransaction.
Note
Before calling Commit, an application may check the status of the InTransaction property. If an
application calls Commit and there is no current transaction, an exception is raised.

TDatabase::FlushSchemaCache
TDatabase See also
Flushes the cached schema information for a table.
void __fastcall FlushSchemaCache(const System::AnsiString TableName);
Description
Call FlushSchemaCache if the schema information for an SQL table is changed (for example,
because a field, index, or table is added to or dropped from a database).
When an application opens an SQL table, schema information that describes the field names,
field types, and index information is stored in memory. If an application changes the schema for
an SQL table, it should call FlushSchemaCache to update the schema information in memory.

TDatabase::Open
TDatabase See also
Connects to a database server.
void __fastcall Open(void);
Description
Call Open to establish a connection to a local or remote database server. Open verifies that the
database specified by the DatabaseName or Directory properties exists, and that the user name
and password are valid. If so, it connects to the database. If an OnLogin event exists for the
database component, it is executed. Otherwise, the default Login dialog box appears.
Note
Setting Connected to true also connects to the database server.

TDatabase::Rollback
TDatabase See also
Cancels all updates, insertions, and deletions for the current transaction and ends the
transaction.
void __fastcall Rollback(void);
Description
Call Rollback to cancel all updates, insertions, and deletions for the current transaction and to
end the transaction. The current transaction is the last transaction started by calling
StartTransaction.
Note
Before calling Rollback, an application may check the status of the InTransaction property. If an
application calls Rollback and there is no current transaction, an exception is raised.

TDatabase::StartTransaction
TDatabase See also
Begins a new transaction against the database server.
void __fastcall StartTransaction(void);
Description
Call StartTransaction to begin a new transaction against the database server. Before calling
StartTransaction, an application should check the status of the InTransaction property. If
InTransaction is true, indicating that a transaction is already in progress, a subsequent call to
StartTransaction without first calling Commit or Rollback to end the current transaction raises an
exception.
Updates, insertions, and deletions that take place after a call to StartTransaction are held by the
server until an application calls Commit to save the changes or Rollback is to cancel them.

TDatabase::TDatabase
TDatabase See also
Creates an instance of a TDatabase component.
__fastcall virtual TDatabase(Classes::TComponent* AOwner);
Description
Call TDatabase to instantiate a database component at runtime. An application can create a
database component in order to control the component’s existence and set its properties and
events, or an application can let Borland C++Builder create temporary database components as
needed at runtime.
TDatabase instantiates a database component and:
• Sets the Session property to the active session.
• Sets the SessionName property to the name of the active session component.
• Adds this component to the list of database components for the session.
• Creates an empty list of dataset components for the DataSets property.
• Creates an empty string list for the Params property.
• Sets the LoginPrompt property and the KeepConnection property to true.
• Sets the Locale property to the locale of the session.
• Sets the TransIsolation property to tiReadCommitted.

TDatabase::ValidateName
TDatabase See also
Raises an exception if a specified database is already open in the active session.
void __fastcall ValidateName(const System::AnsiString Name);
Description
Call ValidateName to prevent duplicate access to a database from within a single session. Name
is a string containing the name of the database to test. If the database is already open,
ValidateName raises the EDatabaseError exception. If the database is not open, the procedure
returns, and the application continues processing.
Note
Most applications should not need to call this method directly. It is called automatically each time
a database is opened.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent

TDatabase example
TDatabase

TDataLink
Hierarchy Properties Methods See also
TDataLink is a helper class used by data-aware objects to coordinate the actions of
TDataSource and TDataSet, and to respond to data events.
Header
vcl/db.hpp
Description
Use TDataLink or one of its descendants in any data-aware object that implements a
DataSource property to represent its link to a dataset or that needs to respond to data events.
The constructor of the data-aware object should call the constructor of TDataLink, and initialize
any relevant properties. The data-aware object can then link to a TDataSource by using the
DataSource property of the TDataLink.
Data-aware objects that link to a single field in a dataset should use a TFieldDataLink instead.

TDataLink properties
TDataLink Alphabetically Legend

In TDataLink
Active

ActiveRecord
BufferCount

DataSet
DataSource
DataSourceFixed

Editing
ReadOnly

RecordCount

TDataLink properties
TDataLink By object Legend

ActiveRecord
Active

BufferCount
DataSet

DataSourceFixed
DataSource

Editing
ReadOnly

RecordCount

TDataLink::Active
TDataLink See also
Active specifies whether or not the dataset that TDataLink manages is active.
__property bool Active;
Description
Read Active to determine whether the dataset for this TDataLink is Active. When Active is false,
the dataset is closed, and the dataset cannot read data from or write data to the database. When
Active is true, data can be read from and written to the dataset.

TDataLink::ActiveRecord
TDataLink See also
ActiveRecord specifies the index of the current record within the internal set of records buffer
maintained by the dataset for the Owner of the TDataLink object.
__property int ActiveRecord;
Description
Use ActiveRecord to discover or set the current record in the set of one or more records
managed by the dataset. The set of records managed by the dataset corresponds to the number
of records from the dataset visible at one time. For example, when the TDataLink object is
owned by a data-aware grid, the set of records managed by the dataset corresponds to the
number of rows shown by the grid, and the ActiveRecord represents the current row.

TDataLink::BufferCount
TDataLink See also
BufferCount specifies the size of the set of records maintained by the dataset for the Owner of
the TDataLink object.
__property int BufferCount;
Description
Set BufferCount to tell the dataset how many records to buffer together to service the owner of
the TDataLink object. For example, a data-aware grid sets BufferCount to the number of rows
visible in the grid.
Read BufferCount to iterate through all the records buffered by the dataset for the owner of the
TDataLink object. For example, A data-aware object can paint itself by cycling through the set of
records, moving the ActiveRecord to visit each record in turn.

TDataLink::DataSet
TDataLink See also
DataSet specifies the DataSet object which represents the data in the database that this
TDataLink is tracking.
__property TDataSet* DataSet;
Description
Read DataSet to determine the dataset that this TDataLink is helping to manage. The TDataLink
responds to data events that are received by the DataSet, and makes changes to the dataset on
behalf of the object that owns the TDataLink object.

TDataLink::DataSource
TDataLink See also
DataSource specifies the TDataSource object that the Owner of the TDataLink uses to connect
to the dataset.
__property TDataSource* DataSource;
Description
Use DataSource to determine or set the TDataSource object that connects to the dataset.
TDataLink responds to data events that the DataSource receives.
Note
To implement the DataSource property of a data-aware object which owns a TDataLink or its
descendant, create a method that gets or sets the DataSource property of the TDataLink-
derived member.

TDataLink::DataSourceFixed
TDataLink See also
DataSourceFixed indicates whether the DataSource property can be set.
__property bool DataSourceFixed;
Description
Use DataSourceFixed to determine whether the DataSource property can be changed. By
default, DataSourceFixed is false, allowing the DataSource property to be changed.
When there is a chance that an asynchronous event might change the DataSource before an
operation completes, set DataSourceFixed to true before performing the operation to ensure that
the DataSource is constant throughout the operation. After the data operation is complete,
DataSourceFixed can be set back to false.
Set DataSourceFixed to prevent the DataSource of a data-aware object that owns the TDataLink
from being changed once it is set.

TDataLink::Editing
TDataLink See also
Editing indicates whether the DataSource is in edit mode.
__property bool Editing;
Description
Read Editing to determine whether the DataSource is inserting a new record into the dataset, or
modifying the current record. To change the dataset into edit mode, and hence the Editing
property to true, use the Edit method.

TDataLink::ReadOnly
TDataLink See also
ReadOnly indicates whether the dataset for this TDataLink can be modified.
__property bool ReadOnly;
Description
Use ReadOnly to determine whether the dataset for this TDataLink can be modified. Setting
ReadOnly to true causes any subsequent calls to the Edit method to fail, and changes the
DataSource out of an editing state if it is in one. Setting ReadOnly to false enables changes to
the data in the dataset.

TDataLink::RecordCount
TDataLink See also
RecordCount indicates the number of records in the internal record buffer maintained for the
Owner of the TDataLink object by the dataset.
__property int RecordCount;
Description
Read RecordCount to determine the number of actual records in the buffer maintained by the
dataset for the Owner of this TDataLink.
In most cases, RecordCount is the same as BufferCount. RecordCount indicates the number of
records actually in the record buffer of the dataset, as opposed to the number of records that the
dataset can possibly maintain. For example, a data-aware grid with four rows could have one
record actually showing data. In this case, BufferCount would be 4, while RecordCount would be
1.

TDataLink methods
TDataLink Alphabetically Legend

In TDataLink
~TDataLink

ActiveChanged
CheckBrowseMode
DataSetChanged
DataSetScrolled
Edit
EditingChanged
FocusControl
LayoutChanged
RecordChanged
TDataLink
UpdateData
UpdateRecord

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDataLink methods
TDataLink By object Legend

~TDataLink
ActiveChanged
Assign
CheckBrowseMode
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DataSetChanged
DataSetScrolled
DefaultHandler
Dispatch
EditingChanged

Edit
FieldAddress

FocusControl
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
LayoutChanged
MethodAddress
MethodName
NewInstance
RecordChanged
TDataLink
UpdateData
UpdateRecord

TDataLink::~TDataLink
TDataLink See also
~TDataLink frees the memory associated with the TDataLink object. Do not call ~TDataLink
directly. Instead, use the delete keyword on the object, which causes ~TDataLink to be invoked
automatically.
__fastcall virtual ~TDataLink(void);
Description
Before calling the destructor of the parent object, ~TDataLink removes any reference to the
TDataLink from the data source object.
The TDataLink object should be destroyed in the destructor of its Owner, where that Owner calls
TDataLink from its constructor.

TDataLink::ActiveChanged
TDataLink See also
ActiveChanged responds to changes in the Active property.
virtual void __fastcall ActiveChanged(void);
Description
The ActiveChanged method defined by TDataLink merely provides an interface for a method that
can respond to changes in the Active property. Derived objects that do not need to respond to
such changes can allow the inherited method to ignore them.

TDataLink::CheckBrowseMode
TDataLink See also
CheckBrowseMode allows the data-aware object to respond just before an event that changes
the dataset.
virtual void __fastcall CheckBrowseMode(void);
Description
The CheckBrowseMode method defined by TDataLink merely provides an interface for a method
that can update any state information just before a change to the dataset occurs. Derived
objects that do not need to respond to these events can allow the inherited method to ignore
them.

TDataLink::DataSetChanged
TDataLink See also
DataSetChanged responds to changes in the dataset.
virtual void __fastcall DataSetChanged(void);
Description
DataSetChanged responds to changes to the contents of the dataset. Anything that changes the
contents of the dataset, whether it is editing the data, inserting or deleting records, or changing
the key triggers this method. Changes specific to the representation of the data within the data-
aware object, such as scrolling the dataset or changing the layout of data elements within the
object, also trigger this method. DataSetChanged simply calls RecordChanged. Derived classes
can override this procedure to make additional adjustments to changes in the dataset.

TDataLink::DataSetScrolled
TDataLink See also
DataSetScrolled allows a response to scrolling the representation of the dataset within the data-
aware object.
virtual void __fastcall DataSetScrolled(int Distance);
Description
DataSetScrolled ignores the Distance parameter and calls DataSetChanged. Derived classes
can override this procedure to make additional adjustments when the dataset scrolls.

TDataLink::Edit
TDataLink See also
Edit attempts to drive the DataSource into an editing state if it is not already in one.
bool __fastcall Edit(void);
Description
Use Edit to try to ensure that the current record can be modified. A return value of true indicates
that the DataSource was already in an editing state, or that it was successfully changed to allow
editing. A return value of false indicates that the DataSource could not be changed to allow
editing. For example, if the ReadOnly property is true, Edit will not allow editing and will return
false.

TDataLink::EditingChanged
TDataLink See also
EditingChanged responds to changes in the editing state of the DataSource.
virtual void __fastcall EditingChanged(void);
Description
The EditingChanged method defined by TDataLink merely provides an interface for a method
that can respond to changes in the editing state of the DataSource. EditingChanged is called
immediately after the Editing property has changed its value. Derived objects that do not need to
respond to such changes can allow the inherited method to ignore them.

TDataLink::FocusControl
TDataLink See also
FocusControl provides an interface for a method to force focus to the data-aware component
associated with the TDataLink.
virtual void __fastcall FocusControl(TFieldRef Field);
Description
The FocusControl method defined by TDataLink merely provides an interface for a method that
can force the input focus to a data-aware object associated with the TDataLink. Derived objects
that do not need this capability can allow the inherited method to ignore the request.

TDataLink::LayoutChanged
TDataLink See also
LayoutChanged responds to changes in the representation of the data by the data-aware object.
virtual void __fastcall LayoutChanged(void);
Description
The LayoutChanged method simply calls the DataSetChanged method. LayoutChanged is
intended to provide an interface for a method that can respond after changes in the
representation of the data by the data-aware object. An example of such a change would be
changing the number or order of the columns in a TCustomDBGrid.

TDataLink::RecordChanged
TDataLink See also
RecordChanged responds to changes in the contents of the current record or field of the
dataset.
virtual void __fastcall RecordChanged(TField* Field);
Description
The RecordChanged method defined by TDataLink merely provides an interface for a method
that can respond to changes to the contents of the current record. RecordChanged is called after
changes have been posted to the current record in the dataset, and from DataSetChanged.
The Field parameter indicates which field of the current record has changed in value. If Field is
NULL, any number of fields within the current record may have changed.
Derived objects that do not need to respond to such changes can allow the inherited method to
ignore them.

TDataLink::TDataLink
TDataLink See also
The TDataLink method creates an instance of TDataLink.
__fastcall TDataLink(void);
Description
TDataLink is called from the constructor of any data-aware object that uses a TDataLink to
implement its DataSource property.
After calling the constructor of its parent object, TDataLink initializes the BufferCount property to
1. Data-aware objects that use a TDataLink object to manage their link to a DataSource should
change the BufferCount property to the number or records they represent, after calling the
TDataLink constructor.

TDataLink::UpdateData
TDataLink See also
UpdateData provides an interface for writing edits to a record in the dataset.
virtual void __fastcall UpdateData(void);
Description
The UpdateData method defined by TDataLink merely provides an interface for a method that
writes updates to the current record in the dataset while avoiding calls to RecordChanged that
posting the changes may trigger. Derived objects that do not need to write edits to the dataset
can allow the inherited method to do nothing.

TDataLink::UpdateRecord
TDataLink See also
UpdateRecord responds to notifications that edits should be posted to the dataset.
void __fastcall UpdateRecord(void);
Description
UpdateRecord calls UpdateData after guarding against calls to RecordChanged which may arise
while UpdateData is executing.

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent

TDataLink example
TDataLink

TDataModule
Hierarchy Properties Methods Events See also
TDataModule is a specialized class for centralized handling of nonvisual components in an
application.
Header
vcl/forms.hpp
Description
Use a TDataModule object in an application to provide a location for centralized handling of
nonvisual components in an application. Typically these are data access components (TSession,
TSessionList, TDatabase, TTable, TQuery, TStoredProc, and TBatchMove), but they can also
be other nonvisual components, such as TTimer, TOpenDialog, TImageList, or TOleContainer).
At design time a TDataModule object provides a visual container into which a developer can
place nonvisual components, set their properties, and write event handlers for them. To create a
data module at design time, choose File|New Data Module.
In the unit file for the data module a developer may also place any business rules that are to be
applied to the application.
To make the data module available to another unit in the application, select that unit, then
choose File|Use Unit to add the data module to the uses clause for the unit.

TDataModule properties
TDataModule Alphabetically Legend

In TDataModule
DesignOffset
DesignSize

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDataModule properties
TDataModule By object Legend

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

DesignInfo
DesignOffset
DesignSize

Owner
Tag

TDataModule::DesignOffset
TDataModule See also
Specifies the design offset for the data module at design time.
__property POINT DesignOffset;
Description
Specifies the design offset for the data module at design time. An application should never need
to set this value.

TDataModule::DesignSize
TDataModule See also
Specifies the design size for the data module at design time.
__property POINT DesignSize;
Description
Specifies the design size for the data module at design time. An application should never need
to set this value.

TDataModule events
TDataModule Alphabetically Legend

In TDataModule
OnCreate
OnDestroy

TDataModule events
TDataModule By object Legend

OnCreate
OnDestroy

TDataModule::OnCreate
TDataModule See also
OnCreate occurs when an application instantiate a data module.
__property Classes::TNotifyEvent OnCreate;
Description
Write an OnCreate event handler to take specific actions when an application instantiates a data
module. For example, if a data module contains database and dataset components, an
application may establish a database connection immediately. If the data module contains
timers, the application may initialize them.

TDataModule::OnDestroy
TDataModule See also
Specifies the design offset for the data module at design time.
__property Classes::TNotifyEvent OnDestroy;
Description
Write an OnDestroy event handler to take specific actions when an application frees a data
module. For example, if the unit code for data module instantiates any objects of its own, such
as string lists, the OnDestroy event handler can be used to free those objects.

TDataModule methods
TDataModule Alphabetically

In TDataModule
~TDataModule
TDataModule

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDataModule methods
TDataModule By object

~TDataModule
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
TDataModule

TDataModule::~TDataModule
TDataModule See also
~TDataModule frees the memory associated with the TDataModule object. Do not call ~
TDataModule directly. Instead, use the delete keyword on the object, which causes ~
TDataModule to be invoked automatically.
__fastcall virtual ~TDataModule(void);
Description
~TDataModule removes any fixup references, calls its OnDestroy event handler if one is defined
for it, calls TScreen::RemoveDataModule, and then calls its destructor of its parent object.

TDataModule::TDataModule
TDataModule See also
Creates an instance of a data module.
__fastcall virtual TDataModule(Classes::TComponent* AOwner);

-Or-
__fastcall TDataModule(Classes::TComponent* AOwner, int Dummy);
Description
Call TDataModule to instantiate a data module at runtime if it was not created at design time. If
an error occurs, an exception is raised. Otherwise TDataModule calls the OnCreate event
handler for the data module if one is assigned to it.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent

TDataModule example
TDataModule

TDataSet
Hierarchy Properties Methods Events See also
TDataSet is the abstract class for all dataset components that represent data in tables in a
database.
Header
vcl/db.hpp
Description
TDataSet is the object that encapsulates the data in a database, such as a table or a result set
returned by a query. An application never directly creates or uses TDataSet. Instead it reads or
writes data to a database by using the descendants of TDataSet and TDBDataSet: TTable,
TQuery, and TStoredProc.
Developers who derive custom dataset objects should derive them from TDataSet or
TDBDataSet, depending on their needs. Developers who are deriving custom dataset objects
that bypass the Borland Database Engine (BDE) should derive from TDataSet. TDBDataSet
adds BDE support for database connections and session management to the fundamental
dataset support in TDataSet.

TDataSet properties
TDataSet Alphabetically Legend

In TDataSet
Active
AutoCalcFields

Bof
Bookmark
CachedUpdates

CanModify
DataSource
DefaultFields
Designer
Eof
ExpIndex
FieldCount

FieldDefs
Fields

FieldValues
Filter
Filtered
FilterOptions

Found
Handle
KeySize
Locale
Modified
RecNo
RecordCount
RecordSize
State

UpdateObject
UpdateRecordTypes

UpdatesPending
Derived from TComponent

ComponentCount
ComponentIndex

Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDataSet properties
TDataSet By object Legend

Active
AutoCalcFields

Bof
Bookmark
CachedUpdates

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
DataSource
DefaultFields
Designer

DesignInfo
Eof
ExpIndex
FieldCount

FieldDefs
Fields
FieldValues
Filtered
FilterOptions
Filter

Found
Handle
KeySize
Locale
Modified
Owner
RecNo
RecordCount
RecordSize
State

Tag
UpdateObject
UpdateRecordTypes

UpdatesPending

TDataSet::Active
TDataSet See also
Specifies whether a dataset is open.
__property bool Active;
Description
Use Active to determine or set a dataset’s connection to data in a database. When Active is
false, the dataset is closed; the dataset cannot read data from or write data to the database.
When Active is true, data can be read from and written to the database.
Setting Active to true:
• Triggers the BeforeOpen event handler if one is defined for the dataset.
• Sets the dataset state to dsBrowse.
• Opens a Borland Database Engine (BDE) cursor into the dataset.
• Triggers the After Open event handler if one is defined for the dataset.
If an error occurs during the dataset open, dataset state is set to dsInactive, and the cursor is
closed.
An application must set Active to false before changing other properties that affect the status of
the database or the controls that display data in an application. For example, to change the
DataSource property for a dataset, Active must first be set to false, ensuring that the dataset is
closed. Setting Active to false puts the dataset into dsInactive state and closes the BDE cursor.
Note
Calling the Open method sets Active to true; calling the Close method sets Active to false.

TDataSet::AutoCalcFields
TDataSet See also
Determines when the OnCalcFields event is triggered.
__property bool AutoCalcFields;
Description
Set AutoCalcFields to control when the OnCalcFields event is triggered to update calculated
fields during dataset processing. A calculated field is one that derives its value from the values of
one or more fields in the dataset, sometime with additional processing. When AutoCalcFields is
true, OnCalcFields is triggered when:
• A dataset is opened.
• Focus moves from one visual control to another, or from one column to another is a data-

aware grid control.
• A record is retrieved from a database.
To reduce the frequency with which OnCalcFields is called, set AutoCalcFields to false. When
AutoCalcFields is false, OnCalcFields is only called when Post is called. If an application permits
users to change data, OnCalcFields is frequently triggered. In these cases an application may
set AutoCalcFields to false to reduce the frequency with which AutoCalcFields is called.

TDataSet::Bof
TDataSet See also
Indicates whether a cursor is positioned at the first record in a dataset.
__property bool Bof;
Description
Test Bof to determine if the cursor is positioned at the first record in a dataset. If Bof is true, the
cursor is unequivocally on the first row in the dataset. Bof is true when an application:
• Opens a dataset.
• Calls a dataset’s First method.
• Call a dataset’s Prior method, and the method fails (because the cursor is already on the first

row in the dataset).
• Calls SetRange on an empty range or dataset.
Bof is false in all other cases. An application should assume Bof is false unless one of the
conditions above is met and the application tests the property directly.
Tip
If both Bof and Eof are true, a dataset or range is empty.

TDataSet::Bookmark
TDataSet See also
Specifies the current bookmark in the dataset.
__property System::AnsiString Bookmark;
Description
Bookmark gets or sets the current bookmark in a dataset. A bookmark provides a convenient
way to mark a location in a dataset so that an application can easily return to that location
quickly. An application can read Bookmark to determine the current bookmark, and it can set
Bookmark to a specific value to change the current bookmark.

TDataSet::CachedUpdates
TDataSet See also
Specifies whether or not cached updates are enabled for a dataset.
__property bool CachedUpdates;
Description
CachedUpdates enables or disables the use of cached updates for a dataset. If CachedUpdates
is true, cached updates are enabled. If CachedUpdates is false, cached updates are disabled.
When cached updates are enabled, updates to a dataset (such as posting changes, inserting
new records, or deleting records), are stored in an internal cache on the client machine instead
of being written directly to the dataset’s underlying database tables. When changes are
complete, an application writes all cached changes to the database in the context of a single
transaction.
Cached updates are most useful to client applications working with remote database servers.
The main benefits of enabling cached updates are:
• Fewer transactions and shorter transaction times.
• Minimization of network traffic.
The potential drawbacks of enabling cached updates are:
• Other applications can access and change the actual data on the server while users are

editing local copies of the data, resulting in an update conflict when cached updates are
applied to the database.

• Other applications cannot access data changes made by an application until its cached
updates are applied to the database.

TDataSet::CanModify
TDataSet See also
Indicates whether or not the database underlying a dataset permits write access to data.
__property bool CanModify;
Description
Examine CanModify to determine if the database underlying a dataset permits write access to
data. When a database connection is established, a dataset typically requests write access.
CanModify indicates whether or not write access is granted. If CanModify is true, data can be
modified and written to the database server. If CanModify is false, data can be viewed, but not
modified.
Note
Restrictions on write access for a given user may still prevent writing to an SQL database server
even if CanModify is true.

TDataSet::DataSource
TDataSet See also
Returns NULL for datasets that cannot specify a data source.
__property TDataSource* DataSource;
Description
DataSource is a property that returns NULL if a dataset cannot specify its own data source.
Descendant dataset objects that support specifying a data source redeclare and implement
methods for getting and setting the DataSource property.

TDataSet::DefaultFields
TDataSet See also
Indicates whether or not a dataset’s underlying field components are generated dynamically
when the dataset is opened.
__property bool DefaultFields;
Description
Read DefaultFields to determine whether or not a dataset uses dynamically generated field
components, or persistent field components. If DefaultFields is true, the dataset uses
dynamically allocated field components. If DefaultFields is false, the dataset uses persistent field
components.
A dataset always creates dynamic field components based on the structure of its underlying
database table or tables when the dataset is opened unless persistent field components are
assigned to a dataset at design time using the Fields editor.

TDataSet::Designer
TDataSet See also
Returns a NULL pointer to the dataset designer for the dataset.
__property TDataSetDesigner* Designer;
Description
Designer is a property that returns NULL for a dataset that does not specify a dataset designer.
A dataset designer, such as the Fields editor, enables a developer to specify the fields that
belong to a dataset at design time.
Descendant dataset objects that support specifying a data set designer redeclare and implement
methods for getting and setting the Designer property.

TDataSet::Eof
TDataSet See also
Indicates whether or not a cursor is positioned at the last record in a dataset.
__property bool Eof;
Description
Test Eof to determine if the cursor is positioned at the last record in a dataset. If Eof is true, the
cursor is unequivocally on the last row in the dataset. Eof is true when an application:
• Opens an empty dataset.
• Calls a dataset’s Last method.
• Call a dataset’s Next method, and the method fails (because the cursor is already on the last

row in the dataset).
• Calls SetRange on an empty range or dataset.
Eof is false in all other cases. An application should assume Eof is false unless one of the
conditions above is met and the application tests the property directly.
Tip
If both Eof and Bof are true, a dataset or range is empty.

TDataSet::ExpIndex
TDataSet
Indicates whether or not a dataset is using a dBASE expression index.
__property bool ExpIndex;
Description
Read ExpIndex to determine if a dataset is using a dBASE expression index. If ExpIndex is true,
an expression index is in use; otherwise ExpIndex is false.

TDataSet::FieldCount
TDataSet See also
Indicates the number of field components associated with the dataset.
__property int FieldCount;
Description
Examine FieldCount to determine the number of fields associated with the dataset. For datasets
with dynamically-created fields, FieldCount may differ each time a dataset is opened. For
datasets with persistent fields, FieldCount should be unchanged each time a dataset is open.

TDataSet::FieldDefs
TDataSet See also
Points to the list of field definitions for the dataset.
__property TFieldDefs* FieldDefs;
Description
FieldDefs points to an internal list of field definitions for a dataset. While an application can
examine FieldDefs to explore the field definitions for a dataset, it should not change these
definitions FieldDefs is primarily intended for internal use by the other properties, events, and
methods of TDataSet and its descendants.
To access fields and field values in a dataset, use the Fields and FieldValues properties, and the
FieldsByName method.

TDataSet::Fields
TDataSet See also
Provides an indexed array of all field components for a dataset.
Bde::hDBIFilter __fastcall CreateLookupFilter(Classes::TList* Fields,
const System::Variant &Values, TLocateOptions Options, int Priority)
;

Description
Use Fields to access field components by index number. Fields is a zero-based array. If fields
are generated dynamically at runtime, the order of field components in Fields corresponds
directly to the order of columns in the table or tables underlying a dataset. If a dataset uses
persistent fields, then the order of field components corresponds to the ordering of fields
specified in the Fields editor at design time.
Accessing fields with the Fields property is useful for applications that:
• Iterate over some or all fields in a dataset.
• Work with underlying tables whose internal data structure is unknown at runtime.
If an application knows the data types of individual fields, then it can read or write individual field
values through the Fields property. Note
The preferred method for retrieving and assigning field values is to use the FieldValues property.

TDataSet::FieldValues
TDataSet See also
Provides access to the values for all fields in the current record for the dataset
__property System::Variant FieldValues[System::AnsiString FieldName];
Description
Use FieldValues to read and write values for fields in a dataset. FieldName is the name of a field
to read from or write to, and must be enclosed in double quotes.
FieldValues accepts or returns a Variant type, so it can be used with fields of any type.

TDataSet::Filter
TDataSet See also
Specifies the text of the current filter for a dataset.
__property System::AnsiString Filter;
Description
Use Filter to specify a dataset filter. When filtering is applied to a dataset, only those records that
meet a filter’s conditions are available to an application. Filter contains the string that describes
the filter condition.
Note
Applications can set Filter at runtime to change the filtering condition for a dataset at (for
example, in response to user input). Such applications should not also use the OnFilterRecord
event handler unless they can guarantee that the interaction of the Filter property and the filter
test conditions in the event handler do not result in an empty filter set.

TDataSet::Filtered
TDataSet See also
Specifies whether or not filtering is active for a dataset.
__property bool Filtered;
Description
Check Filtered to determine whether or not dataset filtering is in effect. If Filtered is true, then
filtering is active. Otherwise Filtered is false. To apply filter conditions specified in the Filter
property or the OnFilterRecord event handler, set Filtered to true.
Note
When filtering is enabled, user edits to a record may mean that the record no longer meets a
filter’s test condition. The next time the record is retrieved from the dataset while the filter is in
effect, the record may seem to disappear. If that happens, the next record that passes the filter
condition becomes the current record.

TDataSet::FIlterOptions
TDataSet See also
Specifies whether or not filtering is case insensitive, and whether or not partial comparisons are
permitted when filtering records.
__property TFilterOptions FilterOptions;
Description
Set FilterOptions to specify whether or not filtering is case insensitive when filtering on string or
character fields, and whether or not partial comparisons for matching filter conditions is allowed.
By default, FilterOptions is set to an empty set. For filters based on string fields, set FilterOptions
to foCaseInsensitive to catch all variations on a string regardless of capitalization. For filter
conditions based on multiple conditions or fields, set FilterOptions to foNoPartialCompare to
force exact matches only on comparison. As with all sets, both filter conditions can be set at the
same time.

TDataSet::Found
TDataSet See also
Indicates whether moving to a different record is successful or not.
__property bool Found;
Description
Check the status of Found to determine if a call to FindFirst, FindLast, FindNext, FindPrior, First,
Last, Next, or Prior succeeds. If Found is true, success is indicated. If false, the move to a
different record failed.

TDataSet::Handle
TDataSet See also Example
Specifies the Borland Database Engine (BDE) cursor handle for the dataset.
__property Bde::hDBICur Handle;
Description
Use Handle only to bypass TDataSet methods and call directly into the BDE. Many BDE function
calls require a cursor handle parameter. Handle is assigned an initial value when a dataset is
opened.
Note
Do not use this property unless an application requires BDE functionality not available through
standard Borland C++Builder components.

TDataSet::KeySize
TDataSet See also
Indicates the size of the current key used for the dataset.
__property unsigned short KeySize;
Description
Examine KeySize to determine the size of the current key used for the dataset. KeySize
corresponds to the size of the key fields in the primary index for the dataset. For dBASE tables
that use expression indexes, KeySize corresponds to the size of the expression index.

TDataSet::Locale
TDataSet See also
Identifies the Borland Database Engine (BDE) language driver for the dataset.
__property void * Locale;
Description
Examine Locale to determine the BDE language driver for the dataset. Applications that make
direct calls to the BDE API may need to pass Locale information as a function parameter.
Language driver information may also be available as one of the values in the Params property
of the database component that owns the dataset.
Note
Do not use this property unless an application requires BDE functionality not available through
standard Borland C++Builder components.

TDataSet::Modified
TDataSet See also Example
Indicates whether or not the current record is modified.
__property bool Modified;
Description
Check Modified to determine if the current record is modified. If Modified is true, the current
record is modified. If false, the current record is not modified.
Note
In general, an application need not check the status of Modified. Properties, events, and
methods of TDataSet and its descendants that modify records generally check this status
automatically and take appropriate actions based on its value.

TDataSet::RecNo
TDataSet See also
Indicates the current record in the dataset.
__property long RecNo;
Description
Examine RecNo to determine the record number of the current record in the dataset.
Applications might use this property with RecordCount to iterate through all the records in a
dataset, though typically record iteration is handled with calls to First, Last, MoveBy, Next, and
Prior.

TDataSet::RecordCount
TDataSet See also
Indicates the total number of records associated with the dataset.
__property long RecordCount;
Description
Examine RecordCount to determine the total number of records in the dataset. Applications
might use this property with RecNo to iterate through all the records in a dataset, though
typically record iteration is handled with calls to First, Last, MoveBy, and Prior.

TDataSet::RecordSize
TDataSet See also
Indicates the size of a record in the dataset.
__property unsigned short RecordSize;
Description
Examine RecordSize to determine the physical size, in bytes, of the buffer Borland C++Builder
allocates to hold a record in the dataset. When a dataset is opened, the Open procedure
requests record-buffer size information from the Borland Database Engine (BDE) and stores the
returned information in RecordSize. Borland C++Builder uses this information internally.
Applications seldom, if ever, require this information.

TDataSet::State
TDataSet See also Example
Indicates the current operating mode of the dataset.
__property TDataSetState State;
Description
Examine State to determine the current operating mode of the dataset. State determines what
can be done with data in a dataset, such as editing existing records or inserting new ones. The
dataset state constantly changes as an application processes data. The following table lists all
possible values for State and describes what they indicate:
Value Meaning

dsInactive Dataset is closed, so its data is unavailable.
dsBrowse Data can be viewed, but not changed. This is the default state of an open

dataset.
dsEdit Current record can be modified.
dsInsert A new record can be inserted.
dsSetKey TTable only. Record searching is enabled, or a SetRange operation is

under way. A restricted set of data can be viewed, and no data can be
edited or inserted.

dsCalcFields An OnCalcFields event is in progress. Noncalculated fields cannot be
edited, and new records cannot be inserted.

dsUpdateNew Cached update processing in progress. No data can be edited or
inserted.

dsUpdateOld Cached update processing in progress. No data can be edited or
inserted.

dsFilter An OnFilterRecord event is in progress. A restricted set of data can be
viewed. No data can edited or inserted.

Opening a dataset changes State from dsInactive to dsBrowse. An application can call Edit to
put a dataset into dsEdit state, or call Insert to put a dataset into dsInsert state. If a dataset is a
TTable object, an application can call SetKey or SetRange to put the dataset into dsSetKey
state.
Posting or cancelling edits, insertions, or deletions, changes State from its current state to
dsBrowse. Closing a dataset changes its state to dsInactive.
Some states, such as dsCalcFields, dsFilter, dsUpdateNew, and dsUpdateOld cannot be seen
or set directly by an application. These states are automatically set when OnCalcField and
OnFilterRecord events occur, or when cached updates are processed.

TDataSet::UpdateObject
TDataSet See also
Specifies the update object component used to update a read-only result set when cached
updates are enabled.
__property TDataSetUpdateObject* UpdateObject;
Description
Use UpdateObject to specify the TUpdateObject component to use in an application that must
be able to update a read-only result set returned by the Borland Database Engine (BDE).
The BDE always attempts to provide an updateable, or “live” query result unless an application
specifically requests a read-only view of data. In some cases, such as a query made against
multiple tables, a live result set cannot be returned. In these cases, UpdateObject can be used to
specify a helper object that performs updates as a separate transaction that is transparent to the
application.

TDataSet::UpdateRecordTypes
TDataSet See also
Specifies the type of records visible in a dataset when cached updates are enabled.
__property TUpdateRecordTypes UpdateRecordTypes;
Description
Use UpdateRecordTypes to specify the records that are visible in a dataset when cached
updates are enabled. UpdateRecordTypes is a set that can have the following values:
Value Meaning

rtModified Modified records are visible.
rtInserted Inserted records are visible.
rtDeleted Deleted records are visible.
rtUnmodified Unmodified records are visible.
By default, a dataset is created with an UpdateRecordTypes set of [rtModified, rtInserted,
rtUnmodified], meaning that all existing, edited, or inserted records are visible to the user.
An application that must cycle through a dataset to undelete records may change
UpdateRecordTypes as part of an undelete method, so that deleted records are “visible” long
enough to restore them to their previously undeleted conditions.
An application might also use UpdateRecordTypes like a filter to temporarily limit visible records
to those added or inserted by the user during the current session.

TDataSet::UpdatesPending
TDataSet See also
Indicates whether or not the cached updates buffer contains records that are not yet applied.
__property bool UpdatesPending;
Description
Examine UpdatesPending to check the status of the cached updates buffer. If UpdatesPending
is true, then there are edited, deleted, or inserted records to apply to the database. If
UpdatesPending is false, there are no records in the buffer.

TDataSet events
TDataSet Alphabetically Legend

In TDataSet
AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
OnCalcFields
OnDeleteError
OnEditError
OnFilterRecord
OnNewRecord
OnPostError
OnServerYield
OnUpdateError
OnUpdateRecord

TDataSet events
TDataSet By object Legend

AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
OnCalcFields
OnDeleteError
OnEditError
OnFilterRecord
OnNewRecord
OnPostError
OnServerYield
OnUpdateError
OnUpdateRecord

TDataSet::AfterCancel
TDataSet See also
AfterCancel occurs after an application completes a request to cancel modifications to the
current record.
__property TDataSetNotifyEvent AfterCancel;
Description
Write an AfterCancel event handler to take specific action after an application cancels changes
to the current record. AfterCancel is called by the Cancel method after it updates the BDE cursor
position, releases the lock on the current record if necessary, and sets the dataset state to
dsBrowse. If an application requires additional processing before returning control to a user after
a Cancel event, code it in the AfterCancel event.

TDataSet::AfterClose
TDataSet See also
AfterClose occurs after an application closes a dataset.
__property TDataSetNotifyEvent AfterClose;
Description
Write an AfterClose event handler to take specific action immediately after an application closes
a dataset. For example, as a security measure, an application might clear a PASSWORD entry
from the Params property of a database component when the dataset is closed.
AfterClose is called after a dataset is closed and the dataset state is set to dsInactive.

TDataSet::AfterDelete
TDataSet See also
AfterDelete occurs after an application deletes a record.
__property TDataSetNotifyEvent AfterDelete;
Description
Write an AfterDelete event handler to take specific action immediately after an application
deletes the current record in a dataset. AfterDelete is called by Delete after it deletes the record,
sets the dataset state to dsBrowse, and repositions the cursor on the record prior to the one just
deleted.

TDataSet::AfterEdit
TDataSet See also
AfterEdit occurs after an application edits a record.
__property TDataSetNotifyEvent AfterEdit;
Description
Write an AfterEdit event handler to take specific action immediately after an application edits a
record. AfterEdit is called by Edit after it enables editing of a record, recalculates calculated
fields, and calls the data event handler to process a record change.

TDataSet::AfterInsert
TDataSet See also
AfterInsert occurs after an application inserts a new record.
__property TDataSetNotifyEvent AfterInsert;
Description
Write an AfterInsert event handler to take specific action immediately after an application inserts
a record. AfterInsert is called by Insert and Append after inserting or appending a new record.

TDataSet::AfterOpen
TDataSet See also
AfterOpen occurs after an application completes opening a dataset and before any data access
occurs.
__property TDataSetNotifyEvent AfterOpen;
Description
Write an AfterOpen event handler to take specific action immediately after an application opens
the dataset. AfterOpen is called after the BDE cursor for the dataset is opened and the dataset is
put into dsBrowse state. For example, an AfterOpen event handler might check the system
registry to determine the last record touched in the dataset the previous time the application ran,
and position the cursor at that record.

TDataSet::AfterPost
TDataSet See also
AfterPost occurs after an application writes the current record to the database or cache and
before the dataset is returned to browse state.
__property TDataSetNotifyEvent AfterPost;
Description
Write an AfterPost event handler to take specific action immediately after an application posts a
change to the current record. AfterPost is called after a modification, deletion, or insertion is
made to a record.

TDataSet::BeforeCancel
TDataSet See also
BeforeCancel occurs before an application executes a request to cancel changes to the current
record.
__property TDataSetNotifyEvent BeforeCancel;
Description
Write a BeforeCancel event to take specific action before an application carries out a request to
cancel changes. BeforeCancel is called by the Cancel method before it cancels a dataset
operation such as Edit, Insert, or Delete.
An application might use the BeforeCancel event to record a user’s changes in an undo buffer.

TDataSet::BeforeClose
TDataSet See also
BeforeClose occurs before an application executes a request to close the dataset.
__property TDataSetNotifyEvent BeforeClose;
Description
Write a BeforeClose event to take specific action before an application closes a dataset. Calling
Close or setting the Active property to false results in a call to the BeforeClose event handler.

TDataSet::BeforeDelete
TDataSet See also
BeforeDelete occurs before an application attempts to delete the current record.
__property TDataSetNotifyEvent BeforeDelete;
Description
Write a BeforeDelete event handler to take specific action before an application deletes the
current record. BeforeDelete is called by Delete before it actually deletes a record.
Making use of this event an application might, for example, display a dialog box asking for
confirmation before deleting the record. On denial of confirmation, the application could abort the
deletion by calling the Abort procedure.

TDataSet::BeforeEdit
TDataSet See also
BeforeEdit occurs before an application enters edit mode for the current record.
__property TDataSetNotifyEvent BeforeEdit;
Description
Write a BeforeEdit event handler to take specific action before an application enables editing of
the current record. For example, an application might keep a log of database edits, and therefore
might record the edit request, time, and user in a BeforeEdit event before entering edit state.

TDataSet::BeforeInsert
TDataSet See also
BeforeInsert occurs before an application enters insert mode.
__property TDataSetNotifyEvent BeforeInsert;
Description
Write a BeforeInsert event handler to take specific action before an application inserts or
appends a new record. BeforeInsert is called by Insert or Append before they set the dataset into
dsInsert state.

TDataSet::BeforeOpen
TDataSet See also
BeforeOpen occurs before an application executes a request to open a dataset.
__property TDataSetNotifyEvent BeforeOpen;
Description
Write a BeforeOpen event handler to take specific action before an application opens a dataset
for viewing or editing. BeforeOpen is triggered when an application sets the Active property to
true for a dataset or an application calls Open.

TDataSet::BeforePost
TDataSet See also
BeforePost occurs before an application posts changes for the current record to the database or
cache.
__property TDataSetNotifyEvent BeforePost;
Description
Write a BeforePost event handler to take specific action before an application posts dataset
changes to the database. BeforePost is triggered when an application calls the Post method.
Post checks to make sure all required fields are present, then calls BeforePost before posting
the record.
An application might use BeforePost to perform validity checks on data changes before posting
them to the database. If it encountered a validity problem, it could call Abort to cancel the Post
operation.

TDataSet::OnCalcFields
TDataSet See also
OnCalcFields occurs when an application recalculates calculated fields.
typedef void __fastcall (__closure *TDataSetNotifyEvent)(TDataSet*
DataSet);

__property TDataSetNotifyEvent OnCalcFields;
Description
Write an OnCalcFields event handler to take specific action when an application recalculates
calculated fields. A calculated field is one that derives its value from the values in one or more
fields in the dataset, sometimes with additional processing.
OnCalcFields is called frequently, so the code it contains should be brief.
When the AutoCalcFields property is true, OnCalcFields is triggered when:
• A dataset is opened.
• Focus moves from one visual control to another, or from one column to another is a data-

aware grid control.
• A record is retrieved from a database.
Note
When the AutoCalcFields property is true, OnCalcFields should not modify the dataset (or a
linked dataset if it is part of a master-detail relationship), because such modifications retrigger
the OnCalcField event, leading to recursion.
To reduce the frequency with which OnCalcFields is called, set AutoCalcFields to false. When
AutoCalcFields is false, OnCalcFields is only called when Post is called. If an application permits
users to change data, OnCalcFields is frequently triggered. In these cases an application may
set AutoCalcFields to false to reduce the frequency with which AutoCalcFields is called.

TDataSet::OnDeleteError
TDataSet See also
OnDeleteError occurs when an application attempts to delete a record and an exception is
raised.
enum TDataAction { daFail, daAbort, daRetry };
typedef void __fastcall (__closure *TDataSetErrorEvent)(TDataSet*
DataSet, EDatabaseError* E, TDataAction &Action);

__property TDataSetErrorEvent OnDeleteError;
Description
Write an OnDeleteError event handler to handle exceptions that occur when an attempt to delete
a record fails. E is a pointer to the database error object that contains the exception error
message so that an application can display an error message. Action indicates how the handler
should respond to the error. The following table summarizes the settings for Action and what
they mean:
Value Meaning

daFail Aborts the delete operation and displays an error message.
daAbort Aborts the delete operation without displaying a message.
daRetry Repeats the delete operation. Correct the error condition inside the error

handler before setting Action to daRetry.
When OnDeleteError is first invoked, Action is always set to daFail. If the error handler can
correct the error condition that caused the handler to be invoked, set Action to daRetry before
exiting the handler. When Action is daRetry, the delete operation is tried again.
If an error condition cannot be corrected, the display of the error message can be suppressed, if
desired, by setting Action to daAbort instead of daFail.

TDataSet::OnEditError
TDataSet See also
OnEditError occurs when an application attempts to modify or insert a record and an exception is
raised.
__property TDataSetErrorEvent OnEditError;
Description
Write an OnEditError event handler to handle exceptions that occur when an attempt to edit a
record fails. E is a pointer to the database error object that contains the exception error message
so that an application can display an error message. Action indicates how the handler should
respond to the error. The following table summarizes the settings for Action and what they
mean:
Value Meaning

daFail Aborts the edit operation and displays an error message.
daAbort Aborts the edit operation without displaying a message.
daRetry Repeats the edit operation. Correct the error condition inside the error

handler before setting Action to daRetry.
When OnEditError is first invoked, Action is always set to daFail. If the error handler can correct
the error condition that caused the handler to be invoked, set Action to daRetry before exiting
the handler. When Action is daRetry, the edit operation is tried again.
If an error condition cannot be corrected, the display of the error message can be suppressed, if
desired, by setting Action to daAbort instead of daFail.

TDataSet::OnFilterRecord
TDataSet See also
OnFilterRecord occurs each time a different record in the dataset becomes the current record
and filtering is enabled.
typedef void __fastcall (__closure *TFilterRecordEvent)(TDataSet*
DataSet, bool &Accept);

__property TFilterRecordEvent OnFilterRecord;
Description
Write an OnFilterRecord event handler to test each record in a dataset for against a test
condition that determines whether or not the record is visible to the application.
To indicate whether or not a record passes the filter condition, a filter handler must set the
Accept parameter to true to include a record, or false to exclude it.
Filtering is enabled if the Filtered property is true. When an application is processing a filter, the
State property for the dataset is dsFilter. The FilterOptions property controls case sensitivity and
filtering on partial comparisons.
Note
Applications can also specify a filter using the Filter property. The Filter property supplements
the OnFilterRecord event handler. Be certain of the interactions between the Filter property and
the OnFilterRecord event handler if they are used simultaneously in an application.

TDataSet::OnNewRecord
TDataSet See also
OnNewRecord occurs when an application inserts or appends a new dataset record.
typedef void __fastcall (__closure *TDataSetNotifyEvent)(TDataSet*
DataSet);

__property TDataSetNotifyEvent OnNewRecord;
Description
Write an OnNewRecord event handler to take specific actions as an application inserts or
appends a new record. OnNewRecord is called as part of the actual insert or append process.
An application might use the OnNewRecord event as a way of implementing cascading
insertions in related datasets.

TDataSet::OnPostError
TDataSet See also
OnPostError occurs when an application attempts to modify or insert a record and an exception
is raised.
enum TDataAction { daFail, daAbort, daRetry };
typedef void __fastcall (__closure *TDataSetErrorEvent)(TDataSet*
DataSet, EDatabaseError* E, TDataAction &Action);

__property TDataSetErrorEvent OnPostError;
Description
Write an OnPostError event handler to handle exceptions that occur when an attempt to edit a
record fails. E is a pointer to the database error object that contains the exception error message
so that an application can display an error message. Action indicates how the handler should
respond to the error. The following table summarizes the settings for Action and what they
mean:
Value Meaning

daFail Aborts the post operation and displays an error message.
daAbort Aborts the post operation without displaying a message.
daRetry Repeats the post operation. Correct the error condition inside the error

handler before setting Action to daRetry.
When OnPostError is first invoked, Action is always set to daFail. If the error handler can correct
the error condition that caused the handler to be invoked, set Action to daRetry before exiting
the handler. When Action is daRetry, the edit operation is tried again.
If an error condition cannot be corrected, the display of the error message can be suppressed, if
desired, by setting Action to daAbort instead of daFail.

TDataSet::OnServerYield
TDataSet See also
OnServerYield occurs during processing of a query on a remote database server when the
server sends a yield call back to the Borland Database Engine (BDE).
typedef void __fastcall (__closure *TOnServerYieldEvent)(TDataSet*
DataSet, bool &AbortQuery);

__property TOnServerYieldEvent OnServerYield;
Description
Write an OnServerYield event handler to respond to a BDE callback generated when a database
server yields temporary control to the BDE during a query operation. When it receives such
control, it calls OnServerYield if the handler exists.
To continue processing the query, OnServerYield should set the AbortQuery parameter to false.
To end query processing set AbortQuery to true.
Note
Currently, only Sybase yields control during query processing.

TDataSet::OnUpdateError
TDataSet See also
OnUpdateError occurs if an exception is generated when cached updates are applied to a
database.
enum TUpdateKind { ukModify, ukInsert, ukDelete };
enum TUpdateAction { uaFail, uaAbort, uaSkip, uaRetry, uaApplied };
typedef void __fastcall (__closure *TUpdateErrorEvent)(TDataSet*
DataSet, EDatabaseError* E, TUpdateKind UpdateKind, TUpdateAction
&UpdateAction);

__property TUpdateErrorEvent OnUpdateError;
Description
Write an OnUpdateError event handler to respond to exceptions generated when cached
updates are applied to a database.
Because there is a delay between the time a record is first cached and the time cached updates
are applied, there is a possibility that another application may change one or more of the same
records in the database before the cached changes can be applied. The Borland Database
Engine (BDE) checks for this condition and raises an exception. Borland C++Builder responds
by calling the OnUpdateError event handler if it exists.
DataSet is the name of the dataset to which updates are applied.
E is a pointer to a EDBEngineError object from which an application can extract an error
message and the actual cause of the error condition. An OnUpdateError handler can use this
information to determine how to respond to the error condition.
UpdateKind describes the type of update that generated the error. The following table lists the
possible values for UpdateKind and what they indicate:
Value Meaning

ukModify Editing an existing record caused an error.
ukInsert Inserting or appending a new record caused an error.
ukDelete Deleting an existing record raised an error.
UpdateAction indicates the action to take when the OnUpdateError handler exits. On entry into
the handler, UpdateAction is always set to uaFail. If OnUpdateError can handle or correct the
error, set UpdateAction to uaRetry before exiting the error handler. The following table lists the
possible values for UpdateAction and what they indicate:
Value Meaning

uaAbort Aborts the update operation without displaying an error message.
uaApplied Not used in error handling routines.
uaFail Aborts the update operation and displays an error message.
uaRetry Repeats the update operation that originally raised the error condition.
uaSkip Skips updating the record that raised the error condition, and leaves the

unapplied changes in the cache.
Note
If a call to ApplyUpdates raises an exception and ApplyUpdates is not called within the context of
a try...except block, an error message is displayed. If an OnUpdateError handler cannot correct
the error condition and leaves UpdateAction set to uaFail, the error message is displayed twice.
To prevent redisplay, set UpdateAction to uaAbort in the error handler.
Note
The code in an OnUpdateError handler must not call any methods that make a different record
the current one.

TDataSet::OnUpdateRecord
TDataSet See also
OnUpdateRecord occurs when cached updates are applied to a record.
enum TUpdateKind { ukModify, ukInsert, ukDelete };
enum TUpdateAction { uaFail, uaAbort, uaSkip, uaRetry, uaApplied };
typedef void __fastcall (__closure *TUpdateRecordEvent)(TDataSet*
DataSet, TUpdateKind UpdateKind, TUpdateAction &UpdateAction);

__property TUpdateRecordEvent OnUpdateRecord;
Description
Write an OnUpdateRecord event handler to process updates that cannot be handled by a single
update component, such as implementation of cascading updates, insertions, or deletions. This
handler is also useful for applications that require additional control over parameter substitution
in update components.
DataSet is the name of the dataset to which updates are applied.
UpdateKind describes the type of update to perform. The following table lists the possible values
for UpdateKind and what they indicate:
Value Meaning

ukModify Edit an existing record.
ukInsert Insert or append a new record.
ukDelete Delete an existing record.
UpdateAction indicates the action taken by the OnUpdateRecord handler before it exits. On
entry into the handler, UpdateAction is always set to uaFail. If OnUpdateRecord is successful, it
should set UpdateAction to uaApplied before exiting. The following table lists the possible values
for UpdateAction and what they indicate:
Value Meaning

uaAbort Abort the update operation without displaying an error message.
uaApplied Update is applied. Free update record from cache.
uaFail Aborts the update operation and displays an error message.
uaRetry Not used for record updates.
uaSkip Update is skipped. Leave update record in the cache.
Note
The code in an OnUpdateRecord handler must not call any methods that make a different record
the current one.

TDataSet methods
TDataSet Alphabetically

In TDataSet
~TDataSet
ActiveBuffer
Append
AppendRecord
ApplyUpdates
Cancel
CancelUpdates
CheckBrowseMode
ClearFields
Close
CommitUpdates
ControlsDisabled
CursorPosChanged
Delete
DisableControls
Edit
EnableControls
FetchAll
FieldByName
FindField
FindFirst
FindLast
FindNext
FindPrior
First
FreeBookmark
GetBookmark
GetCurrentRecord
GetFieldList
GetFieldNames
GotoBookmark
Insert
InsertRecord
IsLinkedTo
Last
Locate
Lookup
MoveBy
Next
Open
Post
Prior
Refresh
Resync
RevertRecord
SetDetailFields
SetFields
TDataSet
UpdateCursorPos

UpdateRecord
UpdateStatus

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDataSet methods
TDataSet By object

~TDataSet
ActiveBuffer
AppendRecord
Append
ApplyUpdates
Assign
Cancel
CancelUpdates
CheckBrowseMode
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClearFields
Close
CommitUpdates
ControlsDisabled
CursorPosChanged
DefaultHandler
Delete
DestroyComponents
Destroying
DisableControls
Dispatch
Edit
EnableControls
FetchAll
FieldAddress
FieldByName
FindComponent
FindField
FindFirst
FindLast
FindNext
FindPrior
First
FreeBookmark
FreeInstance
FreeNotification
Free
GetBookmark
GetCurrentRecord
GetFieldList
GetFieldNames
GetParentComponent
GotoBookmark
HasParent

InheritsFrom
InitInstance
InsertComponent
InsertRecord
Insert
InstanceSize
IsLinkedTo
Last
Locate
Lookup
MethodAddress
MethodName
MoveBy
NewInstance
Next
Open
Post
Prior
Refresh
RemoveComponent
Resync
RevertRecord
SetDetailFields
SetFields
TDataSet
UpdateCursorPos
UpdateRecord
UpdateStatus

TDataSet::~TDataSet
TDataSet See also
~TDataSet frees the memory associated with the TDataSet object. Do not call ~TDataSet
directly. Instead, use the delete keyword on the object, which causes ~TDataSet to be invoked
automatically.
__fastcall virtual ~TDataSet(void);
Description
~TDataSet performs the following tasks:
• Closes the dataset.
• Frees the UpdateObject for the dataset, if one exists.
• Frees the Dataset Designer for the dataset, if one exists.
• Disassociates the dataset from its data source components and frees the memory allocated

for them.
• Destroys the fields associated with the dataset and frees the memory allocated to them.
• Frees the memory allocated for field definitions.
• Frees the memory allocated for the asynchronous Borland Database Engine (BDE) callback, if

a callback exists.
• Calls the constructor of its parent object.

TDataSet::ActiveBuffer
TDataSet See also
Returns a pointer to the buffer for the current record.
char * __fastcall ActiveBuffer(void);
Description
ActiveBuffer is used internally by many dataset methods to ensure that the active buffer points to
the buffer for the current record. If an application uses existing dataset methods, the active buffer
is always set correctly, so there is usually no need to call ActiveBuffer directly.
ActiveBuffer is also used by bookmarking methods to index into the current record buffer to
retrieve bookmark information.
Applications that provide custom dataset routines may need to call ActiveBuffer to update the
buffer pointer, especially when iterating through a set of records in the dataset. Even in these
cases, if custom routines call methods such as Next or Prior, the active buffer is automatically
set.

TDataSet::Append
TDataSet See also
Adds a new, empty record to the end of the dataset.
void __fastcall Append(void);

Description
Call Append to:
1 Open a new, empty record at the end of the dataset.
2 Set the current record to the new record.
After a call to Append, an application can enable users to enter data in the fields of the record,
and can then post those changes to the database using Post (or ApplyUpdates if cached
updating is enabled). A newly appended record is posted to the database in one of three ways:
• For indexed Paradox and dBASE tables, the record is inserted into the dataset in a position

based on its index.
• For unindexed Paradox and dBASE tables, the record is added to the end of the dataset.
• For SQL databases, the physical location of the append is implementation-specific. For

indexed tables, the index is updated with the new record information.

TDataSet::AppendRecord
TDataSet See also
Adds a new, populated record to the end of the dataset and posts it to the database.
void __fastcall AppendRecord(const System::TVarRec *Values, const int
Values_Size);

Description
Call AppendRecord to create a new, empty record at the end of the dataset, populate it with the
field values in Values, and post the values to the database. A newly appended record is posted
to the database in one of three ways:
• For indexed Paradox and dBASE tables, the record is inserted into the dataset in a position

based on its index.
• For unindexed Paradox and dBASE tables, the record is added to the end of the dataset.
• For SQL databases, the physical location of the append is implementation-specific. For

indexed tables, the index is updated with the new record information.
The newly appended record becomes the current record.

TDataSet::ApplyUpdates
TDataSet See also
Writes a dataset’s pending cached updates to the database.
void __fastcall ApplyUpdates(void);
Description
Call ApplyUpdates to write a dataset’s pending cached updates to a database. This method
passes cached data to the database for storage, but the changes are not committed to the
database. An application must explicitly call the database component’s Commit method to
commit the changes to the database if the write is successful, or call the database’s Rollback
method to undo the changes if there is an error.
Following a successful write to the database, and following a successful call to the database’s
Commit method, an application should call the CommitUpdates method to clear the cached
update buffer.
Note
To apply pending cached updates for two or more datasets associated with a database
component, call the database component’s ApplyUpdates method rather than calling each
individual dataset’s ApplyUpdates method. The database component’s ApplyUpdates method
takes care of committing and rolling back transactions and clearing the cache when the
operation is successful.

TDataSet::Cancel
TDataSet See also Example
Cancels modifications to the current record if those changes are not yet posted.
void __fastcall Cancel(void);
Description
Call Cancel to undo modifications made to one or more fields belonging to the current record. As
long as those changes are not already posted to the database, Cancel returns the record to its
previous state, and sets the dataset state to dsBrowse.
Typically Cancel is used to back out of changes in response to user request, or in field validation
routines that back out illegal field values. The TDBNavigator object contains a Cancel button that
triggers a call to Cancel.

TDataSet::CancelUpdates
TDataSet See also
Clears all pending cached updates from the cache and restores the dataset its prior state.
void __fastcall CancelUpdates(void);
Description
Call CancelUpdates to clear all pending cached updates from the cache and restore the dataset
to the state it was in when the table was opened, cached updates were last enabled, or updates
were last successfully applied to the database.
When a dataset is closed, or the CachedUpdates property is set to false, CancelUpdates is
called automatically.
Note
To undo changes to a single record, call RevertRecord.

TDataSet::CheckBrowseMode
TDataSet See also
Automatically posts or cancels data changes when an application calls a method that changes
which record in a dataset is the current record.
void __fastcall CheckBrowseMode(void);
Description
CheckBrowseMode is used internally by many dataset methods to ensure that modifications to
the current record are posted to the database when a dataset’s state is dsEdit, dsInsert, or
dsSetKey state and a method is called that switches to a different record.
If State is dsEdit or dsInsert, CheckBrowseMode calls UpdateRecord, and then, if the Modified
property for the dataset is true, CheckBrowseMode calls Post. If Modified is false,
CheckBrowseMode calls Cancel.
If State is dsSetKey, CheckBrowseMode calls Post.
If State is dsInactive, CheckBrowseMode raises an exception.
If an application uses existing dataset methods, CheckBrowseMode is always called when
necessary, so there is usually no need to call CheckBrowseMode directly.
Applications that provide custom dataset routines may need to call CheckBrowseMode inside
those routines to guarantee that changes are posted to the database when switching to a
different record.

TDataSet::ClearFields
TDataSet See also
Clears the contents of all fields for the current record.
void __fastcall ClearFields(void);
Description
Call ClearFields to erase the current contents of all fields for the current record. If the dataset is
not in either dsInsert or dsEdit state, ClearFields raises an exception. Otherwise it calls the
DataEvent event handler to invoke CheckBrowseMode, and then calls the BDE to initialize all
fields for the record, effectively clearing them. If a SetKey operation is not under way,
ClearFields recalculates all calculated fields, and calls the DataEvent handler with a parameter
indicating that the record has changed. The DataEvent handler, in turn, calls the OnDataChange
event handler for the data source component associated with the dataset.

TDataSet::Close
TDataSet See also
Closes a dataset.
void __fastcall Close(void);
Description
Call Close to set the Active property of a dataset to false. When Active is false, the dataset is
closed; the dataset cannot read data from or write data to the database.
An application must set Active to false before changing other properties that affect the status of
the database or the controls that display data in an application. For example, to change the
DataSource property for a dataset, Active must first be set to false, ensuring that the dataset is
closed. Setting Active to false puts the dataset into dsInactive state and closes the BDE cursor.

TDataSet::CommitUpdates
TDataSet See also
Clears the cached updates buffer.
void __fastcall CommitUpdates(void);
Description
Call CommitUpdates to clear the cached updates buffer after both a successful call to
ApplyUpdates and a database component’s Commit method. Clearing the cache after applying
updates ensures that the cache is empty except for records that could not be processed and
were skipped by the OnUpdateRecord or OnUpdateError event handlers. An application can
attempt to modify the records still in the cache.
Record modifications made after a call to CommitUpdates repopulate the cached update buffer
and require a subsequent call to ApplyUpdates to move them to the database.
Note
Applications that use a database component’s ApplyUpdates method to apply and commit
pending updates for all datasets associated with the database component do not need to call
CommitUpdates.

TDataSet::ControlsDisabled
TDataSet See also
Determines if display of data in data-aware controls is currently disabled for the dataset.
bool __fastcall ControlsDisabled(void);
Description
Call ControlsDisabled to determine if the display of data in data-aware controls is currently
disabled for the dataset. Applications should disable controls to improve performance and
prevent display flicker during an automated iteration through a large number of records in the
dataset. In complex applications, the same controls may be disabled by different processes
simultaneously. ControlsDisabled enables an application to check on the current status of control
display.

TDataSet::CursorPosChanged
TDataSet See also
Sets the Borland Database Engine (BDE) cursor position in the dataset to -1.
void __fastcall CursorPosChanged(void);
Description
CurPosChanged is an internal method that set the value for the BDE cursor position in the
dataset to -1, which is not a valid cursor position. CurPosChanged is called by the Locate and
Lookup methods prior to searching for a requested record. These methods, if successful, should
reposition the cursor at the first matching record found.

TDataSet::Delete
TDataSet See also
Deletes the current record and positions the cursor on the next record.
void __fastcall Delete(void);
Description
Call Delete to remove the current record from the database. If the dataset is inactive, Delete
raises an exception. Otherwise Delete:
• Verifies that the dataset is not empty (and raises an exception if it is).
• Calls CheckBrowseMode to post any pending changes to a prior record if necessary.
• Triggers the BeforeDelete event handler.
• Calls the Borland Database Engine (BDE) to delete the record.
• Frees the buffers allocated for the record.
• Puts the dataset into dsBrowse mode.
• Resynchronizes the dataset to position the cursor on the next undeleted record.
• Calls the AfterDelete event handler.

TDataSet::DisableControls
TDataSet See also
Disables data display in data-aware controls associated with the dataset through a data source
component.
void __fastcall DisableControls(void);
Description
Call DisableControls to prevent data display in data-aware controls prior to iterating through a
large number of records in the dataset. Disabling controls prevents flicker in controls during rapid
iteration through the dataset and its speeds performance because data does not need to be
written to the display.
If controls are not already disabled, DisableControls records the current state of the dataset, sets
the enabling event for the dataset to deDataSetChange, and increments the dataset’s disabled
count variable. Otherwise, DisableControls just increments the disabled count variable.
The enabling event and disabled count variable are used internally by other methods and
objects to determine whether or not to display data in data-aware controls. When the disable
count variable is greater than zero, data is not displayed.
Usually DisableControls is called within the context of a try...finally block that reenables the
controls even if an exception occurs.
Note
DisableControls can safely be called when controls are already disabled. In complex applications
there may be separate operations that are sometimes nested, both of which need to disable
controls.

TDataSet::Edit
TDataSet See also
Enables editing of data in the dataset.
void __fastcall Edit(void);
Description
Call Edit to permit editing of the current record in a dataset. Edit determines the current state of
the dataset. If the dataset is empty, Edit calls Insert. Otherwise Edit:
• Calls CheckBrowseMode to post any pending changes to a prior record if necessary.
• Triggers the BeforeEdit event handler.
• Retrieves the record and sets a lock on it if possible.
• Puts the dataset into dsEdit state, enabling the application or user to modify fields in the

record.
• Triggers the record change event.
• Triggers the AfterEdit event handler.

TDataSet::EnableControls
TDataSet See also
Enables data display in data-aware controls associated with the dataset through a data source
component.
void __fastcall EnableControls(void);
Description
Call EnableControls to permit data display in data-aware controls after a prior call to
DisableControls. EnableControls decrements the disabled count variable for the dataset if it is
not already zero. If the disable count variable is zero, EnableControls updates the current state
of the dataset, if necessary, and then call an event handler for renabling data display.

TDataSet::FetchAll
TDataSet See also
Retrieves all records from the current cursor position to the end of the file and stores them
locally.
void __fastcall FetchAll(void);
Description
Call FetchAll to reduce network traffic when using cached updates. FetchAll calls
CheckBrowseMode to post any pending changes, and then retrieves all records from the current
cursor position to the end of the file, and store them locally.
Ordinarily when cached updates are enabled, a transaction retrieves only as much data as it
needs for display purposes. Each new fetch starts a new, read-only transaction. To consolidate
transactions and reduce network traffic, an application can call FetchAll to retrieve all data in a
single transaction.
Note
To retrieve all records for a dataset, call First before calling FetchAll.
If filtering is enabled for a dataset, FetchAll retrieves only those records that match the filter
criteria.
Note
Using FetchAll is not always appropriate. For example, when an application accesses a
database used by many simultaneous clients and there is a high degree of contention for
updating the same records, fetching all records at once may not be advantageous because
some fetched records may be changed by other applications. Always weigh the advantages of
reduced network traffic against the need for reduced record contention.

TDataSet::FieldByName
TDataSet See also
Finds a field based on a specified field name.
TField* __fastcall FieldByName(const System::AnsiString FieldName);
Description
Call FieldByName to retrieve field information for a field when only the field’s name is known.
FieldName is the name of an existing field. FieldByName returns the TField component for the
specified field.
An application can access specific properties and methods of the field directly.
FieldByName is especially useful at design time for developers who are creating database
applications, but who do not have access to the underlying table.
Note
To retrieve or set the value for a specific field, call the default dataset method FieldValues
instead of FieldByName.

TDataSet::FindField
TDataSet See also
Searches for a specified field object in the dataset.
TField* __fastcall FindField(const System::AnsiString FieldName);
Description
Call FindField to determine if a specified field component exists in a dataset. FieldName is the
name of the field for which to search. If FindField finds a field with a matching name, it returns
the TField component for the specified field. Otherwise it returns NULL.
FindField is a useful function to call prior to calling other dataset methods, such as
FieldByName, that require a valid field name as a parameter.

TDataSet::FindFirst
TDataSet See also
Positions the cursor on the first record in a filtered dataset.
bool __fastcall FindFirst(void);
Description
Call FindFirst to refetch the records in a filtered dataset and position the cursor on the first record
in the set. FindFirst posts any changes to the current record, updates the cursor position,
reapplies the filter condition to the dataset, and positions the cursor on the first record in the
filtered set.
If successful, FindFirst returns true, and the cursor is positioned on the first record. If a record is
not found, FindFirst returns false, and cursor position is unchanged.
Note
Call FindFirst, rather than First, to reapply a filter to the dataset before repositioning the cursor.
FindFirst guarantees that any records that did not originally meet the filter criteria, but which may
have subsequently been changed to meet them by other applications are now visible to this
application.

TDataSet::FindLast
TDataSet See also
Positions the cursor on the last record in a filtered dataset.
bool __fastcall FindLast(void);
Description
Call FindLast to refetch the records in a filtered dataset and position the cursor on the last record
in the set. FindLast posts any changes to the current record, updates the cursor position,
reapplies the filter condition to the dataset, and positions the cursor on the last record in the
filtered set.
If successful, FindLast returns true, and the cursor is positioned on the last record. If a record is
not found, FindLast returns false, and cursor position is unchanged.
Note
Call FindLast, rather than Last, to reapply a filter to the dataset before repositioning the cursor.
FindLast guarantees that any records that did not originally meet the filter criteria, but which may
have subsequently been changed to meet them by other applications are now visible to this
application.

TDataSet::FindNext
TDataSet See also
Positions the cursor on the next record in a filtered dataset.
bool __fastcall FindNext(void);
Description
Call FindNext to refetch the records in a filtered dataset and position the cursor on the next
record in the set. FindNext posts any changes to the current record, updates the cursor position,
reapplies the filter condition to the dataset, and positions the cursor on the next record in the
filtered set.
If successful, FindNext returns true, and the cursor is positioned on the next record. If a record is
not found, FindNext returns false, and cursor position is unchanged.
Note
Call FindNext, rather than Next, to reapply a filter to the dataset before repositioning the cursor.
FindNext guarantees that any records that did not originally meet the filter criteria, but which may
have subsequently been changed to meet them by other applications are now visible to this
application.

TDataSet::FindPrior
TDataSet See also
Positions the cursor on the previous record in a filtered dataset.
bool __fastcall FindPrior(void);
Description
Call FindPrior to refetch the records in a filtered dataset and position the cursor on the previous
record in the set. FindPrior posts any changes to the current record, updates the cursor position,
reapplies the filter condition to the dataset, and positions the cursor on the previous record in the
filtered set.
If successful, FindPrior returns true, and the cursor is positioned on the previous record. If a
record is not found, FindPrior returns false, and cursor position is unchanged.
Note
Call FindPrior, rather than Prior, to reapply a filter to the dataset before repositioning the cursor.
FindPrior guarantees that any records that did not originally meet the filter criteria, but which
may have subsequently been changed to meet them by other applications are now visible to this
application.

TDataSet::First
TDataSet See also
Positions the cursor on the first record in the dataset.
void __fastcall First(void);
Description
Call First to position the cursor on the first record in the dataset and make it the current record.
First posts any changes to the current record and:
• Clears the record buffers.
• Sets the cursor to the beginning of the dataset file.
• Fetches the first record, positions the cursor on it, and makes it the current record.
• Fetches any additional records required for display, such as those needed to fill out a grid

control.
• Sets the Bof property to true.
• Triggers an event handler for dataset change events.

TDataSet::FreeBookmark
TDataSet See also
Frees the resources allocated for a specified bookmark.
void __fastcall FreeBookmark(void * Bookmark);
Description
Call FreeBookmark to:
Free an existing bookmark before reassigning it.
Release the memory allocated for a specified bookmark when the bookmark is no longer
needed.

TDataSet::GetBookmark
TDataSet See also
Allocates a bookmark for the current cursor position in the dataset.
void * __fastcall GetBookmark(void);
Description
Call GetBookmark to establish a bookmark for the current record in the dataset. Establishing a
bookmark for a record enables an application to return to that record in the dataset at any time
while the bookmark exists.
GetBookmark requires that a variable of type TBookmark already be declared in an application.
Use GetBookmark to assign the variable a value that can be referenced by subsequent calls to
GotoBookmark and FreeBookmark.

TDataSet::GetCurrentRecord
TDataSet See also
Retrieves the current record into a buffer.
bool __fastcall GetCurrentRecord(char * Buffer);
Description
Most applications should not need to call GetCurrentRecord. TDataSet automatically allocates a
buffer for the active record. Borland C++Builder uses GetCurrentRecord only when allocating a
record buffer for a TBlobStream object that represents a blob field.
Call GetCurrentRecord to copy the current record into a buffer allocated by the application.
Buffer must be at least as big as the record size indicated by the RecordSize property.

TDataSet::GetFieldList
TDataSet See also
Retrieves a specified set of field objects into a list.
void __fastcall GetFieldList(Classes::TList* List, const System::
AnsiString FieldNames);

Description
Call GetFieldList to copy a specific set of field objects into a list object created and maintained by
the application.
List is the TList object into which to copy the field objects. FieldNames is a string containing the
name of the fields to copy. Each field name in the string must be separated from other field
names with a semicolon. GetFieldList builds a list that contains only the field objects for which it
finds a matching name in the dataset’s list of field objects.
Note
Applications do not normally have to call GetFieldList to copy field objects. Field objects are
directly accessible through the dataset itself. In some cases, however, it can be useful to work
with a copy of a field object or its data instead of working on the actual object in the dataset. In
these cases, GetFieldList is useful.

TDataSet::GetFieldNames
TDataSet See also
Retrieves a list of names for all fields in a dataset.
void __fastcall GetFieldNames(Classes::TStrings* List);
Description
Call GetFieldNames to get a list of names for all fields in a dataset. List is a TStrings object
created and maintained by the application.
Retrieving a list of field names is especially useful for applications that work with datasets whose
field objects are created dynamically at runtime. By retrieving a list of field names, the application
can be restricted to working only with fields that exist at runtime.

TDataSet::GotoBookmark
TDataSet See also
Positions the cursor on the record pointed to by a specified bookmark.
void __fastcall GotoBookmark(void * Bookmark);
Description
Call GotoBookmark to position the cursor on the record pointed to by a specified bookmark that
was originally set by GetBookmark. Bookmark indicates the bookmark to use for positioning the
cursor.

TDataSet::Insert
TDataSet See also
Inserts a new, empty record in the dataset.
void __fastcall Insert(void);
Description
Call Insert to:
1 Open a new, empty record in the dataset.
2 Set the current record to the new record.
After a call to Insert, an application can enable users to enter data in the fields of the record, and
can then post those changes to the database using Post (or ApplyUpdates if cached updating is
enabled). A newly inserted record is posted to the database in one of three ways:
• For indexed Paradox and dBASE tables, the record is inserted into the dataset in a position

based on its index.
• For unindexed Paradox and dBASE tables, the record is inserted into the dataset at the

current cursor position.
• For SQL databases, the physical location of the append is implementation-specific. For

indexed tables, the index is updated with the new record information.

TDataSet::InsertRecord
TDataSet See also
Inserts a new, populated record to the dataset and posts it to the database.
void __fastcall InsertRecord(const System::TVarRec *Values, const int
Values_Size);

Description
Call InsertRecord to create a new, empty record at in the dataset, populate it with the field
values in Values, and post the values to the database. A newly inserted record is posted to the
database in one of three ways:
• For indexed Paradox and dBASE tables, the record is inserted into the dataset in a position

based on its index.
• For unindexed Paradox and dBASE tables, the record is inserted into the dataset at the

current cursor position.
• For SQL databases, the physical location of the insert is implementation-specific. For indexed

tables, the index is updated with the new record information.
The newly inserted record becomes the current record.

TDataSet::IsLinkedTo
TDataSet See also
Checks that a dataset is linked to a specified data source.
bool __fastcall IsLinkedTo(TDataSource* DataSource);
Description
Call IsLinkedTo to verify that a dataset is linked to a specific data source. DataSource is the
name of the data source to which the dataset should be linked.
If the dataset already uses the specified data source, IsLinkedTo returns true. If the dataset does
not use the specified data source, but the data source exists, then IsLinkedTo sets the
DataSource property of the dataset component to the one specified in the DataSource
parameter, and returns true.
If the dataset does not use the specified data source, and the data source does not already have
a dataset of its own, IsLinkedTo returns false.

TDataSet::Last
TDataSet See also
Positions the cursor on the last record in the dataset.
void __fastcall Last(void);
Description
Call Last to position the cursor on the last record in the dataset and make it the current record.
Last posts any changes to the current record and:
• Clears the record buffers.
• Sets the cursor to the end of the dataset file.
• Fetches the last record, positions the cursor on it, and makes it the current record.
• Fetches any additional records required for display, such as those needed to fill out a grid

control.
• Sets the Eof property to true.
• Triggers an event handler for dataset change events.

TDataSet::Locate
TDataSet See also
Searches the dataset for a specified record and makes that record the current record.
bool __fastcall Locate(const System::AnsiString KeyFields, const
System::Variant &KeyValues, TLocateOptions Options);

Description
Call Locate to search a dataset for a specific record and position the cursor on it. KeyFields is a
string containing a semicolon-delimited list of field names on which to search.
KeyValues is a variant array containing the values to match in the key fields. To specify multiple
search values, pass KeyValues as a variant array as an argument, or construct a variant array
on the fly using the VarArrayOf routine.
Options is a set that optionally specifies additional search latitude when searching on string
fields. If Options contains the loCaseInsensitive setting, then Locate ignores case when
matching fields. If Options contains the loPartialKey setting, then Locate finds the first record that
fulfills at least some initial part of the KeyValues criteria for record matching. If Options is an
empty set, or if the KeyFields are not string fields, Options is ignored.
Locate returns true if it finds a matching record, and makes that record the current one.
Otherwise Locate returns false.
Locate uses the fastest possible method to locate matching records. If the search fields in
KeyFields are indexed and the index is compatible with the specified search options, Locate
uses the index. Otherwise Locate creates a filter for the search.

TDataSet::Lookup
TDataSet See also
Retrieves field values from a record that matches specified search values.
System::Variant __fastcall Lookup(const System::AnsiString KeyFields,
const System::Variant &KeyValues, const System::AnsiString
ResultFields);

Description
Call Lookup to retrieve values for specified fields from a record that matches search criteria.
KeyFields is a string containing a semicolon-delimited list of field names on which to search.
KeyValues is a variant array containing the values to match in the key fields. To specify multiple
search values, pass KeyValues as a variant array as an argument, or construct a variant array
on the fly using the VarArrayOf routine.
ResultFields is a string containing a semicolon-delimited list of field names whose values should
be returned from the matching record.
Lookup returns a variant array containing the values from the fields specified in ResultFields.
Lookup uses the fastest possible method to locate matching records. If the search fields in
KeyFields are indexed, Lookup uses the index. Otherwise Lookup creates a filter for the search.

TDataSet::MoveBy
TDataSet See also
Positions the cursor on a record relative to the current record in the dataset.
int __fastcall MoveBy(int Distance);
Description
Call MoveBy to position the cursor on a record relative to the current record in the dataset.
Distance indicates the number of records to move. A positive value for Distance indicates
forward progress through the dataset, while a negative value indicates backward progress. For
example, the following statement moves backward through the dataset by 10 records:
MoveBy(-10);
MoveBy posts any changes to the current record and:
• Sets the Bof and Eof properties to false.
• If Distance is positive, repeatedly fetches subsequent records, if possible, decrementing

Distance until it is zero, positions the cursor on the last record fetched, and makes it the
current record. If an attempt is made to move past the end of the file, MoveBy sets Eof to true.

• If Distance is negative, repeatedly fetches previous records, if possible, incrementing Distance
until it is zero, positions the cursor on the last record fetched, and makes it the current record.
If an attempt is made to move past the start of the file, MoveBy sets Bof to true.

• Triggers an event handler for dataset scrolling events.
• Returns the actual number of records moved. In most cases, Result is the absolute value of

Distance, but if MoveBy encounters the beginning-of-file or end-of-file before moving Distance
records, Result will be less than the absolute value of Distance.

TDataSet::Next
TDataSet See also
Positions the cursor on the next record in the dataset.
void __fastcall Next(void);
Description
Call Next to position the cursor on the next record in the dataset and make it the current record.
Next posts any changes to the current record and:
• Sets the Bof and Eof properties to false.
• Fetches the next record if possible, positions the cursor on it, and makes it the current record.
• Sets the Eof property to true if the cursor was already on the last record in the dataset.
• Triggers an event handler for dataset scrolling events.

TDataSet::Open
TDataSet See also
Opens the dataset.
void __fastcall Open(void);
Description
Call Open to set the Active property for the dataset to true. When Active is true, data can be read
from and written to the database.
Setting Active to true:
• Triggers the BeforeOpen event handler if one is defined for the dataset.
• Sets the dataset state to dsBrowse.
• Opens a Borland Database Engine (BDE) cursor into the dataset.
• Triggers the After Open event handler if one is defined for the dataset.
If an error occurs during the dataset open, dataset state is set to dsInactive, and the cursor is
closed.

TDataSet::Post
TDataSet See also
Writes a modified record to the database or cached update buffer.
void __fastcall Post(void);
Description
Call Post to write a modified record to the database or cached update buffer. Dataset methods
that change the dataset state, such as Edit, Insert, or Append, or that move from one record to
another, such as First, Last, Next, and Prior automatically call Post.
Post calls UpdateRecord to trigger a record update data event or raise an exception if the
dataset is not in a state that permits modification. If the State property for the dataset is dsEdit or
dsInsert, Post also performs the following actions:
• Triggers a check browse mode data event.
• Verifies that all required fields for the record contain values.
• Calls the BeforePost event handler.
• Posts the record to the database or cache.
• Frees the buffers allocated to the fields for the record.
• Sets the State property to dsBrowse.
• Calls Resync to fetch the current record and any other records needed for display purposes.
• Calls the AfterPost event handler.
If State is dsSetKey, Post cleans up the key buffers and puts the dataset into dsBrowse state.

TDataSet::Prior
TDataSet See also
Positions the cursor on the previous record in the dataset.
void __fastcall Prior(void);
Description
Call Prior to position the cursor on the previous record in the dataset and make it the current
record. Prior posts any changes to the current record and:
• Sets the Bof and Eof properties to false.
• Fetches the previous record if possible, positions the cursor on it, and makes it the current

record.
• Sets the Bof property to true if the cursor was already on the first record in the dataset.
• Triggers an event handler for dataset scrolling events.

TDataSet::Refresh
TDataSet See also
Refetches data from the database to update a dataset’s view of data.
void __fastcall Refresh(void);
Description
Call Refresh to ensure that an application has the latest data from a database. For example,
when an application turns off filtering for a dataset, it immediately call Refresh to display all
records in the dataset, not just those that used to meet the filter condition.
Refresh performs the following actions:
• Calls CheckBrowseMode to post any pending changes.
• Calls UpdateCursorPos to update the cursor position in the dataset.
• Calls the Borland Database Engine (BDE) to enable rereading of data.
• Calls Resync to fetch the current record and any other records necessary for display.

TDataSet::Resync
TDataSet See also
Refetches the current record and the records that precede and follow it.
void __fastcall Resync(TResyncMode Mode);
Description
Resync is an internal routine used by other dataset methods to fetch records following
operations that change the type of records visible in a dataset, such as turning filtering on or off.
An application can also call Resync at any time to be sure it has the latest view on data in the
database.
Mode indicates optional processing that Resync should handle.
If Mode contains rmExact, Resync sets the current record number to -1 and refetches the current
record. Otherwise Resync attempts to fetch the current record, and a record that precedes and
follows the current record. If these operations fail, Resync clears the record buffers, executes a
data change event, and exits.
If Mode contains rmCenter, Resync attempts to determine how many prior and subsequent
records to fetch based on the total number of records in the dataset.
Regardless of Mode, Resync also activates the buffers for the current record, retrieves prior and
subsequent records for display purposes, and triggers a dataset change event.

TDataSet::RevertRecord
TDataSet See also
Restores the current record in the dataset to an unmodified state when cached updates are
enabled.
void __fastcall RevertRecord(void);
Description
Call RevertRecord to undo changes made to the current record when cached updates are
enabled.
Note
To undo all changes to all pending updates in the cache, call CancelUpdates.

TDataSet::SetDetailFields
TDataSet See also
Sets the detail fields for a master-detail relationship.
void __fastcall SetDetailFields(Classes::TList* MasterFields);
Description
Use SetDetailFields to assign fields for a master-detail relationship. MasterFields is a TList
object created and maintained by the application. Each list item must be an existing TField
object.

TDataSet::SetFields
TDataSet See also
Sets the values for all fields in a record
void __fastcall SetFields(const System::TVarRec *Values, const int
Values_Size);

Description
Call SetFields to set values for some or all fields in the current record at the same time.
Values contains the values to insert into each field. Values are assigned to the record based on
the order of columns in the table or tables underlying the dataset. These values can be literals,
variables, NULL, or NULL. If Values contains fewer values than there are fields in the record, all
records for which values are not provided are assigned a NULL value. A NULL value overwrites
any existing value in such fields.
Before calling SetFields, call Edit to put the dataset into dsEdit state. After calling SetFields, call
Post to write the changes to the database.
Note
To set values for some fields while retaining existing values for others, pass NULL for each field
that should not change.

TDataSet::TDataSet
TDataSet See also
Creates an instance of a TDataSet component.
__fastcall virtual TDataSet(Classes::TComponent* AOwner);
Description
Call TDataSet to instantiate a dataset component at runtime. Ordinarily applications instantiate
dataset descendants, such as TTable, TQuery, or TStoredProc, rather than TDataSet, and these
instantiated objects are automatically handled by Borland C++Builder.
On the other hand, applications that create specialized dataset components, such as custom
components that bypass the Borland Database Engine (BDE) may need to instantiate a
TDataSet component by calling TDataSet. TDataSet
• Creates empty field definitions for the dataset.
• Creates an empty list of fields for the dataset.
• Creates an empty list of data sources for the dataset.
• Set the AutoCalcFields property to true.
• Sets the Locale property to the locale of the database.

TDataSet::UpdateCursorPos
TDataSet See also
Positions the cursor on the current record.
void __fastcall UpdateCursorPos(void);
Description
UpdateCursorPos is an internal routine used by many dataset methods to ensure that the cursor
is positioned on the current record. Normally an application should not need to call
UpdateCursorPos. Typically UpdateCursorPos is called whenever the current record might
change as a result of moving to a different record, posting changes, or enabling or disabling
filtering.

TDataSet::UpdateRecord
TDataSet See also
Triggers a data event for a record update.
void __fastcall UpdateRecord(void);
Description
UpdateRecord is an internal routine used by some dataset methods to trigger an
OnUpdateRecord event if cached updates are enabled. Applications should not need to call
UpdateRecord directly unless they provide custom dataset methods that bypass dataset
methods.

TDataSet::UpdateStatus
TDataSet See also
Reports the current update status for the dataset.
TUpdateStatus __fastcall UpdateStatus(void);
Description
Call UpdateStatus to determine the current update status for the dataset when cached updates
are enabled. Update status can change frequently as records are edited, inserted, or deleted.
UpdateStatus offers a convenient method for applications to assess the current status before
undertaking or completing operations that depend on the update status of the dataset.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent

TDataSet example
TDataSet

TDataSource
Hierarchy Properties Methods Events See also
TDataSource provides an interface between a dataset component and data-aware controls on a
form.
Header
vcl/db.hpp
Description
Use TDataSource to provide a conduit between a dataset and data-aware controls on a form
that enable display, navigation, and editing of the data underlying the dataset.
All datasets must be associated with a data source component if their data is to be displayed
and manipulated in data-aware controls. Similarly, each data-aware control needs to be
associated with a data source component in order for the control to receive and manipulate data.
Data source components also link datasets in master-detail relationships.

TDataSource properties
TDataSource Alphabetically Legend

In TDataSource
AutoEdit
DataSet
Enabled

State
Derived from TComponent

ComponentCount
ComponentIndex

Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TDataSource properties
TDataSource By object Legend

AutoEdit
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DesignInfo
Enabled
Name

Owner
State

Tag

TDataSource::AutoEdit
TDataSource See also
Determines if a data source component automatically calls a dataset’s Edit method when a
data-aware control associated with the data source receives focus.
__property bool AutoEdit;
Description
AutoEdit is true by default. If AutoEdit is true, then when a user attempts to modify the data
displayed by the control the underlying dataset’s Edit method is called.
Set AutoEdit to false to protect data from unintentional modification. Even if AutoEdit is false, an
application can call a dataset’s Edit method directly to permit data modification.

TDataSource::DataSet
TDataSource See also
Specifies the dataset for which the data source component serves as a conduit to data-aware
controls.
__property TDataSet* DataSet;
Description
Set DataSet to the name of an existing dataset component either at design time, or at runtime.
By changing the value of DataSet at runtime an application can effectively use the same data-
aware controls to display and edit data in different data sets.
Note
To link a dataset that resides in a data module to a form at design-time, choose File | Use unit.

TDataSource::Enabled
TDataSource See also Example
Determines if the data-aware controls associated with the data source component display data.
__property bool Enabled;
Description
Use Enabled to control whether data-aware controls connected to a data source display data. If
Enabled is true (the default), data are displayed. If Enabled is false, all controls associated with
the data source are blank.
Note
While an application can set Enabled to false to blank out data-aware controls during processing
of multiple records, a better choice is to use the TDataSet EnableControls and DisableControls
methods. Using these methods prevents the controls from blanking out during processing.

TDataSource::State
TDataSource See also Example
Reads the current state of the dataset component associated with a data source component.
__property TDataSetState State;
Description
Examine State to determine the current state of the dataset associated with a data source
component. The state of a dataset indicates the action, if any, taking place against the dataset.
The following table summarizes possible values for State:
State Meaning

dsInactive Dataset is closed, DataSet property is unassigned, or Enabled property is
false.

dsBrowse Dataset is open for viewing. This is the default state for a dataset.
dsEdit Dataset is open. The current record can be modified.
dsInsert Dataset is open. A new record is being inserted.
dsSetKey Dataset is open. Searching for records based on indexed fields is

enabled, or a SetRange operation is in progress. In either case a
restricted set of data can be viewed. No data can be modified.

dsCalcFields Dataset is open, and an OnCalcFields event is in progress. Fields that are
not calculated cannot be modified.

dsFilter Dataset is open, and a filter operation is in progress. A restricted set of
data can be viewed. No data can be modified.

These values correspond to the values for a dataset’s State property and are identical to them
except that when Enabled is false or DataSet is unassigned, State is dsInactive regardless of the
actual state of the dataset.

TDataSource events
TDataSource Alphabetically Legend

In TDataSource
OnDataChange
OnStateChange
OnUpdateData

TDataSource events
TDataSource By object Legend

OnDataChange
OnStateChange
OnUpdateData

TDataSource::OnDataChange
TDataSource See also
OnDataChange occurs when the current record has been edited and the application moves from
one field or record to another in a dataset associated with the data source component.
typedef void __fastcall (__closure *TDataChangeEvent)(System::TObject*
Sender, TField* Field);

__property TDataChangeEvent OnDataChange;
Description
Write an OnDataChange event handler to take specific actions when a field in the current record
has been edited and an application moves from one field or record to another in a dataset
associated with a data source component. For example, methods that can trigger this event
include the Next or Prior methods for the dataset.
Data-aware controls notify a data source of a data change because of:
• Scrolling to a new record.
• Modifications to a field’s data.
The Field parameter is NULL if more than one of the fields changed simultaneously, such as
when moving from one record to another. Otherwise, Field indicates the edited field.
OnDataChange is especially useful in applications that must synchronize data display in controls
that are not data aware.

TDataSource::OnStateChange
TDataSource See also
OnStateChange occurs when the state of a data source component’s dataset changes.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnStateChange;
Description
Write an OnStateChange event handler to take specific actions when the State property changes
for a dataset associated with a data source component.
During the course of a normal connection to a database, a dataset’s state changes frequently.
For example, each time a user starts editing a field in a data-aware control the dataset’s State
property is changed from dsBrowse to dsEdit if the State is not already dsEdit. An
OnStateChange event handler might respond to changes in state by taking actions such as
disabling or enabling menu items or buttons.

TDataSource::OnUpdateData
TDataSource See also
OnUpdateData occurs when the data in the current record is about to be updated.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnUpdateData;
Description
Write an OnUpdateData event handler to take specific actions prior to posting data changes to
the database. If an application posts changes to the database and an OnUpdateData event
handler exists, the handler is called before the dataset’s Post method is executed. An
OnUpdateData event handler might be useful for performing additional data processing or
validation before posting.

TDataSource methods
TDataSource Alphabetically

In TDataSource
~TDataSource
Edit
IsLinkedTo
TDataSource

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDataSource methods
TDataSource By object

~TDataSource
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
Dispatch
Edit
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsLinkedTo
MethodAddress
MethodName
NewInstance
RemoveComponent
TDataSource

TDataSource::~TDataSource
TDataSource See also
~TDataSource frees the memory associated with the TDataSource object. Do not call ~
TDataSource directly. Instead, use the delete keyword on the object, which causes ~
TDataSource to be invoked automatically.
__fastcall virtual ~TDataSource(void);
Description
~TDataSource sets OnStateChange to NULL, sets the data set for the component to NULL, and
frees the data link list before calling the inherited destructor for the component.

TDataSource::Edit
TDataSource See also
Determines whether or not to call the Edit method for a dataset associated with a data source
component.
void __fastcall Edit(void);
Description
Call Edit to enable a data source component to control a user’s ability to edit a dataset
associated with the data source. Edit checks that the AutoEdit property of the data source is true
and that its State property is dsBrowse before calling the dataset’s Edit method. Checking
these properties before calling the dataset’s Edit method ensures that the dataset is in a state
that supports editing, and that the data source allows editing as well.

TDataSource::IsLinkedTo
TDataSource See also
Checks that a data source is linked to a specified dataset.
bool __fastcall IsLinkedTo(TDataSet* DataSet);
Description
Call IsLinkedTo to verify that a data source is linked to a specific dataset. DataSet is the name of
the dataset to which the data source should be linked.
If the data source already uses the specified dataset, IsLinkedTo returns true. If the data source
does not use the specified dataset, but the dataset exists, then IsLinkedTo sets the DataSet
property of the data source component to the one specified in the DataSet parameter, and
returns true.
If the data source does not use the specified dataset, and the dataset does not already have a
data source of its own, IsLinkedTo returns false.
Note
IsLinkedTo is a low-level method mainly of interest to component developers who need to detect
circular data references. Otherwise IsLinkedTo should not be called directly.

TDataSource::TDataSource
TDataSource See also
Creates an instance of a TDataSource component.
__fastcall virtual TDataSource(Classes::TComponent* AOwner);
Description
Call TDataSource to instantiate a TDataSource component at runtime. For a data source
component added to a data module at design time Borland C++Builder automatically inserts a
call to TDataSource.
TDataSource instantiates a data link list, and sets the Enabled and AutoEdit properties of the
component to true.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent

TDataSource example
TDataSource

TDateField
Hierarchy Properties Methods Events See also
A TDateField object represents a date field in a dataset.
Header
vcl/dbtables.hpp
Description
Date fields contain date values.
TDateField differs from its immediate ancestor TDateTimeField only in having a DataType of
ftDate. While the underlying physical format for a date field in a database differs from that of a
date-time field, TDateField uses a TDateTime value to store and manipulate date values.
As a descendant of TDateTimeField, TDateField includes many properties, methods, and events
that are useful for managing the value and properties of a temporal field in a database.

TDateField properties
TDateField Alphabetically Legend

Derived from TDateTimeField
DisplayFormat
Value

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TDateField properties
TDateField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayFormat
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditMaskPtr

EditMask
FieldKind

FieldName
FieldNo

Index
IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Value
Visible

TDateField events
TDateField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TDateField events
TDateField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TDateField methods
TDateField Alphabetically

In TDateField
~TDateField
TDateField

Derived from TField
Assign
AssignValue
Clear
FocusControl
GetData
IsValidChar
SetData
SetFieldType

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDateField methods
TDateField By object

~TDateField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TDateField

TDateField::~TDateField
TDateField
~TDateField frees the memory associated with the TDateField object. Do not call ~TDateField
directly. Instead, use the delete keyword on the object, which causes ~TDateField to be invoked
automatically.
__fastcall virtual ~TDateField(void);

TDateField::TDateField
TDateField
TDateField creates an instance of TDateField.

__fastcall virtual TDateField(Classes::TComponent* AOwner);

Call TDateField to create and initialize an instance of TDateField. After calling the inherited
constructor, TDateField sets the DataType to ftDate.
It is seldom necessary to call TDateField directly because a date field object is instantiated
automatically for all date fields in a dataset.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField
TDateTimeField

TDateField example
TDateField

TDateTimeField
Hierarchy Properties Methods Events See also
A TDateTimeField object represents a date-time field in a dataset.
Header
vcl/dbtables.hpp
Description
Date-time fields contain combined date and time information, sometimes called timestamps.
TDateTimeField introduces new properties to convert between date-time values and other data
types, and to format the value of a date-time field for display. As a descendant of TField,
TDateTimeField includes many properties, methods, and events that are useful for managing the
value and properties of a field in a database.
TDateTimeField is also the direct ancestor of two other date-time field types: TDateField and
TTimeField.

TDateTimeField properties
TDateTimeField Alphabetically Legend

In TDateTimeField
DisplayFormat
Value

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TDateTimeField properties
TDateTimeField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayFormat
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditMaskPtr

EditMask
FieldKind

FieldName
FieldNo

Index
IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Value
Visible

TDateTimeField::DisplayFormat
TDateTimeField See also
DisplayFormat contains the string that overrides the automatic formatting of the date-time field
for display purposes.
__property System::AnsiString DisplayFormat;
Description
Use DisplayFormat to specify a formatting string that is used to format the value in a date-time
field when the field’s value appears as a string.
If DisplayFormat is not assigned a string, the value is formatted according to the default specified
by the Windows Control Panel.
Construct a DisplayFormat string using these format specifiers:
Specifier Displays

c The date using the format given by the ShortDateFormat global variable,
followed by the time using the format given by the LongTimeFormat
global variable. The time is not displayed if the fractional part of the
DateTime value is zero.

d The day as a number without a leading zero (1-31).
dd The day as a number with a leading zero (01-31).
ddd The day as an abbreviation (Sun-Sat) using the strings given by the

ShortDayNames global variable.
dddd The day as a full name (Sunday-Saturday) using the strings given by the

LongDayNames global variable.
ddddd The date using the format given by the ShortDateFormat global variable.
dddddd The date using the format given by the LongDateFormat global variable.
m The month as a number without a leading zero (1-12). If the m specifier

immediately follows an h or hh specifier, the minute rather than the month
is displayed.

mm The month as a number with a leading zero (01-12). If the mm specifier
immediately follows an h or hh specifier, the minute rather than the month
is displayed.

mmm The month as an abbreviation (Jan-Dec) using the strings given by the
ShortMonthNames global variable.

mmmm The month as a full name (January-December) using the strings given by
the LongMonthNames global variable.

yy The year as a two-digit number (00-99).
yyyy The year as a four-digit number (0000-9999).
h The hour without a leading zero (0-23).
hh The hour with a leading zero (00-23).
n The minute without a leading zero (0-59).
nn The minute with a leading zero (00-59).
s The second without a leading zero (0-59).
ss The second with a leading zero (00-59).
t The time using the format given by the ShortTimeFormat global variable.
tt The time using the format given by the LongTimeFormat global variable.
am/pm The time using the 12-hour clock for the preceding h or hh specifier,

followed by “am” for any hour before noon, or “pm” for any hour after
noon. The am/pm specifier can use lower, upper, or mixed case, and the
result is displayed accordingly.

a/p The time using the 12-hour clock for the preceding h or hh specifier,
followed by “a” for any hour before noon, or “p” for any hour after
noon. The a/p specifier can use lower, upper, or mixed case, and the
result is displayed accordingly.

ampm The time using the 12-hour clock for the preceding h or hh specifier,
followed by the contents of the TimeAMString global variable for any hour

before noon, or the contents of the TimePMString global variable for any
hour after noon.

/ The date separator character given by the DateSeparator global variable.
: The time separator character given by the TimeSeparator global variable.
'xx'/"xx" Characters enclosed in single or double quotes are displayed as-is, with

no formatting changes.
Format specifiers may be written in uppercase or lowercase letters; both produce the same
result.
If the string given by the Format parameter is empty, the date and time value is formatted as if a
c format specifier had been given.

TDateTimeField::Value
TDateTimeField See also
Value is the value of the data in the date-time field.
__property System::TDateTime Value;
Description
Use Value to read data directly from and write data directly to a date-time field component at
runtime. TDateTimeField components store and manipulate their data as TDateTime values.
Thus, for date-time fields, the Value property is the same as the AsDateTime property.

TDateTimeField events
TDateTimeField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TDateTimeField events
TDateTimeField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TDateTimeField methods
TDateTimeField Alphabetically

In TDateTimeField
~TDateTimeField
TDateTimeField

Derived from TField
Assign
AssignValue
Clear
FocusControl
GetData
IsValidChar
SetData
SetFieldType

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDateTimeField methods
TDateTimeField By object

~TDateTimeField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TDateTimeField

TDateTimeField::~TDateTimeField
TDateTimeField
~TDateTimeField frees the memory associated with the TDateTimeField object. Do not call ~
TDateTimeField directly. Instead, use the delete keyword on the object, which causes ~
TDateTimeField to be invoked automatically.
__fastcall virtual ~TDateTimeField(void);

TDateTimeField::TDateTimeField
TDateTimeField See also
TDateTimeField instantiates a TDateTimeField object.
__fastcall virtual TDateTimeField(Classes::TComponent* AOwner);
Description
Call TDateTimeField to create and initialize an instance of TDateTimeField. After calling the
inherited constructor, TDateTimeField sets the DataType to ftDateTime.
It is seldom necessary to call TDateTimeField directly, because a date-time field object is
instantiated automatically for all date-time fields in a dataset.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField

TDateTimeField example
TDateTimeField

TDataSourceLink
Hierarchy Properties Methods See also
TDataSourceLink is a helper object that helps manage the link to the data source for a
TDBLookupControl object.
Header
vcl/dbctrls.hpp
Description
TDataSourceLink is tailored to work with TDBLookupControl. It should only be used by the
TDBLookupControl class.

TDataSourceLink properties
TDataSourceLink Alphabetically Legend

Derived from TDataLink
Active

ActiveRecord
BufferCount

DataSet
DataSource
DataSourceFixed

Editing
ReadOnly

RecordCount

TDataSourceLink properties
TDataSourceLink By object Legend

ActiveRecord
Active

BufferCount
DataSet

DataSourceFixed
DataSource

Editing
ReadOnly

RecordCount

TDataSourceLink methods
TDataSourceLink Alphabetically Legend

In TDataSourceLink
~TDataSourceLink

ActiveChanged
RecordChanged
TDataSourceLink

Derived from TDataLink
Edit
UpdateRecord

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDataSourceLink methods
TDataSourceLink By object Legend

~TDataSourceLink
ActiveChanged
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
Edit
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance

InstanceSize
MethodAddress
MethodName
NewInstance

RecordChanged
TDataSourceLink
UpdateRecord

TDataSourceLink::~TDataSourceLink
TDataSourceLink
~TDataSourceLink frees the memory associated with the TDataSourceLink object. Do not call ~
TDataSourceLink directly. Instead, use the delete keyword on the object, which causes ~
TDataSourceLink to be invoked automatically.
__fastcall virtual ~TDataSourceLink(void);

TDataSourceLink::ActiveChanged
TDataSourceLink See also
ActiveChanged informs the TDBLookupControl of changes in the Active property of its
DataSource.
virtual void __fastcall ActiveChanged(void);
Description
Applications can not call the ActiveChanged procedure directly. Changes in the Active property
trigger this procedure, which in turn calls the DataLinkActiveChanged method of the
TDBLookupControl object that owns this TDataSourceLink.

TDataSourceLink::RecordChanged
TDataSourceLink See also
RecordChanged informs the TDBLookupControl of changes in the current record or field of the
DataSource.
virtual void __fastcall RecordChanged(Db::TField* Field);
Description
Applications can not call RecordChanged directly. It is triggered automatically after changes in
the contents of the current record. RecordChanged calls the DataLinkRecordChanged method of
the TDBLookupContol object that owns this TDataSourceLink.

TDataSourceLink::TDataSourceLink
TDataSourceLink
TDataSourceLink creates a new TDataSourceLink object.
__fastcall TDataSourceLink(void);

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TDataLink

TDataSourceLink example
TDataSourceLink

TDBCheckBox
Hierarchy Properties Methods Events See also
A TDBCheckBox control is a data aware control that the user can select or deselect.
Header
vcl/dbctrls.hpp
Description
A check box presents an option to the user; the user can check it to select the option, or uncheck
it to deselect the option. A database check box (TDBCheckBox) is much like an ordinary check
box (TCheckBox), except that it is aware of the data in a particular field of a dataset.
You can link a database check box with a dataset by specifying the data source component
(TDataSource) that identifies the dataset as the value of the check box’s DataSource property.
Specify the field in the dataset you want to access as the value of the check box’s DataField
property.
If the contents of a field in the current record of the dataset equals the string of the
ValueChecked property, the database check box is checked. If the contents matches the string
specified as the value of the ValueUnchecked property, the check box is unchecked.
When the user checks or unchecks a database check box, the string specified as the value of
the ValueChecked or ValueUnchecked property becomes the value of the field in the dataset, as
long as the value of the ReadOnly property is false and the dataset is in edit mode. If you want
the user to be able to view the data in the field but not modify it, set ReadOnly to true.
If your application doesn’t require the data-aware capabilities of TDBCheckBox, use the check
box (TCheckBox) component instead to conserve system resources.

TDBCheckBox properties
TDBCheckBox Alphabetically Legend

In TDBCheckBox
DataField
DataSource

Field
ReadOnly
ValueChecked
ValueUnchecked

Derived from TCustomCheckBox
Alignment
AllowGrayed
Checked
State

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect

Caption
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo

Owner
Tag

TDBCheckBox properties
TDBCheckBox By object Legend

Alignment
Align
AllowGrayed
BoundsRect

Brush
Caption
Checked
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DataField
DataSource
DesignInfo
DragCursor
DragMode
Enabled

Field
Font

Handle
Height
HelpContext
Hint
Left
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu
ReadOnly
ShowHint

Showing
State
TabOrder
TabStop
Tag
Top
ValueChecked
ValueUnchecked
Visible
Width

TDBCheckBox::DataField
TDBCheckBox See also
Identifies the field from which the data-aware control displays data.
__property System::AnsiString DataField;
Description
The dataset the field is located in is specified in a data source component (TDataSource). The
DataSource property of the data-aware control specifies which data source component.

TDBCheckBox::DataSource
TDBCheckBox See also
Determines where the control obtains the data to display.
__property Db::TDataSource* DataSource;
Description
Specify the data source component that identifies the dataset the data is found in.

TDBCheckBox::Field
TDBCheckBox See also
Returns the TField object the data-aware control is linked to.
__property Db::TField* Field;
Description
Use the Field object when you want to change the value of the data in the field
programmatically.

TDBCheckBox::ReadOnly
TDBCheckBox See also
Determines if the user can change the contents of the control.
__property bool ReadOnly;
Description
The ReadOnly property determines if the user can change the contents of the control. If
ReadOnly is true, the user can't change the contents. If ReadOnly is false, the user can modify
the contents. The default value is false.
The ReadOnly property determines whether the user can use the data-aware control to change
the value of the field of the current record, or if the user can use the control only to display data.
If ReadOnly is false, the user can change the field's value as long as the dataset is in edit mode.

TDBCheckBox::ValueChecked
TDBCheckBox See also
The ValueChecked property causes the check box to be checked if ValueChecked contains data
that matches its field’s data.
__property System::AnsiString ValueChecked;
Description
If the value of the ValueChecked property is equal to the data in the field of the current record of
the dataset, the database check box is checked.
You also can enter a semicolon-delimited list of items as the value of ValueChecked. If any of
the items matches the contents of the field of the current record in the dataset, the check box is
checked. For example, you can specify a ValueChecked string like this:
DBCheckBox1->ValueChecked = "True;Yes;On";
If the string true, Yes, or On is the contents of the field specified as the database check box's
DataField, the check box is checked. The case of the specified strings is not checked.
If the contents of the field of the current record matches a string specified as the value of the
ValueUnchecked property, the check box is unchecked. If the contents of the field matches no
string in either ValueChecked or ValueUnchecked, the check box appears gray.
If the DataField of the database check box is a logical field, the check box is always checked if
the contents of the field is true, and it is always unchecked if the contents of the field is false.
The values of the ValueChecked and ValueUnchecked properties have no affect on logical
fields.
If the user checks a database check box, the string that is the value of the ValueChecked
property is placed in the database field, as long as the ReadOnly property is false. If the value is
a semicolon-delimited list of items, the first item in the list is inserted as the contents of the field
of the current record.
The default value of ValueChecked is the string 'true'.
Example
The following code toggles the value of the ValueChecked property of DBCheckBox1 from 'true'
to 'false' or from 'false' to 'true'.
if ((ValueChecked == "True") || (ValueChecked == "False")
{
if (DBCheckBox1->ValueChecked == "True") dbCheckBox1->ValueChecked =
"False";

else DBCheckBox1->ValueChecked = "True";
}

TDBCheckBox::ValueUnchecked
TDBCheckBox See also
The ValueUnchecked property causes the check box to be unchecked if ValueChecked contains
data that matches its field’s data.
__property System::AnsiString ValueUnchecked;
Description
If the value of the ValueUnchecked property is equal to the data in the field of the current record
of the dataset, the database check box is unchecked.
You also can enter a semicolon-delimited list of items as the value of ValueUnchecked. If any of
the items matches the contents of the field of the current record in the dataset, the check box is
unchecked. For example, you can specify a ValueUnchecked string like this:
DBCheckBox1->ValueUnchecked = "True;Yes;On";
If the string false, No, or Off is the contents of the field specified as the database check box's
DataField, the check box is unchecked.
If the contents of the field of the current record matches a string specified as the value of the
ValueChecked property, the check box is checked. If the contents of the field matches no string
in either ValueChecked or ValueUnchecked, the check box appears gray.
If the DataField of the database check box is a logical field, the check box is always checked if
the contents of the field is true, and it is always unchecked if the contents of the field is false.
The values of the ValueChecked and ValueUnchecked properties have no affect on logical
fields.
If the user checks a database check box, the string that is the value of the ValueUnchecked
property is placed in the database field, as long as the ReadOnly property is false. If the value is
a semicolon-delimited list of items, the first item in the list is inserted as the contents of the field
of the current record.
The default value of ValueUnchecked is the string 'false'.

TDBCheckBox events
TDBCheckBox Alphabetically Legend

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBCheckBox events
TDBCheckBox By object Legend

OnClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBCheckBox methods
TDBCheckBox Alphabetically

In TDBCheckBox
~TDBCheckBox
TDBCheckBox

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBCheckBox methods
TDBCheckBox By object

~TDBCheckBox
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TDBCheckBox
UpdateControlState
Update

TDBCheckBox::~TDBCheckBox
TDBCheckBox See also
~TDBCheckBox frees the memory associated with the TDBCheckBox object. Do not call ~
TDBCheckBox directly. Instead, use the delete keyword on the object, which causes ~
TDBCheckBox to be invoked automatically.
__fastcall virtual ~TDBCheckBox(void);
Description
~TDBCheckBox frees the helper objects of the TDBCheckBox before calling the destructor of its
parent object.

TDBCheckBox::TDBCheckBox
TDBCheckBox See also
TDBCheckBox creates an instance of TDBCheckBox.
__fastcall virtual TDBCheckBox(Classes::TComponent* AOwner);
Description
Call TDBCheckBox to instantiate a TDBCheckBox object at run time. For TDBCheckBox objects
placed on forms or data modules at design time, TDBCheckBox is called automatically.
After calling the constructor of its parent object to allocate and initialize a generic rich edit object,
TDBCheckBox
• Adds csReplicatable to ControlStyle.
• Creates and initializes the helper objects needed to link to a dataset.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TButtonControl
TCustomCheckBox

TDBCheckBox example
TDBCheckBox

TDBComboBox
Hierarchy Properties Methods Events
A TDBComboBox is a data-aware combo box control. It allows the user to change the value of
the field of the current record in a dataset either by selecting an item from a list or by typing in
the edit box part of the control. The selected item or entered text becomes the new value of the
field if the database combo box’s ReadOnly property is false.
Header
vcl/dbctrls.hpp
Description
How a database combo box appears and behaves depends on the value of its Style property.
You can link the database combo box with a dataset by specifying the data source component
(TDataSource) that identifies the dataset as the value of the memo’s DataSource property.
Specify the field in the dataset you want to access as the value of the DataField property.
You specify the values the user can choose from in the combo box with the Items property. For
example, if you want the user to choose from five different values in the combo box list, specify
five strings as the value of Items. Just as with an ordinary combo box, you can add, delete, and
insert items to it using the Add, Delete, and Insert methods of the Items object, which is of type
TStrings.
The ItemIndex property indicates which item in the database combo box is selected.
Sort the items in the list with the Sorted property.
At run time, you can select all the text in the edit box of the database combo box with the
SelectAll method. To find out which text the user selected, or to replace selected text, use the
SelText property. To select only part of the text or to find out what part of the text is selected, use
the SelStart and SelLength properties.

TDBComboBox properties
TDBComboBox Alphabetically Legend

In TDBComboBox
DataField
DataSource

Field
Items
ReadOnly
Style

Derived from TCustomComboBox
Canvas

DropDownCount
DroppedDown
ItemHeight
ItemIndex
SelLength
SelStart
SelText
Sorted

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth

Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name

Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Text
Top
Visible
Width

Derived from TComponent

ComponentCount
ComponentIndex

Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDBComboBox properties
TDBComboBox By object Legend

Align
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DataField
DataSource
DesignInfo
DragCursor
DragMode
DropDownCount
DroppedDown
Enabled

Field
Font

Handle
Height
HelpContext
Hint
ItemHeight
ItemIndex
Items
Left
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu
ReadOnly
SelLength
SelStart
SelText
ShowHint

Showing
Sorted
Style
TabOrder
TabStop
Tag

Text
Top
Visible

Width

TDBComboBox::DataField
TDBComboBox See also
Identifies the field from which the data-aware control displays data.
__property System::AnsiString DataField;
Description
The dataset the field is located in is specified in a data source component (TDataSource). The
DataSource property of the data-aware control specifies which data source component.

TDBComboBox::DataSource
TDBComboBox See also
Determines where the component obtains the data to display.
__property Db::TDataSource* DataSource;
Description
Specify the data source component that identifies the dataset the data is found in.

TDBComboBox::Field
TDBComboBox See also
Returns the TField object the database combo box is linked to.
__property Db::TField* Field;
Description
The Field property returns the TField object the control is linked to. Use the Field object when
you want to change the value of the data in the field programmatically.

TDBComboBox::Items
TDBComboBox See also
Contains the strings that appear in the database combo box.
__property Items;
Description
Because Items is an object of type TStrings, you can add, delete, insert, and move items using
the Add, Delete, Insert, Exchange, and Move methods of the TStrings object.
The ItemIndex property determines which item is selected, if any.
To determine if a particular item in the list of strings that makes up the Items property for a
combo box is selected, use the Selected property.

TDBComboBox::ReadOnly
TDBComboBox See also
Determines if the user can change the contents of the control.
__property bool ReadOnly;
Description
If ReadOnly is true, the user can't change the contents. If ReadOnly is false, the user can modify
the contents.
The ReadOnly property determines whether the user can use the data-aware control to change
the value of the field of the current record, or if the user can use the control only to display data.
If ReadOnly is false, the user can change the field's value as long as the dataset is in edit mode.

TDBComboBox::Style
TDBComboBox See also
Determines how a combo box displays its items.
__property Style;
Description
By default, Style is csDropDown, meaning that the combo box displays each item as a string in a
drop-down list, Items can be graphical of either fixed or varying height. You can set Style to any
of list. By changing the value of Style, you can create owner-draw combo boxes, meaning the
following values:
Value Meaning

csDropDown Creates a drop-down list with an edit box in which the user can enter text.
All items are strings, with each item having the same height.For database
combo boxes, the combo box displays the contents of the field of the
current records. The user can choose another item from the drop-down
list and change the value of the field or type a new value in the edit box.

csSimple Creates an edit box with no list. For database combo boxes, the current
contents of the linked field displays in the combo box. The user can
change the contents of the field by typing in a new value.

csDropDownList Creates a drop-down list with no attached edit box, so the user can't edit
an item or type in a new item. All items are strings, with each item having
the same height.For database combo boxes, the edit box is blank unless
the current contents of the field matches one of the specified Items in the
drop-down list. The user can change the contents of the field only by
selecting one of the strings from the drop-down list.

csOwnerDrawFixed Each item in the combo box is the height specified by the ItemHeight
property.For database combo boxes, the combo box is blank unless the
current contents of the field matches one of the specified Items in the
drop-down list. The user can change the contents of the field only by
selecting one of the strings from the drop-down list.

csOwnerDrawVariable Items in the combo box can be of varying heights.For database combo
boxes, the combo box is blank unless the current contents of the field
matches one of the specified Items in the drop-down list. The user can
change the contents of the field only by selecting one of the strings from
the drop-down list.

Owner-draw combo boxes can display items other than strings. For example, a combo box could
display graphical images along with or instead of its strings. Owner-draw combo boxes require
more programming, however, as the application needs information on how to render the image
for each item in the list.
Each time an item is displayed in an csOwnerDrawFixed combo box, the OnDrawItem event
occurs. The event handler for OnDrawItem draws the specified item. The ItemHeight property
determines the height of all the items.
Each time an item is displayed in an csOwnerDrawVariable combo box, two events occur. The
first is the OnMeasureItem event. The event handler for OnMeasureItem can set the height of
each item. Then the OnDrawItem event occurs. The OnDrawItem handler draws each item in the
list box using the size specified by the OnMeasureItem handler.

TDBComboBox events
TDBComboBox Alphabetically Legend

Derived from TCustomComboBox
OnChange
OnDrawItem
OnDropDown
OnMeasureItem

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnStartDrag

TDBComboBox events
TDBComboBox By object Legend

OnChange
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnDrawItem
OnDropDown
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMeasureItem
OnStartDrag

TDBComboBox methods
TDBComboBox Alphabetically

In TDBComboBox
~TDBComboBox
TDBComboBox

Derived from TCustomComboBox
Clear
SelectAll

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification

GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBComboBox methods
TDBComboBox By object

~TDBComboBox
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo

Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SelectAll
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TDBComboBox
UpdateControlState
Update

TDBComboBox::~TDBComboBox
TDBComboBox See also
~TDBComboBox frees the memory associated with the TDBComboBox object. Do not call ~
TDBComboBox directly. Instead, use the delete keyword on the object, which causes ~
TDBComboBox to be invoked automatically.
__fastcall virtual ~TDBComboBox(void);
Description
~TDBComboBox frees the helper objects of the TDBComboBox before calling the destructor of
its parent object.

TDBComboBox::TDBComboBox
TDBComboBox See also
TDBComboBox creates an instance of TDBComboBox.
__fastcall virtual TDBComboBox(Classes::TComponent* AOwner);
Description
Call TDBComboBox to instantiate a TDBComboBox object at run time. For TDBComboBox
objects placed on forms or data modules at design time, TDBComboBox is called automatically.
After calling the constructor of its parent object to allocate and initialize a generic combo box
object, TDBComboBox creates and initializes the helper objects needed to link to a dataset.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomComboBox

TDBComboBox example
TDBComboBox

TDBCtrlPanel
Hierarchy Properties Methods See also
TDBCtrlPanel is a panel in a TDBCtrlGrid object.
Header
vcl/dbcgrids.hpp
Description
Use TDBCtrlPanel to hold the fields from a single record in a dataset. TDBCtrlGrid represents
the records in a dataset by arranging copies of the same TDBCtrlPanel object in rows or
columns, where each panel represents a single record in the dataset.
Lay out a single panel at design time. Add data-aware edit controls or data display objects. At
runtime, TDBCtrlGrid replicates the panel for the records in the dataset.
The appearance of the panel is determined by the properties of the TDBCtrlGrid object that
contains the panel. The OnPaintPanel event of TDBCtrlGrid allows customized painting of the
panels.

TDBCtrlPanel properties
TDBCtrlPanel Alphabetically Legend

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
ParentWindow

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

WindowProc
Derived from TComponent

ComponentCount
ComponentIndex

Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDBCtrlPanel properties
TDBCtrlPanel By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
Left
Name

Owner
Parent
ParentWindow
ShowHint

Showing
TabOrder
TabStop

Tag
Top
Visible
Width
WindowProc

TDBCtrlPanel methods
TDBCtrlPanel Alphabetically

In TDBCtrlPanel
~TDBCtrlPanel
TDBCtrlPanel

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBCtrlPanel methods
TDBCtrlPanel By object

~TDBCtrlPanel
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TDBCtrlPanel
UpdateControlState
Update

TDBCtrlPanel::~TDBCtrlPanel
TDBCtrlPanel
~TDBCtrlPanel frees the memory associated with the TDBCtrlPanel object. Do not call ~
TDBCtrlPanel directly. Instead, use the delete keyword on the object, which causes ~
TDBCtrlPanel to be invoked automatically.
__fastcall virtual ~TDBCtrlPanel(void);

TDBCtrlPanel::TDBCtrlPanel
TDBCtrlPanel See also
TDBCtrlPanel creates and initializes an instance of TDBCtrlPanel.
__fastcall TDBCtrlPanel(TDBCtrlGrid* DBCtrlGrid);
Description
Do not call the constructor for TDBCtrlPanel directly. TDBCtrlGrid calls the TDBCtrlPanel
method from its constructor.
TDBCtrlPanel initializes the Parent property to the DBCtrlGrid parameter and initializes the
ControlStyle property to [csAcceptsControls, csCaptureMouse, csClickEvents, csDoubleClicks,
csOpaque, csReplicatable].

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TDBCtrlPanel example
TDBCtrlPanel

TDBCtrlGrid
Hierarchy Properties Methods Events See also
TDBCtrlGrid displays records from a data source in a free-form layout.
Header
vcl/dbcgrids.hpp
Description
Put a TDBCtrlGrid object on a form to display and edit the records from a database table or
query. Unlike the TDBGrid object, which displays each record in a single row, TDBCtrlGrid
allows a free-form layout for each record in the dataset. Each record is displayed in its own
panel; Design one panel at design time and TDBCtrlGrid replicates that panel for each record
displayed.
At runtime, users can use the database navigator (TDBNavigator) to move through data in the
TDBCtrlGrid object, and to insert, delete, and edit the data. Edits made using the data grid are
not posted to the underlying data set until the user moves to a different record or closes the
application.

TDBCtrlGrid properties
TDBCtrlGrid Alphabetically Legend

In TDBCtrlGrid
AllowDelete
AllowInsert

Canvas
ColCount
DataSource
EditMode
Orientation
PanelBorder

PanelCount
PanelHeight
PanelIndex
PanelWidth
RowCount
SelectedColor
ShowFocus

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
ParentWindow

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width
WindowProc

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState

ComponentStyle
DesignInfo

Owner
Tag

TDBCtrlGrid properties
TDBCtrlGrid By object Legend

Align
AllowDelete
AllowInsert
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
ColCount
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DataSource
DesignInfo
DragCursor
DragMode
EditMode
Enabled
Font

Handle
Height
HelpContext
Hint
Left
Name
Orientation

Owner
PanelBorder

PanelCount
PanelHeight
PanelIndex
PanelWidth
ParentColor
ParentFont
ParentShowHint
Parent
ParentWindow
PopupMenu
RowCount
SelectedColor
ShowFocus
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Visible
Width
WindowProc

TDBCtrlGrid::AllowDelete
TDBCtrlGrid See also
AllowDelete determines whether the user can delete the current record from the dataset by
pressing Ctrl+Delete.
__property bool AllowDelete;
Description
Set AllowDelete to false to prevent the TDBCtrlGrid object from deleting records.
When AllowDelete is false, TDBCtrlGrid won’t delete records from the dataset when the user
presses Ctrl+Delete or the DoKey method is called with the Key parameter set to gkDelete. The
TDBCtrlGrid object can still be used to insert records.
When AllowDelete is true (the default), TDBCtrlGrid will delete the current record when the user
presses Ctrl+Delete or when the DoKey method is called with the Key parameter set to
gkDelete. Even with AllowDelete set to true, records can’t be deleted unless the dataset is in
edit mode.

TDBCtrlGrid::AllowInsert
TDBCtrlGrid See also
AllowInsert etermines whether the user can insert new records with the Insert key or append
new records with the Ctrl+Insert key combination.
__property bool AllowInsert;
Description
Set AllowInsert to false to prevent the TDBCtrlGrid object from inserting records.
When AllowInsert is false, TDBCtrlGrid won’t insert records into the dataset when the user
presses Insert or Ctrl+Insert or when the DoKey method is called with the Key parameter set to
gkInsert or gkAppend. The TDBCtrlGrid object can still be used to delete records.
When AllowInsert is true (the default), TDBCtrlGrid will insert a new record into the dataset
before the current record when the user presses Insert or append a new record to the end of the
dataset when the user presses Ctrl+Insert. Even with AllowInsert set to true, records can’t be
inserted unless the dataset is in edit mode.

TDBCtrlGrid::Canvas
TDBCtrlGrid See also
Canvas is the drawing surface used to draw the TDBCtrlGridObject.
__property Graphics::TCanvas* Canvas;
Description
Use the properties and methods of Canvas to draw an image of a panel in the TDBCtrlGrid
object from an OnPaintPanel event handler.

TDBCtrlGrid::ColCount
TDBCtrlGrid See also Example
ColCount specifies the number of columns of panels shown in the grid.
__property int ColCount;
Description
Set ColCount to the number of columns of panels that should appear in the TDBCtrlGrid object.
Each panel represents a separate record in the dataset.
Setting ColCount causes the TDBCtrlGrid object to resize to accommodate the new number of
columns. PanelWidth doesn’t change.

TDBCtrlGrid::DataSource
TDBCtrlGrid See also
DataSource identifies the link to the dataset where the TDBCtrlGrid object finds its data.
__property Db::TDataSource* DataSource;
Description
Set DataSource to the TDataSource object that links to the dataset where the grid should fetch
its data. DataSource allows the data-aware grid to read from, write to, and navigate around the
dataset, while maintaining record currency with other data-aware objects that use the same data
source.

TDBCtrlGrid::EditMode
TDBCtrlGrid See also
EditMode determines whether the TDBCtrlGrid can be used to insert, delete, or edit records.
__property bool EditMode;
Description
Set EditMode to true to allow the user to edit the dataset using the grid. The user can toggle
EditMode by pressing F2 or Enter. Inserting or deleting records using the grid will set EditMode
to true.

TDBCtrlGrid::Orientation
TDBCtrlGrid See also
Orientation determines the order in which records from the dataset are displayed in the
TDBCtrlGrid.
__property TDBCtrlGridOrientation Orientation;
Description
Set Orientation to goVertical (the default) to have the panels ordered in rows with a vertical scroll
bar. Set Orientation to goHorizontal to arrange panels in columns with a horizontal scroll bar.

TDBCtrlGrid::PanelBorder
TDBCtrlGrid See also
PanelBorder determines whether each panel is drawn with a raised border around it.
__property TDBCtrlGridBorder PanelBorder;
Description
The default value of gbRaised draws a raised border. Set PanelBorder to gbNone to eliminate
the border.

TDBCtrlGrid::PanelCount
TDBCtrlGrid See also
PanelCount is the number of records visible in the grid.
__property int PanelCount;
Description
TDBCtrlGrid can represent up to ColCount * RowCount panels. Usually, PanelCount will be this
value. PanelCount will be smaller than this if there are not enough records in the dataset to fill
the entire grid.

TDBCtrlGrid::PanelHeight
TDBCtrlGrid See also
PanelHeight is the height in pixels of each panel.
__property int PanelHeight;
Description
Set PanelHeight to the desired size of each panel in the grid. When the PanelHeight property is
set, the grid resizes itself to fit the new panel height.

TDBCtrlGrid::PanelIndex
TDBCtrlGrid See also
PanelIndex is the index of the panel in the grid which represents the current record.
__property int PanelIndex;
Description
Read PanelIndex to determine which panel represents the current record in the dataset. Set
PanelIndex to move in the dataset to the record corresponding to a panel in the grid.
PanelIndex is a number in the range 0..PanelCount - 1, where 0 is the first panel, 1 is the
second panel, and so on. The location of the panel with the index PanelIndex depends on the
value of the Orientation property. When Orientation is goVertical, the panels are counted by
rows. When Orientation is goHorizontal, the panels are counted by columns.

TDBCtrlGrid::PanelWidth
TDBCtrlGrid See also
PanelWidth is the width in pixels of each panel.
__property int PanelWidth;
Description
Set PanelWidth to the desired size of each panel in the grid. When the PanelWidth property is
set, the grid resizes itself to fit the new panel width.

TDBCtrlGrid::RowCount
TDBCtrlGrid See also Example
RowCount is the number of rows of panels displayed in the grid.
__property int RowCount;
Description
Set RowCount to the number of rows of panels that should appear in the TDBCtrlGrid object.
Each panel represents a separate record in the dataset.
Setting RowCount causes the TDBCtrlGrid object to resize to accommodate the new number of
rows. PanelHeight doesn’t change.

TDBCtrlGrid::ShowFocus
TDBCtrlGrid See also
ShowFocus indicates whether TDBCtrlGrid should draw a focus rectangle around the current
record in the TDBCtrlGrid when it has input focus.
__property bool ShowFocus;
Description
Set ShowFocus to true to have TDBCtrlGrid draw a focus rectangle around the current record
when it has input focus. Set ShowFocus to false when providing visual feedback of focus in
some other manner in an OnPaintPanel event handler.

TDBCtrlGrid::SelectedColor
TDBCtrlGrid
SelectedColor is the background color of the panel that represents the current record in the
dataset.
Description
Set SelectedColor to a value other than value of the Color property to make the panel that
represents the current record stand out. TDBCtrlGrid draws the selected panel using
SelectedColor even when it does not have input focus. All other panels are drawn with the
background set to the value of the Color property.
SelectedColor can have one of the following values:
Value Meaning

clBlackclBlack Black
clMaroon Maroon
clGreen Green
clOlive Olive green
clNavy Navy blue
clPurple Purple
clTeal Teal
clGray Gray
clSilver Silver
clRed Red
clLime Lime green
clBlue Blue
clFuchsia Fuchsia
clAqua Aqua
clWhite White
clBackground Current background color of the Windows desktop
clActiveCaption Current color of the title bar of the active window
clInactiveCaption Current color of the title bar of inactive windows
clMenu Current background color of menus
clWindow Current background color of windows
clWindowFrame Current color of window frames
clMenuText Current color of text on menus
clWindowText Current color of text in windows
clCaptionText Current color of the text on the title bar of the active window
clActiveBorder Current border color of the active window
clInactiveBorder Current border color of inactive windows
clAppWorkSpace Current color of the application workspace
clHighlight Current background color of selected text
clHightlightText Current color of selected text
clBtnFace Current color of a button face
clBtnShadow Current color of a shadow cast by a button
clGrayText Current color of text that is dimmed
clBtnText Current color of text on a button
clInactiveCaptionText Current color of the text on the title bar of an inactive window
clBtnHighlight Current color of the highlighting on a button
cl3DDkShadow Windows 95 or NT 4.0 only: Dark shadow for three-dimensional display

elements
cl3DLight Windows 95 or NT 4.0 only: Light color for three-dimensional display

elements (for edges facing the light source)
clInfoText Windows 95 or NT 4.0 only: Text color for tool tip controls
clInfoBk Windows 95 or NT 4.0 only: Background color for tool tip controls

See also
Color property

TDBCtrlGrid events
TDBCtrlGrid Alphabetically Legend

In TDBCtrlGrid
OnPaintPanel

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBCtrlGrid events
TDBCtrlGrid By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnPaintPanel
OnStartDrag

TDBCtrlGrid::OnPaintPanel
TDBCtrlGrid See also
OnPaintPanel occurs when TDBCtrlGrid needs to draw a panel in the grid.
typedef void __fastcall (__closure *TPaintPanelEvent)(TDBCtrlGrid*
DBCtrlGrid, int Index);

__property TPaintPanelEvent OnPaintPanel;
Description
Write an OnPaintPanel event handler to customize the drawing of a panel in the TDBCtrlGrid
object. TDBCtrlGrid paints the background using the Color or SelectedColor property, including
the raised border if it is specified by the PanelBorder property. Then the OnPaintPanel event
occurs to allow an event handler to add to the image of the panel.
The DBCtrlGrid parameter is the grid that contains the panel. The Index parameter is the index
of the panel being painted, where 0 is the first panel, 1 is the second panel, and so on. Use the
PanelIndex property to determine whether the panel being drawn is selected.
Use the Canvas property to paint the panel. The point (0,0) on the canvas is the upper left
corner of the panel, and the point (PanelWidth, PanelHeight) is the lower right corner.
Controls placed on the panel are drawn separately and do not need to be drawn in an
OnPaintpanel event handler.

TDBCtrlGrid methods
TDBCtrlGrid Alphabetically

In TDBCtrlGrid
~TDBCtrlGrid
DoKey
GetTabOrderList
KeyDown
TDBCtrlGrid

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent

HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBCtrlGrid methods
TDBCtrlGrid By object

~TDBCtrlGrid
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DoKey
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
KeyDown
MethodAddress
MethodName
NewInstance

PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TDBCtrlGrid
UpdateControlState
Update

TDBCtrlGrid::~TDBCtrlGrid
TDBCtrlGrid
~TDBCtrlGrid frees the memory associated with the TDBCtrlGrid object. Do not call ~
TDBCtrlGrid directly. Instead, use the delete keyword on the object, which causes ~TDBCtrlGrid
to be invoked automatically.
__fastcall virtual ~TDBCtrlGrid(void);
Description
~TDBCtrlGrid frees the helper objects used by TDBCtrlGrid before calling the destructor of its
parent object.

TDBCtrlGrid::DoKey
TDBCtrlGrid
DoKey implements the responses to a number of standard keystrokes.
void __fastcall DoKey(TDBCtrlGridKey Key);
Description
Call DoKey to perform the operation specified by the Key parameter. For example, use DoKey to
remap keystrokes from an OnKeyDown event handler.
The actions performed for the different values of Key are given in the following table
Value Action

gkNull Do nothing.
gkEditMode Toggle the EditMode property.
gkPriorTab Move to the previous panel.
gkNextTab Move to the next panel.
gkLeft Move one panel to the left.
gkRight Move one panel to the right.
gkUp Move one panel up.
gkDown Move one panel down.
gkScrollUp Move one panel up.
gkScrollDown Move one panel down.
gkPageUp Move ColCount * RowCount records up in the dataset.
gkPageDown Move ColCount * RowCount records down in the dataset.
gkHome Move to the first record in the dataset.
gkEnd Move to the last record in the dataset.
gkInsert Insert a new record prior to the current record in the dataset and set

EditMode to true.
gkAppend Insert a new record at the end of the dataset and set EditMode to true.
gkDelete Delete the current record from the dataset and set EditMode to false.
gkCancel Cancel any edits not written to the dataset and set EditMode to false.
See also
AllowDelete property, AllowInsert property, EditMode property, KeyDown method, OnKeyDown

event

TDBCtrlGrid::GetTabOrderList
TDBCtrlGrid See also
GetTabOrderList overrides the default to remove all child controls from the tab order.
virtual void __fastcall GetTabOrderList(Classes::TList* List);
Description
GetTabOrderList returns an empty list. TDBCtrlGrid implements its own handling of the tab key
to move through the panels in database order.

TDBCtrlGrid::KeyDown
TDBCtrlGrid
KeyDown performs special processing when a key is pressed.
virtual void __fastcall KeyDown(unsigned short &Key, Classes::
TShiftState Shift);

Description
After calling the OnKeyDown event handler, KeyDown translates each combination of the Key
and Shift parameters into a logical key code and calls the DoKey method to perform the
appropriate action.
KeyDown performs the following translations:
Key and Shift values Key code

LeftArrow gkLeft
RightArrow gkRight
UpArrow gkUp
DownArrow gkDown
PageUp gkPageUp
PageDown gkPageDown
Home gkHome
End gkEnd
Return gkEditMode
F2 gkEditMode
Insert gkAppend
Ctrl+Insert gkInsert
Ctrl+Delete gkDelete
Escape gkCancel
All other keys gkNull
See also
DoKey method, OnKeyDown event

TDBCtrlGrid::TDBCtrlGrid
TDBCtrlGrid See also
TDBCtrlGrid creates an instance of TDBCtrlGrid.
__fastcall virtual TDBCtrlGrid(Classes::TComponent* AOwner);
Description
Call TDBCtrlGrid to create and initialize a TDBCtrlGrid object at runtime. TDBCtrlGrid objects
placed in a form at design time are created automatically.
TDBCtrlGrid allocates the helper objects it uses and initializes
• AllowInsert and AllowDelete to true.
• ColCount to 1 and RowCount to 3.
• ControlStyle to [csOpaque, csDoubleClicks].
• PanelBorder to gbRaised.
• PanelWidth to 200 and PanelHeight to 72.
• SelectedColor to Color.
• ShowFocus to true.
• TabStop to true.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TDBCtrlGrid example
TDBCtrlGrid

TDBCtrlGridLink
Hierarchy Properties Methods See also
TDBCtrlGridLink is a helper object that helps manage data events for a TDBCtrlGrid object.
Header
vcl/dbcgrids.hpp
Description
TDBCtrlGridLink is tailored to work with a TDBCtrlGrid. It should only be used by the
TDBCtrlGrid class.

TDBCtrlGridLink properties
TDBCtrlGridLink Alphabetically Legend

Derived from TDataLink
Active

ActiveRecord
BufferCount

DataSet
DataSource
DataSourceFixed

Editing
ReadOnly

RecordCount

TDBCtrlGridLink properties
TDBCtrlGridLink By object Legend

ActiveRecord
Active

BufferCount
DataSet

DataSourceFixed
DataSource

Editing
ReadOnly

RecordCount

TDBCtrlGridLink methods
TDBCtrlGridLink Alphabetically Legend

In TDBCtrlGridLink
~TDBCtrlGridLink

ActiveChanged
DataSetChanged
TDBCtrlGridLink

Derived from TDataLink
Edit
UpdateRecord

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBCtrlGridLink methods
TDBCtrlGridLink By object Legend

~TDBCtrlGridLink
ActiveChanged
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DataSetChanged
DefaultHandler
Dispatch
Edit
FieldAddress
FreeInstance
Free
InheritsFrom

InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TDBCtrlGridLink
UpdateRecord

TDBCtrlGridLink::~TDBCtrlGridLink
TDBCtrlGridLink
~TDBCtrlGridLink frees the memory associated with the TDBCtrlGridLink object. Do not call ~
TDBCtrlGridLink directly. Instead, use the delete keyword on the object, which causes ~
TDBCtrlGridLink to be invoked automatically.
__fastcall virtual ~TDBCtrlGridLink(void);

TDBCtrlGridLink::ActiveChanged
TDBCtrlGridLink See also
ActiveChanged informs the TDBCtrlGrid object of changes in the Active property.
virtual void __fastcall ActiveChanged(void);
Description
Applications can’t call the ActiveChanged procedure directly. Changes in the Active property
trigger this procedure. ActiveChanged causes the TDBCtrlGrid object to update its appearance
to reflect the data in the dataset.

TDBCtrlGridLink::DataSetChanged
TDBCtrlGridLink See also
DataSetChanged informs the TDBCtrlGrid of changes to the dataset.
virtual void __fastcall DataSetChanged(void);
Description
Applications can’t call the DataSetChanged method directly. DataSetChanged is called
automatically when the contents of the dataset change. When the dataset scrolls or when the
representation of the dataset by the TDBCtrlGrid changes, DataSetChanged is called indirectly.
DataSetChanged causes the TDBCtrlGrid object to update its appearance to reflect the changes
to the dataset.

TDBCtrlGridLink::TDBCtrlGridLink
TDBCtrlGridLink See also
TDBCtrlGridLink creates an instance of TDBCtrlGridLink.
__fastcall TDBCtrlGridLink(TDBCtrlGrid* DBCtrlGrid);
Description
Applications should not call the TDBCtrlGridLink method directly. The TDBCtrlGrid that owns a
TDBCtrlGridLink calls TDBCtrlGridLink from its constructor.

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TDataLink

TDBCtrlGridLink example
TDBCtrlGridLink

TDBDataSet
Hierarchy Properties Methods Events See also
Encapsulates database connectivity for descendent dataset objects.
Header
vcl/db.hpp
Description
TDBDataSet is a dataset object that defines database-related connectivity properties and
methods for a dataset. Applications never use TDBDataSet objects directly. Instead they use the
descendants of TDBDataSet, such as TQuery, TStoredProc, and TTable, which inherit its
database-related properties and methods.
Developers who create custom dataset components may want to derive them from TDBDataSet
to inherit all the functionality of TDataSet and the database-related properties and methods of
TDBDataSet.

TDBDataSet properties
TDBDataSet Alphabetically Legend

In TDBDataSet
Database

DatabaseName
DBHandle
DBLocale
DBSession

SessionName
UpdateMode

Derived from TDataSet
Active
AutoCalcFields

BOF
Bookmark
CachedUpdates

CanModify
DataSource
DefaultFields
Designer
EOF
ExpIndex
FieldCount

FieldDefs
Fields

FieldValues
Filter
Filtered
FilterOptions

Found
Handle
KeySize
Locale
Modified
RecNo
RecordCount
RecordSize
State

UpdateObject
UpdateRecordTypes

UpdatesPending
Derived from TComponent

ComponentCount
ComponentIndex

Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDBDataSet properties
TDBDataSet By object Legend

Active
AutoCalcFields

BOF
Bookmark
CachedUpdates

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DatabaseName
Database
DataSource
DBHandle
DBLocale
DBSession
DefaultFields
Designer

DesignInfo
EOF
ExpIndex
FieldCount

FieldDefs
Fields
FieldValues
Filtered
FilterOptions
Filter

Found
Handle
KeySize
Locale
Modified
Owner
RecNo
RecordCount
RecordSize

SessionName
State

Tag
UpdateMode

UpdateObject
UpdateRecordTypes

UpdatesPending

TDBDataSet::Database
TDBDataSet See also
Identifies the database component for which this dataset represents one or more tables.
__property TDatabase* Database;
Description
Use Database to access the properties, events, and methods of the database component
associated with this dataset. Database is a read-only property that is automatically set when the
database specified by the DatabaseName property is opened.

TDBDataSet::DatabaseName
TDBDataSet See also
Specifies the name of the database to associate with this dataset.
__property System::AnsiString DatabaseName;
Description
Use DatabaseName to specify the name of the database to associate with this dataset
component. DatabaseName should match the name of a database component used in the
application.
Note
Attempting to set DatabaseName when a database already associated with this component is
open raises an exception.
Tip
At design time double-click a TDatabase component to invoke the Database editor and set the
DatabaseName.

TDBDataSet::DBHandle
TDBDataSet See also
Specifies the Borland Database Engine (BDE) database handle for the dataset.
__property Bde::hDBIDb DBHandle;
Description
Check DBHandle to determine the database handle for the dataset. DBHandle is only useful in
applications that bypass database and dataset methods to write directly to the BDE API. Many
BDE function calls require a handle parameter. DBHandle is assigned an initial value when a
session is activated.
Note
Do not use this property unless an application requires BDE functionality not available through
standard Borland C++Builder components.

TDBDataSet::DBLocale
TDBDataSet See also
Identifies the Borland Database Engine (BDE) language driver for the dataset component.
__property void * DBLocale;
Description
Examine DBLocale to determine the BDE language driver used by the database component
associated with which this dataset is associated. Applications that make direct calls to the BDE
may need to pass DBLocale information as an API function parameter.
Note
Do not use this property unless an application requires BDE functionality not available through
standard Borland C++Builder components.

TDBDataSet::DBSession
TDBDataSet See also
Points to the database session component with which this dataset component is associated.
__property TSession* DBSession;
Description
Use DBSession to determine the session component that controls the database component with
which this dataset component is associated. By default, a database component is associated
with the default session component, Session, that is automatically created for all database
applications.

TDBDataSet::UpdateMode
TDBDataSet

Contains the update mode of the dataset.
__property TUpdateMode UpdateMode;
UpdateMode is used by other database objects, such as the TQuery object.

TDBDataSet::SessionName
TDBDataSet See also
Identifies the name of the session with which this dataset is associated.
__property System::AnsiString SessionName;
Description
Use SessionName to determine or specify the session with which a dataset component is
associated. SessionName is automatically set to the name of the SessionName property of the
database component with which a dataset component is associated. If SessionName is blank, a
dataset component is automatically associated with the default session, Session.
To associate a dataset component with a different session, SessionName must match the
SessionName property of an existing session component that is also used by the database
component with which this dataset is associated.

TDBDataSet events
TDBDataSet Alphabetically Legend

Derived from TDataSet
AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
OnCalcFields
OnDeleteError
OnEditError
OnFilterRecord
OnNewRecord
OnPostError
OnServerYield
OnUpdateError
OnUpdateRecord

TDBDataSet events
TDBDataSet By object Legend

AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
OnCalcFields
OnDeleteError
OnEditError
OnFilterRecord
OnNewRecord
OnPostError
OnServerYield
OnUpdateError
OnUpdateRecord

TDBDataSet methods
TDBDataSet Alphabetically

In TDBDataSet
~TDBDataSet
CheckOpen
TDBDataSet

Derived from TDataSet
ActiveBuffer
Append
AppendRecord
ApplyUpdates
Cancel
CancelUpdates
CheckBrowseMode
ClearFields
Close
CommitUpdates
ControlsDisabled
CursorPosChanged
Delete
DisableControls
Edit
EnableControls
FetchAll
FieldByName
FindField
FindFirst
FindLast
FindNext
FindPrior
First
FreeBookmark
GetBookmark
GetCurrentRecord
GetFieldList
GetFieldNames
GotoBookmark
Insert
InsertRecord
IsLinkedTo
Last
Locate
Lookup
MoveBy
Next
Open
Post
Prior
Refresh
Resync
RevertRecord
SetDetailFields

SetFields
UpdateCursorPos
UpdateRecord
UpdateStatus

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBDataSet methods
TDBDataSet By object

~TDBDataSet
ActiveBuffer
AppendRecord
Append
ApplyUpdates
Assign
Cancel
CancelUpdates
CheckBrowseMode
CheckOpen
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClearFields
Close
CommitUpdates
ControlsDisabled
CursorPosChanged
DefaultHandler
Delete
DestroyComponents
Destroying
DisableControls
Dispatch
Edit
EnableControls
FetchAll
FieldAddress
FieldByName
FindComponent
FindField
FindFirst
FindLast
FindNext
FindPrior
First
FreeBookmark
FreeInstance
FreeNotification
Free
GetBookmark
GetCurrentRecord
GetFieldList
GetFieldNames
GetParentComponent
GotoBookmark

HasParent
InheritsFrom
InitInstance
InsertComponent
InsertRecord
Insert
InstanceSize
IsLinkedTo
Last
Locate
Lookup
MethodAddress
MethodName
MoveBy
NewInstance
Next
Open
Post
Prior
Refresh
RemoveComponent
Resync
RevertRecord
SetDetailFields
SetFields
TDBDataSet
UpdateCursorPos
UpdateRecord
UpdateStatus

TDBDataSet::~TDBDataSet
TDBDataSet
~TDBDataSet frees the memory associated with the TDBDataSet object. Do not call ~
TDBDataSet directly. Instead, use the delete keyword on the object, which causes ~
TDBDataSet to be invoked automatically.
__fastcall virtual ~TDBDataSet(void);

TDBDataSet::CheckOpen
TDBDataSet See also
Checks the result of a call to the Borland Database Engine (BDE).
bool __fastcall CheckOpen(unsigned short Status);
Description
Call CheckOpen to determine if a call to the BDE returns an error when an attempt is made to
access a table. Status is the return result of a previous call to the BDE. CheckOpen returns true
if the access is successful. If Status indicates insufficient table rights when accessing a Paradox
table, CheckOpen calls the database session’s GetPassword method to prompt the user for a
password. If the dialog is successful, CheckOpen returns true.
Otherwise CheckOpen returns false, indicating that dataset access failed.

TDBDataSet::TDBDataSet
TDBDataSet
TDBDataSet creates a new TDBDataSet object.
__fastcall virtual TDBDataSet(Classes::TComponent* AOwner);

Scope
Protected
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TDataSet

TDBDataSet example
TDBDataSet

TDBEdit
Hierarchy Properties Methods Events See also
A TDBEdit object is a single-line edit control that can display and edit a field in a dataset.
Header
vcl/dbctrls.hpp
Description
Use a TDBEdit object to enable users to edit a database field. TDBEdit uses a mask to restrict
input to data that is valid for the database field. TDBEdit uses the Text property to represent the
contents of the field.
TDBEdit permits only a single line of text. If the field may contain lengthy data that would require
multiple lines, consider using a TDBMemo object.
If the application doesn’t require the data-aware capabilities of TDBEdit, use an edit control
(TEdit), or a masked edit control (TMaskEdit) instead, to conserve system resources.

TDBEdit properties
TDBEdit Alphabetically Legend

In TDBEdit
DataField
DataSource

Field
ReadOnly

Derived from TCustomMaskEdit
EditText

IsMasked
MaxLength
Text

Derived from TCustomEdit
AutoSelect
AutoSize
BorderStyle
CharCase
Modified
PasswordChar
SelLength
SelStart
SelText

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth

Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name

Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible

Width
Derived from TComponent

ComponentCount
ComponentIndex

Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDBEdit properties
TDBEdit By object Legend

Align
AutoSelect
AutoSize
BorderStyle
BoundsRect

Brush
CharCase
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DataField
DataSource
DesignInfo
DragCursor
DragMode

EditText
Enabled

Field
Font

Handle
Height
HelpContext
Hint

IsMasked
Left
MaxLength
Modified
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PasswordChar
PopupMenu
ReadOnly
SelLength
SelStart
SelText
ShowHint

Showing
TabOrder
TabStop
Tag

Text
Top

Visible
Width

TDBEdit::DataField
TDBEdit See also
DataField specifies the field from which the edit control displays data.
__property System::AnsiString DataField;
Description
Use DataField to bind the edit control to a field in the dataset. To fully specify a database field,
both the dataset and the field within that dataset must be defined. The DataSource property of
the edit box control specifies the dataset which contains the DataField.
If the DataField refers to a database field that contains integer or floating-point data, only
characters that are valid in such a field can be entered in the edit box. Characters that are not
legal are not accepted.

TDBEdit::DataSource
TDBEdit See also
DataSource links the edit control to the dataset that contains the field it represents.
__property Db::TDataSource* DataSource;
Description
Use DataSource to link the edit control to a dataset in which the data can be found. To fully
specify a database field for the edit control, both the dataset and a field within that dataset must
be defined. Use the DataField property to specify the particular field within the dataset.

TDBEdit::Field
TDBEdit See also
Field specifies the TField object for the database field the edit box represents.
__property Db::TField* Field;
Description
Read Field to get direct access to the contents and properties of the database field without going
through the edit window. Use Field to change the contents of the database field
programmatically. Use the Text property instead if you want to change the contents of the edit
window without immediately posting the changes to the dataset. Changing the Text property
allows the user to cancel the changes.

TDBEdit::ReadOnly
TDBEdit See also
ReadOnly determines whether the user can use the database edit box to change the value of the
field in the current record.
__property bool ReadOnly;
Description
Set ReadOnly to true to prevent the user from changing the contents of the database field. When
ReadOnly is true, the edit control is used only to display the contents of the field. If ReadOnly is
false, the user can change the field's value as long as the dataset is in edit mode.

TDBEdit events
TDBEdit Alphabetically Legend

Derived from TCustomEdit
OnChange

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBEdit events
TDBEdit By object Legend

OnChange
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBEdit methods
TDBEdit Alphabetically Legend

In TDBEdit
~TDBEdit

Change
EditCanModify
KeyDown
KeyPress
Notification
Reset
TDBEdit

Derived from TCustomMaskEdit
Clear
GetTextLen
ValidateEdit

Derived from TCustomEdit
ClearSelection
CopyToClipboard
CutToClipboard
GetSelTextBuf
PasteFromClipboard
SelectAll
SetSelTextBuf

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag

GetTextBuf
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBEdit methods
TDBEdit By object Legend

~TDBEdit
Assign
BeginDrag
BringToFront
Broadcast
CanFocus

Change
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClearSelection
Clear
ClientToScreen
ContainsControl

ControlAtPos
CopyToClipboard
CutToClipboard
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging

EditCanModify
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused

FreeInstance
FreeNotification
Free
GetParentComponent
GetSelTextBuf
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate

KeyDown
KeyPress

MethodAddress
MethodName
NewInstance
Notification
PaintTo
PasteFromClipboard
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
Reset
ScaleBy
ScreenToClient
ScrollBy
SelectAll
SendToBack
SetBounds
SetFocus
SetSelTextBuf
SetTextBuf
Show
TDBEdit
UpdateControlState
Update
ValidateEdit

TDBEdit::~TDBEdit
TDBEdit See also
~TDBEdit frees the memory associated with the TDBEdit object. Do not call ~TDBEdit directly.
Instead, use the delete keyword on the object, which causes ~TDBEdit to be invoked
automatically.
__fastcall virtual ~TDBEdit(void);
Description
~TDBEdit overrides the inherited destructor to free the helper objects that were allocated to
manage display issues and database interactions.

TDBEdit::Change
TDBEdit See also
Change keeps track of the fact that the text has been modified, before letting the inherited
method call the OnChange event handler if it is assigned.
virtual void __fastcall Change(void);
Description
Change is a protected method. Applications can not call it directly. It is triggered automatically by
Windows’ events. Change responds to these events by internally keeping track of the fact that
the text has been modified. This information can then be used to know whether there are any
changes to post to the dataset or remove when if the user requests a reset.

TDBEdit::EditCanModify
TDBEdit See also
EditCanModify allows or disallows editing of the text depending on whether the dataset is in edit
mode.
virtual bool __fastcall EditCanModify(void);
Description
EditCanModify overrides the inherited method so that the control will only allow edits when the
dataset is in edit mode. If the edit control should never allow edits, the ReadOnly property should
be set.
Note
EditCanModify is a protected method. Applications can not call it directly.

TDBEdit::KeyDown
TDBEdit See also
KeyDown supplements the inherited method to drive the dataset into edit mode when the user
presses Del or Shift+Insert.
virtual void __fastcall KeyDown(unsigned short &Key, Classes::
TShiftState Shift);

Description
KeyDown first calls the inherited method, which calls the OnKeyDown event handler. KeyDown
next attempts to put the dataset into an editing state when the user types Del or Shift+Insert.
Derived classes can override KeyDown to handle additional key combinations, but the inherited
method should always be called.
Note
KeyDown is a protected method. Applications can not call it directly. It is called automatically in
response to Windows events.

TDBEdit::KeyPress
TDBEdit See also
KeyPress supplements the inherited method to handle any keystrokes that alter the state of the
edit control.
virtual void __fastcall KeyPress(char &Key);
Description
KeyPress first calls the inherited method, which calls the OnKeyPress event handler. Next,
KeyPress checks the value of the key, and throws it away if it is not a valid character for the field
type, or if there is no link to a database field. Valid characters cause KeyPress to attempt to put
the dataset into edit mode.
Pressing the Escape key causes KeyPress to callReset, throwing away all unposted edits.
Note
KeyPress is a protected method. Applications can not call it directly. It is called automatically in
response to Windows events.

TDBEdit::Notification
TDBEdit See also
Notification overrides the inherited method to respond to opRemove notifications on the
DataSource.
virtual void __fastcall Notification(Classes::TComponent* AComponent,
Classes::TOperation Operation);

Description
After calling the inherited method, Notification checks whether the notification indicates the
removal of the DataSource. If so, Notification sets the DataSource property to NULL.
Derived classes can override Notification method to handle additional notifications, but the
inherited method should be always be called.
Note
Notification is a protected method. Applications can not call it directly.

TDBEdit::Reset
TDBEdit See also
Reset cancels all unposted edits.
virtual void __fastcall Reset(void);
Description
Reset overrides the default method to cancel all unposted edits to the dataset when the user
presses the Escape key.
Note
Reset is a protected method. Applications can not call it directly. It is called automatically when
the user presses the Escape key.

TDBEdit::TDBEdit
TDBEdit See also
TDBEdit is the constructor for TDBEdit.
__fastcall virtual TDBEdit(Classes::TComponent* AOwner);
Description
TDBEdit initializes the database handling capabilities of the edit control.

Scope
Published

Accessibility
Read-only

Scope
Protected

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomEdit
TCustomMaskEdit

TDBEdit example
TDBEdit

TDBError
Hierarchy Properties Methods See also
TDBError is used by the EDBEngineError exception class to represent Borland Database Engine
errors.
Header
vcl/db.hpp
Description
An EDBEngineError exception is raised when Borland Database Engine errors occur.
EDBEngineError reads the stack of BDE errors and creates a separate TDBError object to
represent each one. These TDBError objects are contained in the Errors property of
EDBEngineError.

TDBError properties
TDBError Alphabetically Legend

In TDBError
Category
ErrorCode
Message
NativeError
SubCode

TDBError properties
TDBError By object Legend

Category
ErrorCode
Message
NativeError
SubCode

TDBError::Category
TDBError
The category of the error referenced by ErrorCode.
__property unsigned char Category;
Description
Category contains the first part of the BDE error code.

TDBError::ErrorCode
TDBError See also
The error code returned by the BDE.
__property unsigned short ErrorCode;
Description
ErrorCode is the error code returned by the BDE. It consists of a Category and a SubCode.
DBIResult is a special type used by the DBIError procedure to hold BDE error codes.

TDBError::Message
TDBError
The text of the error message.
__property System::AnsiString Message;
Description
Message contains the remote server message for native (server) errors, or the BDE message
associated with ErrorCode for non-server errors.

TDBError::NativeError
TDBError
The remote error code returned from the server.
__property long NativeError;
Description
If NativeError is 0, the error is not a server error.

TDBError::SubCode
TDBError
The subcode of the error referenced by ErrorCode.
__property unsigned char SubCode;
Description
SubCode contains the subcode of the BDE error code.

TDBError methods
TDBError Alphabetically

In TDBError
~TDBError
TDBError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBError methods
TDBError By object

~TDBError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TDBError

TDBError::~TDBError
TDBError
~TDBError frees the memory associated with the TDBError object. Do not call ~TDBError
directly. Instead, use the delete keyword on the object, which causes ~TDBError to be invoked
automatically.
__fastcall virtual ~TDBError(void);

TDBError::TDBError
TDBError See also
Initializes an instance of TDBError using error information returned by the BDE.
__fastcall TDBError(EDBEngineError* Owner, unsigned short ErrorCode,
long NativeError, char * Message);

Description
TDBError is called by the constructor of EDBEngineError.

Accessibility
Read-only

Hierarchy

TObject

TDBError example
TDBError

TDBGridColumns
Hierarchy Properties Methods See also
TDBGridColumns is a container for TColumn objects.
Header
vcl/dbgrids.hpp
Description
Each TDBGridColumns holds a collection of TColumn objects in a data grid (TDBGrid).
TDBGridColumns maintains an index of the columns in its Items array. The Count property
contains the number of columns in the collection. At design time, use the data grid’s Columns
editor to add, remove, or modify columns.

TDBGridColumns properties
TDBGridColumns Alphabetically Legend

In TDBGridColumns
Grid

Items
State

Derived from TCollection
Count

TDBGridColumns properties
TDBGridColumns By object Legend

Count
Grid

Items
State

TDBGridColumns::Grid
TDBGridColumns See also
The data-grid control to which the TDBGridColumns instance belongs.
__property TCustomDBGrid* Grid;
Description
The read-only Grid property indicates which data-grid control (TDBGrid) owns the
TDBGridColumns object.

TDBGridColumns::Items
TDBGridColumns
An index of the columns in the collection.
__property TColumn* Items[int Index];
Description
The value of the Index parameter corresponds to the Index property of TColumn. It represents
the position of the column in the data grid.

TDBGridColumns::State
TDBGridColumns See also Example
Determines whether the columns in the data grid are dependent on the dataset fields.
__property TDBGridColumnsState State;
Description
If State is set to csDefault, columns in the data grid are generated dynamically from information
in the grid’s associated dataset. The appearance, order, and other properties of the columns
are determined by the dataset fields. Changes made to the columns are reflected in the dataset
fields, and vice versa.
If State is set to csCustomized, many properties of the data-grid columns are independent of the
associated dataset. For example, a column’s title caption is, by default, the same as the
associated field’s DisplayLabel property; if State is csCustomized, however, the column title’s
Caption property and the field’s DisplayLabel property can be changed independently. In fact, a
customized (or “persistent”) column need not be associated with a dataset field at all.
Note
If the Columns editor is used to configure data-grid columns, State is automatically set to
csCustomized. Changing the State property at runtime deletes all existing columns.

TDBGridColumns methods
TDBGridColumns Alphabetically

In TDBGridColumns
~TDBGridColumns
Add
RebuildColumns
RestoreDefaults
TDBGridColumns

Derived from TCollection
Assign
BeginUpdate
Clear
EndUpdate

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBGridColumns methods
TDBGridColumns By object

~TDBGridColumns
Add
Assign
BeginUpdate
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
Dispatch
EndUpdate
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
RebuildColumns
RestoreDefaults
TDBGridColumns

TDBGridColumns::~TDBGridColumns
TDBGridColumns
~TDBGridColumns frees the memory associated with the TDBGridColumns object. Do not call ~
TDBGridColumns directly. Instead, use the delete keyword on the object, which causes ~
TDBGridColumns to be invoked automatically.
__fastcall virtual ~TDBGridColumns(void);

TDBGridColumns::Add
TDBGridColumns See also
Creates a new TColumn instance and adds it to the Items array.
TColumn* __fastcall Add(void);
Description
Add returns the new column. At design time, use the data grid’s Columns editor to add columns
to the grid.

TDBGridColumns::RebuildColumns
TDBGridColumns
Deletes existing columns and generates new columns from the dataset associated with the grid.
void __fastcall RebuildColumns(void);
Description
RebuildColumns initializes the TDBGridColumns object by deleting all existing columns, then
creating new ones from the grid’s associated dataset. If the grid is not connected to a dataset,
RebuildColumns simply deletes any existing columns.

TDBGridColumns::RestoreDefaults
TDBGridColumns See also
Restores all columns to their default settings.
void __fastcall RestoreDefaults(void);
Description
RestoreDefaults iterates through the Items array, calling the RestoreDefaults method for each
TColumn object. This method removes all changes made to properties of the TColumn objects
and restores the default settings.

TDBGridColumns::TDBGridColumns
TDBGridColumns See also
TDBGridColumns and initializes a TDBGridColumns object.
__fastcall TDBGridColumns(TCustomDBGrid* Grid, System::TMetaClass*
ColumnClass);

Description
The TDBGridColumns method takes two parameters: a data-grid instance object and TColumn
(or the name of a class derived from TColumn).

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TCollection

TDBGridColumns example
TDBGridColumns

TDBGrid
Hierarchy Properties Methods Events See also
TDBGrid displays and manipulates records from a dataset in a tabular grid.
Header
vcl/dbgrids.hpp
Description
Put a TDBGrid object on a form to display and edit the records from a database table or query.
Applications can use the data grid to insert, delete, or edit data in the database, or simply to
display it.
At runtime, users can use the database navigator (TDBNavigator) to move through data in the
grid, and to insert, delete, and edit the data. Edits that are made in the data grid are not posted
to the underlying data set until the user moves to a different record or closes the application.
TDBGrid implements the generic behavior introduced in TCustomDBGrid. TDBGrid publishes
many of the properties inherited from TCustomDBGrid, but does not introduce any new behavior.

TDBGrid properties
TDBGrid Alphabetically Legend

Derived from TCustomDBGrid
Columns
DataSource
DefaultDrawing

FieldCount
Fields

Options
ReadOnly
SelectedField
SelectedIndex

SelectedRows
TitleFont

Derived from TCustomGrid
BorderStyle
EditorMode
FixedColor

Derived from TCustomControl
Canvas

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D
ParentWindow

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width
WindowProc

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDBGrid properties
TDBGrid By object Legend

Align
BorderStyle
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
Color
Columns

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DataSource
DefaultDrawing
DesignInfo
DragCursor
DragMode
EditorMode
Enabled

FieldCount
Fields

FixedColor
Font

Handle
Height
HelpContext
Hint
Left
Name
Options

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
ParentWindow
PopupMenu
ReadOnly
SelectedField
SelectedIndex

SelectedRows
ShowHint

Showing
TabOrder
TabStop
Tag
TitleFont
Top
Visible
Width

WindowProc

TDBGrid events
TDBGrid Alphabetically Legend

Derived from TCustomDBGrid
OnColEnter
OnColExit
OnColumnMoved
OnDrawColumnCell
OnDrawDataCell
OnEditButtonClick

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnStartDrag

TDBGrid events
TDBGrid By object Legend

OnColEnter
OnColExit
OnColumnMoved
OnDblClick
OnDragDrop
OnDragOver
OnDrawColumnCell
OnDrawDataCell
OnEditButtonClick
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnStartDrag

TDBGrid methods
TDBGrid Alphabetically

In TDBGrid
~TDBGrid
TDBGrid

Derived from TCustomDBGrid
DefaultDrawColumnCell
DefaultDrawDataCell
ValidFieldIndex

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent

FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBGrid methods
TDBGrid By object

~TDBGrid
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultDrawColumnCell
DefaultDrawDataCell
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance

PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TDBGrid
UpdateControlState
Update
ValidFieldIndex

TDBGrid::~TDBGrid
TDBGrid
~TDBGrid frees the memory associated with the TDBGrid object. Do not call ~TDBGrid directly.
Instead, use the delete keyword on the object, which causes ~TDBGrid to be invoked
automatically.
__fastcall virtual ~TDBGrid(void);

TDBGrid::TDBGrid
TDBGrid
TDBGrid creates a new TDBGrid object.
__fastcall virtual TDBGrid(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl
TCustomGrid
TCustomDBGrid

TDBGrid example
TDBGrid

TDBImage
Hierarchy Properties Methods Events See also
The TDBImage control displays a graphic image from a BLOB (binary large object) stored in a
field of the current record of a dataset. You can modify the image if the ReadOnly property is set
to false.
Header
vcl/dbctrls.hpp
Description
You can link the database image with a dataset by specifying the data source component
(TDataSource) that identifies the dataset as the value of the image’s DataSource property.
Specify the field in the dataset you want to access as the value of the image’s DataField
property.
You can control when the image appears in the database control with the AutoDisplay property.
You can change the size at which the BLOB is displayed by using the Stretch property.
You can cut, copy, and paste images in the database image control. While your application is
running and the database image control has the focus, use the Windows cut, copy, and paste
keys (Ctrl+X, Ctrl+C, and Ctrl+V). If you change your mind, you can return to the original state of
the database image control by pressing Esc before moving to another record.
If your application doesn’t require the data-aware capabilities of TDBImage, use a database
image control (TImage) instead to conserve system resources.

TDBImage properties
TDBImage Alphabetically Legend

In TDBImage
AutoDisplay
BorderStyle
Center
DataField
DataSource

Field
Picture
QuickDraw
ReadOnly
Stretch

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDBImage properties
TDBImage By object Legend

Align
AutoDisplay
BorderStyle
BoundsRect

Brush
Center
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DataField
DataSource
DesignInfo
DragCursor
DragMode
Enabled

Field
Font

Handle
Height
HelpContext
Hint
Left
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent

Picture
PopupMenu
QuickDraw
ReadOnly
ShowHint

Showing
Stretch
TabOrder
TabStop
Tag
Top
Visible
Width

TDBImage::AutoDisplay
TDBImage See also
AutoDisplay Determines whether to automatically display the contents of a memo or graphic
BLOB in a or database image control.
__property bool AutoDisplay;
Description
If AutoDisplay is true (the default value), the image automatically displays new data when the
underlying BLOB field changes (such as when moving to a new record).
If AutoDisplay is false, the image clears whenever the underlying BLOB field changes. To
display the data, the user can double-click on the control or select it and press Enter. In addition,
by calling the LoadMemo method of a database memo or the LoadPicture method of a database
image you can ensure that the control is showing data.
You might want to change the value of AutoDisplay to false if the automatic loading of BLOB
fields seems to take too long.

TDBImage::BorderStyle
TDBImage See also Example
Determines whether the database image has a border.
__property Forms::TBorderStyle BorderStyle;
Description
These are the possible values:
Value Meaning

bsNone No visible border
bsSingle Single-line border

TDBImage::Center
TDBImage Example
Determines whether an image is centered in the image control.
__property bool Center;
Description
If Center is true, the image is centered. If Center is false, the image aligns with the top left corner
of the control. The default value is true.

TDBImage::DataField
TDBImage See also
Specifies the field from which the database image displays data.
__property System::AnsiString DataField;
Description
The dataset the field is located in is specified in a data source component (TDataSource). The
DataSource property of the image control specifies the data source component.

TDBImage::DataSource
TDBImage See also
Determines where the component obtains the data to display.
__property Db::TDataSource* DataSource;
Description
Specify the data source component that identifies the dataset the data is found in.

TDBImage::Field
TDBImage See also
Returns the TField component the database image is linked to.
__property Db::TField* Field;
Description
Use the Field object when you want to change the value of the data in the field
programmatically.

TDBImage::Picture
TDBImage See also Example
Determines the image that appears on the database image control.
__property Graphics::TPicture* Picture;
Description
The property value is a TPicture object which can contain an icon, metafile, bitmap graphic, or
user-defined graphic object.

TDBImage::QuickDraw
TDBImage See also
Specifies whether the image is displayed using a palette.
__property bool QuickDraw;
Description
If false, a palette is used, to provide the best possible image quality at the expense of additional
processing time. If true, no special palette is used, which is faster, but results in poorer picture
quality, especially with 256-color images on a 256-color video driver.

TDBImage::ReadOnly
TDBImage See also
Determines if the user can change the contents of the database image.
__property bool ReadOnly;
Description
The ReadOnly property determines whether the user can use the data-aware control to change
the value of the field of the current record, or if the user can use the control only to display data.
If ReadOnly is false, the user can change the field's value as long as the dataset is in edit mode.

TDBImage::Stretch
TDBImage See also Example
Determines whether bitmaps and metafiles assume the size and shape of the database image.
__property bool Stretch;
Description
When Stretch is true and the image control is resized, the image resizes also. Stretch will also
resize an image to fit into a smaller image control. The Stretch property has no effect on icons.
If you prefer to have the image control resize to fit the native size of the image, set the AutoSize
property to true.

TDBImage events
TDBImage Alphabetically Legend

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBImage events
TDBImage By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBImage methods
TDBImage Alphabetically

In TDBImage
~TDBImage
CopyToClipboard
CutToClipboard
LoadPicture
PasteFromClipboard
TDBImage

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent

FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBImage methods
TDBImage By object

~TDBImage
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
CopyToClipboard
CutToClipboard
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
LoadPicture
MethodAddress
MethodName

NewInstance
PaintTo
PasteFromClipboard
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TDBImage
UpdateControlState
Update

TDBImage::~TDBImage
TDBImage See also
~TDBImage frees the memory associated with the TDBImage object. Do not call ~TDBImage
directly. Instead, use the delete keyword on the object, which causes ~TDBImage to be invoked
automatically.
__fastcall virtual ~TDBImage(void);
Description
~TDBImage frees the helper objects of the TDBImage before calling the destructor of its parent
object.

TDBImage::CopyToClipboard
TDBImage See also Example
Copies the image of the database image component to the Clipboard.
void __fastcall CopyToClipboard(void);
Description
The CopyToClipboard method copies the image of the database image component to the
Clipboard.

TDBImage::CutToClipboard
TDBImage See also Example
Deletes the image in the control and copies it to the Clipboard, replacing the contents of the
Clipboard.
void __fastcall CutToClipboard(void);
Description
Use the CutToClipboard method to delete the image in the control when copying it to the
Clipboard.

TDBImage::LoadPicture
TDBImage See also
Loads the image specified as the value of the Picture property into the database image control.
void __fastcall LoadPicture(void);
Description
If the value of the AutoDisplay property is false, the image of a database image control is not
automatically loaded. If AutoDisplay is false, you can control when the image is loaded at run
time by calling LoadPicture when you want the image to appear in the control.

TDBImage::PasteFromClipboard
TDBImage See also Example
Copies the contents of the Clipboard to the control, inserting the contents where the cursor is
positioned.
void __fastcall PasteFromClipboard(void);
Description
Use the PasteFromClipboard method to copy the contents of the Clipboard into the control.

TDBImage::TDBImage
TDBImage See also
TDBImage creates an instance of TDBImage.
__fastcall virtual TDBImage(Classes::TComponent* AOwner);
Description
Call TDBImage to instantiate a TDBImage object at run time. For TDBImage objects placed on
forms or data modules at design time, TDBImage is called automatically.
After calling the inherited constructor to allocate and initialize a generic control object, TDBImage
• adds csOpaque, csReplicatable to the ControlStyle,
• sets TabStop, AutoDisplay and Center to true and sets BorderStyle to bsSingle,
• creates a TPicture object and assigns it to the Picture property,
• initializes the height and width of the control,
• creates and initializes the helper objects needed to link to a dataset.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl

TDBImage example
TDBImage

TDBListBox
Hierarchy Properties Methods Events See also
The TDBListBox control is a data-aware list box that allows the user to change the value of the
field of the current record in a dataset by selecting an item from a list. The selected item
becomes the new value of the field.
Header
vcl/dbctrls.hpp
Description
Link the database list box with a dataset by specifying the data source component
(TDataSource) that identifies the dataset as the value of the memo’s DataSource property.
Specify the field in the dataset you want to access as the value of the DataField property.
You specify the values the user can choose from in the list box with the Items property. For
example, if you want the user to choose from five different values in the list box, specify five
strings as the value of Items. Just as with an ordinary list box, you can add, delete, and insert
items in the list box using the Add, Delete, and Insert methods of the Items object, which is of
type TStrings. For example, to add a string to a database list box, you could write this line of
code:
DBListBox1->Strings->Items->Add(“New item”);
The ItemIndex property indicates which item in the list box is selected. If you want to prevent the
user from being able to select an item in the list box, set the ReadOnly property to false.
If your application doesn’t require the data-aware capabilities of TDBListBox, use a list box
(TListBox) instead to conserve system resources.
Component Writers’ notes
For component writers wanting to create a customized list box objects, use TCustomListBox as a
base class for you own list box object.

TDBListBox properties
TDBListBox Alphabetically Legend

In TDBListBox
DataField
DataSource

Field
Items
ReadOnly

Derived from TCustomListBox
BorderStyle

Canvas
IntegralHeight
ItemHeight
ItemIndex

SelCount
Selected
Style
TopIndex

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components

ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDBListBox properties
TDBListBox By object Legend

Align
BorderStyle
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DataField
DataSource
DesignInfo
DragCursor
DragMode
Enabled

Field
Font

Handle
Height
HelpContext
Hint
IntegralHeight
ItemHeight
ItemIndex
Items
Left
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu
ReadOnly

SelCount
Selected
ShowHint

Showing
Style
TabOrder
TabStop
Tag
TopIndex
Top
Visible
Width

TDBListBox::DataField
TDBListBox See also
Identifies the field from which the data-aware control displays data.
__property System::AnsiString DataField;
Description
The dataset the field is located in is specified in a data source component (TDataSource). The
DataSource property of the data-aware control specifies which data source component.
If the DataField value of a database edit box (TDBEdit) is an integer or floating-point value, only
characters that are valid in such a field can be entered in the edit box. Characters that are not
legal are not accepted.

TDBListBox::DataSource
TDBListBox See also
Determines where the component obtains the data to display.
__property Db::TDataSource* DataSource;
Description
Specify the data source component that identifies the dataset the data is found in.

TDBListBox::Field
TDBListBox See also
Returns the TField object the data-aware control is linked to.
__property Db::TField* Field;
Description
Use the Field object when you want to change the value of the data in the field
programmatically.

TDBListBox::Items
TDBListBox See also
Contains the strings that appear in the list box.
__property Items;
Description
Because Items is an object of type TStrings, you can add, delete, insert, and move items using
the Add, Delete, Insert, Exchange, and Move methods of the TStrings object.
The ItemIndex property determines which item is selected, if any. To determine if a particular
item in the list of strings that makes up the Items property for a list box is selected, use the
Selected property.
The following example uses an edit box, a list box, and a button on a form. When the user clicks
the button, the text in the edit box is added to the list box:
Example
void __fastcall TForm1::Button1Click(TObject* Sender);
{
ListBox1->Items->Add(Edit1->Text);

}

TDBListBox::ReadOnly
TDBListBox See also
Determines if the user can change the contents of the control.
__property bool ReadOnly;
Description
If ReadOnly is true, the user can’t change the contents. If ReadOnly is false, the user can
modify the contents. The default value is false.
For data-aware controls, the ReadOnly property determines whether the user can use the data-
aware control to change the value of the field of the current record, or if the user can use the
control only to display data. If ReadOnly is false, the user can change the field’s value as long
as the dataset is in edit mode.
When the ReadOnly property of a data grid is true, the user can no longer use the Insert key to
insert a new row in the grid, nor can the user append a new row at the end of the data grid with
the Down Arrow key.

TDBListBox events
TDBListBox Alphabetically Legend

Derived from TCustomListBox
OnDrawItem
OnMeasureItem

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBListBox events
TDBListBox By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnDrawItem
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMeasureItem
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBListBox methods
TDBListBox Alphabetically

In TDBListBox
~TDBListBox
TDBListBox

Derived from TCustomListBox
Clear
ItemAtPos
ItemRect

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent

FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBListBox methods
TDBListBox By object

~TDBListBox
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
ItemAtPos
ItemRect
MethodAddress
MethodName

NewInstance
PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TDBListBox
UpdateControlState
Update

TDBListBox::~TDBListBox
TDBListBox See also
~TDBListBox frees the memory associated with the TDBListBox object. Do not call ~
TDBListBox directly. Instead, use the delete keyword on the object, which causes ~TDBListBox
to be invoked automatically.
__fastcall virtual ~TDBListBox(void);
Description
~TDBListBox frees the helper objects of the TDBListBox before calling the destructor of its
parent object.

TDBListBox::TDBListBox
TDBListBox See also
TDBListBox creates an instance of TDBListBox.
__fastcall virtual TDBListBox(Classes::TComponent* AOwner);
Description
Call TDBListBox to instantiate a TDBListBox object at run time. For TDBListBox objects placed
on forms or data modules at design time, TDBListBox is called automatically.
After calling the constructor of its parent object to allocate and initialize a generic list box object,
TDBListBox creates and initializes the helper objects needed to link to a dataset.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomListBox

TDBListBox example
TDBListBox

TDBLookupComboBox
Hierarchy Properties Methods Events See also
TDBLookupComboBox lets you provide the user with a convenient drop-down list of lookup
items for filling in fields that require data from another dataset.
Header
vcl/dbctrls.hpp
Description
Set the DataSource property to the data source that will receive the user’s selection. Set the
DataField to either the field to receive the user’s selection or a lookup field. If you set DataField
to a lookup field, you don’t need to set any other properties, as TDBLookupComboBox is smart
enough to pick up the settings it needs from the lookup field.
Set the ListSource property to the data source of the table holding the lookup items. Set
KeyField to the field you want copied into DataField. Set ListField to display a field other than
KeyField in the combo box.
If your application doesn’t require the data-aware capabilities of TDBLookupComboBox, use a
combo box (TComboBox) instead to conserve system resources.

TDBLookupComboBox properties
TDBLookupComboBox Alphabetically Legend

In TDBLookupComboBox
DropDownAlign
DropDownRows
DropDownWidth

ListVisible
ReadOnly
Text

Derived from TDBLookupControl
DataField
DataSource
KeyField
KeyValue
ListField
ListFieldIndex
ListSource

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth

Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name

Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components

ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDBLookupComboBox properties
TDBLookupComboBox By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DataField
DataSource
DesignInfo
DragCursor
DragMode
DropDownAlign
DropDownRows
DropDownWidth
Enabled
Font

Handle
Height
HelpContext
Hint
KeyField
KeyValue
Left
ListFieldIndex
ListField
ListSource

ListVisible
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu

ReadOnly
ShowHint

Showing
TabOrder
TabStop
Tag

Text
Top
Visible
Width

DataField
Identifies the field from which the data-aware control displays data.
__property DataField;
Description
The dataset the field is located in is specified in a data source component (TDataSource). The
DataSource property of the data-aware control specifies which data source component.
If the DataField value of a database lookup combo box (TDBLookupComboBox) is an integer or
floating-point value, only characters that are valid in such a field can be entered in the edit box.
Characters that are not legal are not accepted.

DataSource
Determines where the component obtains the data to display.
__property DataSource;
Description
Specify the data source component that identifies the dataset the data is found in.

TDBLookupComboBox::DropDownAlign
TDBLookupComboBox See also
Specifies how the drop-down list is aligned relative to its edit box
__property TDropDownAlign DropDownAlign;
Description
The drop down list can be aligned to the left or right, or centered with its edit box.

TDBLookupComboBox::DropDownRows
TDBLookupComboBox See also
Specifies the number of lines of text to display in the drop-down list of the
TDBLookupComboBox.
__property int DropDownRows;
Description
Use the DropDownRows property to specify how many drop down rows appear in the drop down
list of the combo box.

TDBLookupComboBox::DropDownWidth
TDBLookupComboBox See also
Determines how wide the drop-down list of the combo box is in pixels.
__property int DropDownWidth;
Description
The default value is 0, which means the drop-down list is the same width as the combo box.
The DropDownWidth property is useful when you are displaying multiple fields, and therefore,
multiple columns in the database lookup combo box.

Field
Returns the TField component the database lookup combo box is linked to.
Description
Use the Field component when you want to change the value of the data in the field
programmatically.

TDBLookupComboBox::ListVisible
TDBLookupComboBox See also
Determines whether the database lookup combo box is open or “dropped-down”.
__property bool ListVisible;
Description
If ListVisible is true, the combo box is open; if ListVisible is false, the combo box is closed.

TDBLookupComboBox::ReadOnly
TDBLookupComboBox See also
Determines if the user can change the contents of the database lookup combo box.
__property ReadOnly;
Description
If ReadOnly is true, the user can't change the contents. If ReadOnly is false, the user can modify
the contents. The default value is false.
The ReadOnly property determines whether the user can use the database lookup combo box to
change the value of the field of the current record, or if the user can use the control only to
display data. If ReadOnly is false, the user can change the field's value as long as the dataset is
in edit mode.

TDBLookupComboBox::Text
TDBLookupComboBox See also Example
Text is the value of the field of the current record.
__property System::AnsiString Text;
Description
The value of the Text property is the first item that appears in the combo box when the
application runs. The user can change the value of Text by entering a new value if ReadOnly is
false and the dataset is in edit mode.

TDBLookupComboBox events
TDBLookupComboBox Alphabetically Legend

In TDBLookupComboBox
OnCloseUp
OnDropDown

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBLookupComboBox events
TDBLookupComboBox By object Legend

OnClick
OnCloseUp
OnDragDrop
OnDragOver
OnDropDown
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBLookupComboBox::OnCloseUp
TDBLookupComboBox See also
The OnCloseUp event occurs when the opened or “dropped-down” DBLookupComboBox is
closed.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnCloseUp;
Description
The list can be closed by the user or by calling the CloseUp method

TDBLookupComboBox::OnDropDown
TDBLookupComboBox See also
The OnDropDown event occurs when the user opens (drops down) the combo box.
__property Classes::TNotifyEvent OnDropDown;
Description
The list can be opened by the user or by calling the DropDown method.

TDBLookupComboBox methods
TDBLookupComboBox Alphabetically

In TDBLookupComboBox
~TDBLookupComboBox
CloseUp
DropDown
TDBLookupComboBox

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent

HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBLookupComboBox methods
TDBLookupComboBox By object

~TDBLookupComboBox
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
CloseUp
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
DropDown
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance

PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TDBLookupComboBox
UpdateControlState
Update

TDBLookupComboBox::~TDBLookupComboBox
TDBLookupComboBox See also
~TDBLookupComboBox frees the memory associated with the TDBLookupComboBox object.
Do not call ~TDBLookupComboBox directly. Instead, use the delete keyword on the object,
which causes ~TDBLookupComboBox to be invoked automatically.
__fastcall virtual ~TDBLookupComboBox(void);
Description
~TDBLookupComboBox frees the helper objects of the TDBLookupComboBox before calling the
destructor of its parent object.

TDBLookupComboBox::CloseUp
TDBLookupComboBox See also
Closes an opened or “dropped-down” database lookup combo box.
void __fastcall CloseUp(bool Accept);
Description
The Accept parameter determines whether to modify the DataField with the selected value in the
combo box.

TDBLookupComboBox::DropDown
TDBLookupComboBox See also
Opens or “drops down” the database lookup combo box so that the user has a list of values to
choose from.
void __fastcall DropDown(void);
Description
When the list is opened the OnDropDown event is triggered.

TDBLookupComboBox::TDBLookupComboBox
TDBLookupComboBox See also
TDBLookupComboBox creates an instance of TDBLookupComboBox.
__fastcall virtual TDBLookupComboBox(Classes::TComponent* AOwner);
Description
Call TDBLookupComboBox to instantiate a TDBLookupComboBox object at run time. For
TDBLookupComboBox objects placed on forms or data modules at design time,
TDBLookupComboBox is called automatically.
After calling the constructor of its parent object to allocate and initialize a generic list box object,
TDBLookupComboBox creates a TPopupDataList and creates and initializes the helper objects
needed to link to a dataset.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl
TDBLookupControl

TDBLookupComboBox example
TDBLookupComboBox

TDBLookupControl
Hierarchy Properties Methods See also
A TDBLookupControl is an abstract class that is derived from to provide the user with a
convenient list of lookup items for filling in fields that require data from another dataset.
Header
vcl/dbctrls.hpp
Description
The TDBLookupComboBox and TDBLookupListBox controls are both descended from the
TDBLookupControl and provide the user with automatic lookup capabilities that are implemented
in the TDBLookupControl object. Normally you will want to derive a new control from
TDBLookupControl, not create an instance of it.

TDBLookupControl properties
TDBLookupControlAlphabetically Legend

In TDBLookupControl
DataField
DataSource

Field
KeyField
KeyValue
ListField
ListFieldIndex
ListSource
ReadOnly

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
ParentWindow

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ParentColor
ShowHint
Top

Visible
Width
WindowProc

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDBLookupControl properties
TDBLookupControlBy object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DataField
DataSource
DesignInfo
Enabled

Field
Handle

Height
HelpContext
Hint
KeyField
KeyValue
Left
ListFieldIndex
ListField
ListSource
Name

Owner
ParentColor
Parent
ParentWindow
ReadOnly
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Visible
Width
WindowProc

TDBLookupControl::DataField
TDBLookupControlSee also
Identifies the field from which the data-aware control displays data.
__property System::AnsiString DataField;
Description
The dataset the field is located in is specified in a data source component (TDataSource). The
DataSource property of the data-aware control specifies which data source component.
If the DataField value of a database lookup control descendent is an integer or floating-point
value, only characters that are valid in such a field can be entered in the edit box. Characters
that are not legal are not accepted.

TDBLookupControl::DataSource
TDBLookupControlSee also
Determines where the component obtains the data to display.
__property Db::TDataSource* DataSource;
Description
Specify the data source component that identifies the dataset the data is found in.

TDBLookupControl::Field
TDBLookupControlSee also
Returns the TField object the data-aware control is linked to.
void __fastcall DataLinkRecordChanged(Db::TField* Field);
Description
Use the Field object when you want to change the value of the data in the field
programmatically.

TDBLookupControl::KeyField
TDBLookupControlSee also
The KeyField property identifies the field in the ListSource data set to match up with the
DataField field.
__property System::AnsiString KeyField;
Description
As you select items in the data control, the DataField field gets the value of the KeyField field

corresponding to the selected item. If the DataField field is a lookup field, you don't need to
specify anything for KeyField; the data controls automatically use the lookup field's
LookupKeyFields field for KeyField.

TDBLookupControl::KeyValue
TDBLookupControlSee also
The KeyValue property reflects the value of the KeyField field.
__property System::Variant KeyValue;
Description
If you set this property, the data controls attempt to find a matching record from the ListSource's

data set and display it.

TDBLookupControl::ListField
TDBLookupControlSee also
The ListField property identifies the field or fields (separated by semicolons) whose values are
displayed in the data controls.
__property System::AnsiString ListField;
Description
If you don't set ListField, the data controls display KeyField field values by default. If the
DataField field is a lookup field, you don't need to specify anything for ListField; the data controls
automatically use the lookup field's LookupResultField property as ListField.

TDBLookupControl::ListFieldIndex
TDBLookupControlSee also
The ListFieldIndex property specifies which field from the ListField property is used for
incremental searching.
__property int ListFieldIndex;
Description
For the DBLookupComboBox, ListFieldIndex also determines which field appears in the edit box
portion of the combo box.

TDBLookupControl::ListSource
TDBLookupControlSee also
The ListSource property identifies a data source for the data displayed in the data controls.
__property Db::TDataSource* ListSource;
Description
If the DataField field is a lookup field, you don't need to specify anything for ListSource; the data
controls automatically use the lookup field's LookupDataSet property to create a data source.

TDBLookupControl::ReadOnly
TDBLookupControlSee also
Determines if the user can change the contents of the control.
__property bool ReadOnly;
Description
If ReadOnly is true, the user can’t change the contents. If ReadOnly is false, the user can
modify the contents. The default value is false.
For data-aware controls, the ReadOnly property determines whether the user can use the data-
aware control to change the value of the field of the current record, or if the user can use the
control only to display data. If ReadOnly is false, the user can change the field’s value as long
as the dataset is in edit mode.
When the ReadOnly property of a data grid is true, the user can no longer use the Insert key to
insert a new row in the grid, nor can the user append a new row at the end of the data grid with
the Down Arrow key.

TDBLookupControl methods
TDBLookupControlAlphabetically

In TDBLookupControl
~TDBLookupControl
TDBLookupControl

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBLookupControl methods
TDBLookupControlBy object

~TDBLookupControl
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TDBLookupControl
UpdateControlState
Update

TDBLookupControl::~TDBLookupControl
TDBLookupControlSee also
~TDBLookupControl frees the memory associated with the TDBLookupControl object. Do not
call ~TDBLookupControl directly. Instead, use the delete keyword on the object, which causes ~
TDBLookupControl to be invoked automatically.
__fastcall virtual ~TDBLookupControl(void);
Description
~TDBLookupControl frees the helper objects of the TDBLookupControl before calling the
destructor of its parent object.

TDBLookupControl::TDBLookupControl
TDBLookupControlSee also
TDBLookupControl creates an instance of TDBLookupControl.
__fastcall virtual TDBLookupControl(Classes::TComponent* AOwner);
Description
Call TDBLookupControl to instantiate a TDBLookupControl object at run time. For
TDBLookupControl objects placed on forms or data modules at design time, TDBLookupControl
is called automatically.
After calling the constructor of its parent object to allocate and initialize a generic custom control,
TDBLookupControl creates and initializes the helper objects needed to link to a dataset.

Scope
Protected
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl

TDBLookupControl example
TDBLookupControl

TDBLookupListBox
Hierarchy Properties Methods Events See also
TDBLookupListBox lets you provide the user with a convenient list of lookup items for filling in
fields that require data from another dataset.
Header
vcl/dbctrls.hpp
Description
Set the DataSource property to the data source that will receive the user’s selection. Set the
DataField to either the field to receive the user’s selection or a lookup field. If you set DataField
to a lookup field, you don’t need to set any other properties, as TDBLookupListBox is smart
enough to pick up the settings it needs from the lookup field.
Set the ListSource property to the data source of the table holding the lookup items. Set
KeyField to the field you want copied into DataField. Set ListField to display a field other than
KeyField in the list box.

TDBLookupListBox properties
TDBLookupListBox Alphabetically Legend

In TDBLookupListBox
BorderStyle

ReadOnly
RowCount

Derived from TDBLookupControl
DataField
DataSource
KeyField
KeyValue
ListField
ListFieldIndex
ListSource

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDBLookupListBox properties
TDBLookupListBox By object Legend

Align
BorderStyle
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DataField
DataSource
DesignInfo
DragCursor
DragMode
Enabled
Font

Handle
Height
HelpContext
Hint
KeyField
KeyValue
Left
ListFieldIndex
ListField
ListSource
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu

ReadOnly
RowCount
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Visible
Width

TDBLookupListBox::BorderStyle
TDBLookupListBox See also Example
Determines whether the database lookup list box has a border.
__property Forms::TBorderStyle BorderStyle;
Description
These are the possible values:
Value Meaning

bsNone No visible border
bsSingle Single-line border

TDBLookupListBox::ReadOnly
TDBLookupListBox See also
Determines if the user can change the contents of the database lookup list box.
__property ReadOnly;
Description
If ReadOnly is true, the user can't change the contents. If ReadOnly is false, the user can modify
the contents. The default value is false.
The ReadOnly property determines whether the user can use the database lookup list box to
change the value of the field of the current record, or if the user can use the control only to
display data. If ReadOnly is false, the user can change the field's value as long as the dataset is
in edit mode.

TDBLookupListBox::RowCount
TDBLookupListBox See also
Determines how many rows are visible in the list box.
__property int RowCount;
Description
If you set this property, the list box is resized to match the specified number of rows. Likewise, if
you resize the list box (such as by changing its Height property), the RowCount property is
adjusted to match the new height.

TDBLookupListBox events
TDBLookupListBox Alphabetically Legend

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBLookupListBox events
TDBLookupListBox By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBLookupListBox methods
TDBLookupListBox Alphabetically

In TDBLookupListBox
~TDBLookupListBox
TDBLookupListBox

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBLookupListBox methods
TDBLookupListBox By object

~TDBLookupListBox
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TDBLookupListBox
UpdateControlState
Update

TDBLookupListBox::~TDBLookupListBox
TDBLookupListBox
~TDBLookupListBox frees the memory associated with the TDBLookupListBox object. Do not
call ~TDBLookupListBox directly. Instead, use the delete keyword on the object, which causes ~
TDBLookupListBox to be invoked automatically.
__fastcall virtual ~TDBLookupListBox(void);

TDBLookupListBox::TDBLookupListBox
TDBLookupListBox See also
Create creates an instance of TDBLookupListBox.
__fastcall virtual TDBLookupListBox(Classes::TComponent* AOwner);
Description
Call Create to instantiate a TDBLookupListBox object at run time. For TDBLookupListBox
objects placed on forms or data modules at design time, Create is called automatically.
After calling the inherited constructor to allocate and initialize a generic lookup control, Create
creates and initializes the helper objects needed to link to a dataset.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl
TDBLookupControl

TDBLookupListBox example
TDBLookupListBox

TLoginDialog
Hierarchy Properties Methods Events See also
TLoginDialog is a login dialog box that can be used to provide login security within an
application.
Header
vcl/dblogdlg.hpp
Description
Use TLoginDialog to provide login security within an application. Usually a TLoginDialog object is
created with the LoginDialogEx function and is used to provide secure access to local database
tables. However, TLoginDialog can also be used as a base object for other types of login dialog
boxes.

TLoginDialog properties
TLoginDialog Alphabetically Legend

Derived from TForm
Active

ActiveControl
ActiveMDIChild

ActiveOleControl
BorderIcons
BorderStyle

Canvas
ClientHandle

ClientHeight
ClientWidth
Designer
DropTarget
FormStyle
Icon
KeyPreview

MDIChildCount
MDIChildren

Menu
ModalResult
ObjectMenuItem
OleFormObject
PixelsPerInch
Position
PrintScale
Scaled
TileMode
Visible
WindowMenu
WindowState

Derived from TScrollingWinControl
AutoScroll
HorzScrollBar
VertScrollBar

Derived from TWinControl
Brush
ClientOrigin
ControlCount
Controls

Ctl3D
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect

Caption
ClientRect

Color
ControlState
ControlStyle
Cursor
Enabled
Font
Height
Hint
Left

Name
PopupMenu
ShowHint
Top
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TLoginDialog properties
TLoginDialog By object Legend

ActiveControl
ActiveMDIChild

ActiveOleControl
Active

Align
AutoScroll
BorderIcons
BorderStyle
BoundsRect

Brush
Canvas

Caption
ClientHandle

ClientHeight
ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
Designer
DesignInfo
DropTarget
Enabled
Font
FormStyle

Handle
Height
HelpContext
Hint
HorzScrollBar
Icon
KeyPreview
Left

MDIChildCount
MDIChildren

Menu
ModalResult
Name
ObjectMenuItem
OleFormObject

Owner
PixelsPerInch
PopupMenu
Position
PrintScale
Scaled
ShowHint

Showing
TabOrder
TabStop
Tag

TileMode
Top
VertScrollBar
Visible
Width
WindowMenu
WindowState

TLoginDialog events
TLoginDialog Alphabetically Legend

Derived from TForm
OnActivate
OnClose
OnCloseQuery
OnCreate
OnDeactivate
OnDestroy
OnHide
OnPaint
OnResize
OnShow

Derived from TWinControl
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnMouseDown
OnMouseMove
OnMouseUp

TLoginDialog events
TLoginDialog By object Legend

OnActivate
OnClick
OnCloseQuery
OnClose
OnCreate
OnDblClick
OnDeactivate
OnDestroy
OnDragDrop
OnDragOver
OnHide
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnPaint
OnResize
OnShow

TLoginDialog methods
TLoginDialog Alphabetically

In TLoginDialog
~TLoginDialog
TLoginDialog

Derived from TForm
ArrangeIcons
Cascade
Close
CloseQuery
DefocusControl
FocusControl
GetFormImage
Hide
Next
Previous
Print
Release
SendCancelMode
SetFocus
SetFocusedControl
Show
ShowModal
Tile

Derived from TScrollingWinControl
ScrollInView

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen

DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TLoginDialog methods
TLoginDialog By object

~TLoginDialog
ArrangeIcons
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
Cascade
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
CloseQuery
Close
ContainsControl
ControlAtPos
DefaultHandler
DefocusControl
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
FocusControl
Focused
FreeInstance
FreeNotification
Free
GetFormImage
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl

InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
Next
PaintTo
Perform
Previous
Print
Realign
Refresh
Release
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
ScrollInView
SendCancelMode
SendToBack
SetBounds
SetFocusedControl
SetFocus
SetTextBuf
ShowModal
Show
Tile
TLoginDialog
UpdateControlState
Update

TLoginDialog::~TLoginDialog
TLoginDialog
~TLoginDialog frees the memory associated with the TLoginDialog object. Do not call ~
TLoginDialog directly. Instead, use the delete keyword on the object, which causes ~
TLoginDialog to be invoked automatically.
__fastcall virtual ~TLoginDialog(void);

TLoginDialog::TLoginDialog
TLoginDialog
TLoginDialog creates a new TLoginDialog object.
__fastcall virtual TLoginDialog(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TScrollingWinControl
TForm

TLoginDialog example
TLoginDialog

TDBMemo
Hierarchy Properties Methods Events See also
A TDBMemo object is a multiline edit control that can display and edit a field in a dataset.
Header
vcl/dbctrls.hpp
Description
Use a TDBMemo object to let users edit a field that may contain lengthy textual data or to simply
display the contents of such a field. TDBMemo uses the Text property to represent the contents
of the field.
TDBMemo permits multiple lines of text. Thus, TDBMemo is appropriate for long alphanumeric
fields or text BLOBs (binary large objects). For short alphanumeric fields, consider using a
TDBEdit component instead.
If the application doesn’t require the data-aware capabilities of TDBMemo, use a memo control
(TMemo) instead, to conserve system resources.

TDBMemo properties
TDBMemo Alphabetically Legend

In TDBMemo
AutoDisplay
DataField
DataSource

Field
ReadOnly

Derived from TCustomMemo
Alignment
Lines
ScrollBars
WantTabs
WordWrap

Derived from TCustomEdit
BorderStyle
MaxLength
Modified
SelLength
SelStart
SelText

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Text
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDBMemo properties
TDBMemo By object Legend

Alignment
Align
AutoDisplay
BorderStyle
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DataField
DataSource
DesignInfo
DragCursor
DragMode
Enabled

Field
Font

Handle
Height
HelpContext
Hint
Left
Lines
MaxLength
Modified
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu
ReadOnly
ScrollBars
SelLength
SelStart
SelText
ShowHint

Showing
TabOrder
TabStop
Tag
Text
Top
Visible
WantTabs
Width

WordWrap

TDBMemo::AutoDisplay
TDBMemo See also
AutoDisplay determines whether to automatically display the contents of a memo or graphic
BLOB in a database memo.
__property bool AutoDisplay;
Description
If AutoDisplay is true, the control automatically displays new data when the underlying BLOB
field changes (such as when moving to a new record).
If AutoDisplay is false, the control shows only the field name whenever the underlying BLOB field
changes. To display the data, the user can double-click on the control or select it and press
Enter.
The effect of AutoDisplay is not purely cosmetic. The data shown by the TDBMemo is the value
of the Text property. When AutoDisplay is false, if the data changes, the value of the Text
property changes to the name of the field. Thus, if AutoDisplay is false, applications should be
cautious about using the value of the Text property to ascertain the value of the underlying field.
Calling the LoadMemo method causes Text to update to the current value of the BLOB field.
This change will also be reflected in the appearance of the control on screen.
Change the value of AutoDisplay to false if the automatic loading of BLOB fields takes too long.
Note
AutoDisplay only applies to BLOB fields. If the control is bound to another type of text field,
AutoDisplay has no effect.

TDBMemo::DataField
TDBMemo See also
DataField specifies the name of the field for which the database memo displays data.
__property System::AnsiString DataField;
Description
Use DataField to link the memo control to a field in the dataset. Just setting DataField by itself
will not link the memo control to a database field. Additionally, the dataset which contains the
field must be specified by setting the DataSource property.

TDBMemo::DataSource
TDBMemo See also
DataSource links the memo control to the dataset that contains the field for which the memo
control displays data.
__property Db::TDataSource* DataSource;
Description
Link the memo control with a dataset by setting DataSource to a data source component that
identifies the desired data set. Specify which field in the dataset contains the memo data using
the DataField property.

TDBMemo::Field
TDBMemo See also
Field specifies the TField component the database memo is linked to.
__property Db::TField* Field;
Description
Read Field to get direct access to the contents and properties of the database field without going
through the edit window. Use Field to change the contents of the database field
programmatically.
Use the Text property instead to change the contents of the memo control without immediately
writing the changes to the record in the dataset. Changing the Text property allows the user to
cancel the changes.

TDBMemo::ReadOnly
TDBMemo See also
ReadOnly determines whether the user can change the contents of the database memo.
__property bool ReadOnly;
Description
If ReadOnly is true, the user can't change the contents. If ReadOnly is false, the user can modify
the contents.
The ReadOnly property determines whether the user can use the database memo to change the
value of the field of the current record, or if the control only displays the value. If ReadOnly is
false, the user can change the field's value as long as the dataset is in edit mode.

TDBMemo events
TDBMemo Alphabetically Legend

Derived from TCustomEdit
OnChange

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBMemo events
TDBMemo By object Legend

OnChange
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBMemo methods
TDBMemo Alphabetically Legend

In TDBMemo
~TDBMemo

Change
KeyDown
KeyPress
LoadMemo
Notification
TDBMemo
WndProc

Derived from TCustomEdit
Clear
ClearSelection
CopyToClipboard
CutToClipboard
GetSelTextBuf
PasteFromClipboard
SelectAll
SetSelTextBuf

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide

Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBMemo methods
TDBMemo By object Legend

~TDBMemo
Assign
BeginDrag
BringToFront
Broadcast
CanFocus

Change
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClearSelection
Clear
ClientToScreen
ContainsControl

ControlAtPos
CopyToClipboard
CutToClipboard
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetSelTextBuf
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate

KeyDown

KeyPress
LoadMemo
MethodAddress
MethodName
NewInstance
Notification
PaintTo
PasteFromClipboard
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy

SelectAll
SendToBack
SetBounds
SetFocus
SetSelTextBuf
SetTextBuf
Show
TDBMemo
UpdateControlState
Update

WndProc

TDBMemo::~TDBMemo
TDBMemo See also
Destroy destroys an instance of TDBMemo.
__fastcall virtual ~TDBMemo(void);
Description
Do not call Destroy directly in an application. Instead, call Free. Free verifies that the TDBMemo
object is not already freed and only then calls Destroy.
Destroy frees up the memory associated with data handling that was allocated in the constructor,
before calling the inherited destructor.

TDBMemo::Change
TDBMemo See also
Change informs the data source of changes to the value of the text, before invoking the
OnChange event handler.
virtual void __fastcall Change(void);
Description
Applications do not call the Change method directly. It is triggered automatically by Windows
events. Derived classes can override the Change method to make additional responses to
changes in the Text property. Any class that overrides the Change method should call the
inherited method as well.

TDBMemo::KeyDown
TDBMemo See also
KeyDown overrides the inherited method to put the dataset in an editing state if the user types
Del or Shift+Insert.
virtual void __fastcall KeyDown(unsigned short &Key, Classes::
TShiftState Shift);

Description
KeyDown first calls the inherited method, which calls the OnKeyDown event handler. KeyDown
next attempts to put the dataset into an editing state when the user types Del or Shift+Insert. If
the memo control is not linked to a dataset, KeyDown discards the keystroke. Derived classes
can override KeyDown to handle additional key combinations, but the inherited method should
always be called.

TDBMemo::KeyPress
TDBMemo See also
KeyPress overrides the inherited method to handle any keystrokes that alter the state of the edit
control.
virtual void __fastcall KeyPress(char &Key);
Description
KeyPress first calls the inherited method, which calls the OnKeyPress event handler. Next,
KeyPress checks the value of the key, and throws it away if it is not a valid character for the field
type, or if there is no link to a database field. Valid characters cause KeyPress to attempt to put
the dataset into edit mode.
If the field for the memo control is a text BLOB, pressing the Pause key causes KeyPress to call
the LoadMemo method. Pressing the Escape key causes KeyPress to throw away unposted
edits.

TDBMemo::LoadMemo
TDBMemo See also
LoadMemo loads the text BLOB from the field in the database into the memo control.
void __fastcall LoadMemo(void);
Description
LoadMemo allows an application to control when the memo control displays the actual contents
of a text BLOB field. Use LoadMemo to update the text in the memo control to the value of the
field in the current record. LoadMemo only works with text BLOB fields, when the AutoDisplay
property is false, so that the value of the field is not loaded automatically.

TDBMemo::Notification
TDBMemo See also
Notification overrides the inherited method to respond to opRemove notifications on the
DataSource.
virtual void __fastcall Notification(Classes::TComponent* AComponent,
Classes::TOperation Operation);

Description
After calling the inherited method, Notification checks whether the notification indicates the
removal of the DataSource. If so, Notification sets the DataSource property to NULL.
Derived classes can override Notification method to handle additional notifications, but the
inherited method should be always be called.

TDBMemo::TDBMemo
TDBMemo See also
Create creates an instance of TDBMemo.
__fastcall virtual TDBMemo(Classes::TComponent* AOwner);
Description
Call Create to create and initialize an instance of TDBMemo. Create overrides the inherited
constructor to initialize the data handling aspects of a TDBMemo.

TDBMemo::WndProc
TDBMemo See also
WndProc provides specific message responses for the memo control.
virtual void __fastcall WndProc(Messages::TMessage &Message);
Description
WndProc overrides the WndProc for TWinControl to handle window messages that are specific
to painting a TDBMemo control, and sends all others to the inherited WndProc.
Derived classes that override WndProc to provide specialized responses to messages should
call the inherited WndProc at the end to dispatch any other messages.

Scope
Published

Accessibility
Read-only

Scope
Protected

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomEdit
TCustomMemo

TDBMemo example
TDBMemo

TDBNavigator
Hierarchy Properties Methods Events See also
The TDBNavigator component (a database navigator) is used to move through the data in a
dataset and perform operations on the data, such as inserting a blank record or posting a record.
Header
vcl/dbctrls.hpp
Description
Use the database navigator on forms that contain data-aware controls, such as TDBGrid or
TDBEdit. TDBNavigator provides the user with control over the dataset when editing or viewing
the data.
When the user chooses one of the navigator buttons, the appropriate action occurs on the
dataset the navigator is linked to. For example, if the user clicks the Insert button, a blank record
is inserted in the dataset.
TDBNavigator can show any or all of the following buttons:
Button Purpose

First Sets the current record to the first record in the dataset, disables the First
and Prior buttons, and enables the Next and last buttons if they are
disabled.

Prior Sets the current record to the previous record and enables the Last and
Next buttons if they are disabled.

Next Sets the current record to the next record and enables the First and Prior
buttons if they are disabled.

Last Sets the current record to the last record in the dataset, disables the Last
and Next buttons, and enables the First and Prior buttons if they are
disabled.

Insert Inserts a new record before the current record, and sets the dataset into
Insert and Edit states.

Delete Deletes the current record and makes the next record the current record.
Edit Puts the dataset into Edit state so that the current record can be modified.
Post Writes changes in the current record to the database.
Cancel Cancels edits to the current record, restores the record display to its

condition prior to editing, and turns off Insert and Edit states if they are
active.

Refresh Refreshes the buffered data in the associated dataset. For TQuery
components, this button is disabled unless the RequestLive property is
true.

TDBNavigator properties
TDBNavigator Alphabetically Legend

In TDBNavigator
ConfirmDelete
DataSource
Hints
Visible
VisibleButtons

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Height
Hint
Left
Name
Parent
ParentShowHint
PopupMenu
ShowHint
Top
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDBNavigator properties
TDBNavigator By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

ConfirmDelete
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DataSource
DesignInfo
DragCursor
DragMode
Enabled

Handle
Height
HelpContext
Hints
Hint
Left
Name

Owner
ParentCtl3D
ParentShowHint
Parent
PopupMenu
ShowHint

Showing
TabOrder
TabStop
Tag
Top
VisibleButtons
Visible
Width

TDBNavigator::ConfirmDelete
TDBNavigator See also
The ConfirmDelete property determines whether a message box appears asking the user to
confirm the deletion when the user uses the database navigator to delete the current record in
the dataset.
__property bool ConfirmDelete;
Description
Use the ConfirmDelete property to help prevent the user from accidentally deleting a record from
the dataset.
If ConfirmDelete is true, a message box appears when the user presses the delete button and
the record isn't deleted unless the user chooses the OK button. If ConfirmDelete is false, no
message box appears and the record is simply deleted.

TDBNavigator::DataSource
TDBNavigator See also
The DataSource property links the navigator to the dataset which it controls.
__property Db::TDataSource* DataSource;
Description
Use the DataSource property to link the database navigator with a dataset. Specify the data
source component that identifies the dataset the data is found in.

TDBNavigator::Hints
TDBNavigator See also
The Hints property provides a way to customize the Help Hints for the buttons on the database
navigator.
__property Classes::TStrings* Hints;
Description
Use the Hints property to supply Help Hints of your choosing for the individual navigator buttons.
Each button has a default Help Hint. Hints allow the values of any or all of these default Help
Hints to be replaced by customized hints.
Hints is a string list. Each hint is a string. The first string in the string list becomes the Help Hint
for the first button on the navigator (the First button). The seventh hint becomes the Help Hint for
the seventh button (the Edit button).
When specifying Hints at runtime, enter an empty string ('') for any Help Hint that should keep
the default value. Simply leave the line blank when using the string list property editor of the
Object Inspector for the Hints property.
Note
To have the Help Hints appear at run time, set the ShowHint property to true.

TDBNavigator::Visible
TDBNavigator See also Example
The Visible property determines whether the database navigator appears onscreen.
Description
Use the Visible property to control when the navigator appears. When Visible is true, the
navigator appears. If Visible is false, the navigator is not visible. Calling the Show method sets
the control's Visible property true, but it also performs other actions to ensure that the user can
see the control.

TDBNavigator::VisibleButtons
TDBNavigator See also
The VisibleButtons property array determines which buttons appear on the database navigator.
__property TButtonSet VisibleButtons;
Description
Use VisibleButtons to select which buttons appear on the navigator. Leave any of the navigator
buttons out of the VisibleButtons set to hide those buttons and thereby prevent the user from
performing certain operations. For example, to only allow the user to view the records in the
dataset, VisibleButtons should include only the nbFirst, nbPrior, nbNext, and nbLast
The following buttons are available for VisibleButtons.
Button Value Action

First nbFirst Go to the first record
Prior nbPrior Go to the previous record
Next nbNext Go to the next record
Last nbLast Go to the last record
Insert nbInsert Insert a blank record
Delete nbDelete Deletes the current record
Edit nbEdit Permits editing of the current record
Post nbPost Posts the current record
Cancel nbCancel Cancels the current edit
Refresh nbRefresh Refreshes the data in the dataset

TDBNavigator events
TDBNavigator Alphabetically Legend

In TDBNavigator
OnClick

Derived from TCustomPanel
OnResize

Derived from TWinControl
OnEnter
OnExit

Derived from TControl
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnStartDrag

TDBNavigator events
TDBNavigator By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnResize
OnStartDrag

TDBNavigator::OnClick
TDBNavigator See also Example
The OnClick event occurs when the database navigator is clicked.
__property ENavClick OnClick;
Use the OnClick event handler to write code that responds to the click event. Because the
buttons on the navigator already have default actions that occur when they are clicked, it isn’t
necessary to write an OnClick event handler.

The OnClick event occurs when
• The user clicks one the buttons on the navigator with the mouse
• The user presses Spacebar while the navigator has focus.
• The BtnClick method is called.
Note
The OnClick event is triggered after the default action for the clicked button occurs.

TDBNavigator methods
TDBNavigator Alphabetically

In TDBNavigator
~TDBNavigator
BtnClick
SetBounds
TDBNavigator

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent

InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBNavigator methods
TDBNavigator By object

~TDBNavigator
Assign
BeginDrag
BringToFront
Broadcast
BtnClick
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo

Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TDBNavigator
UpdateControlState
Update

TDBNavigator::~TDBNavigator
TDBNavigator See also
~TDBNavigator frees the memory associated with the TDBNavigator object. Do not call ~
TDBNavigator directly. Instead, use the delete keyword on the object, which causes ~
TDBNavigator to be invoked automatically.
__fastcall virtual ~TDBNavigator(void);
Description
~TDBNavigator frees the helper objects that were instantiated in the TDBNavigator method before
calling the destructor of its parent object.

TDBNavigator::BtnClick
TDBNavigator See also
The BtnClick method simulates a button click on the database navigator, invoking the action of
the button.
void __fastcall BtnClick(TNavigateBtn Index);
Description
Use BtnClick when you want the application, not the user, to control the database navigator. Call
BtnClick, specifying a TNavigateBtn type as the value of the Index parameter, to invoke the
command associated with the selected button.
Calling BtnClick triggers the navigator’s OnClick event after the default action of the button.

TDBNavigator::SetBounds
TDBNavigator See also Example
The SetBounds sets the database navigator's boundary properties all at one time.
virtual void __fastcall SetBounds(int ALeft, int ATop, int AWidth, int
AHeight);

Description
Call SetBounds when to set more than one of the navigator’s boundary properties at a time.
The Left, Top, Width, and Height properties are set to the values passed in the ALeft, ATop,
AWidth, and AHeight parameters, respectively. SetBounds arranges the buttons on the navigator
to fit within the boundaries.
Although you can always set the individual boundaries, using SetBounds makes several
changes at once without rearranging the buttons for each change.

TDBNavigator::TDBNavigator
TDBNavigator See also
The TDBNavigator method creates an instance of TDBNavigator.
__fastcall virtual TDBNavigator(Classes::TComponent* AOwner);
Description
Call TDBNavigator to instantiate a TDBNavigator at run time. For TDBNavigator objects placed
on a form or data module at design time, TDBNavigator is called automatically.
After calling the constructor of its parent object, TDBNavigator creates the helper objects used
by TDBNavigator to manage the buttons and the link to the dataset, and initializes some
properties to affect the appearance of the navigator.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl
TCustomPanel

TDBNavigator example
TDBNavigator

TDBRadioGroup
Hierarchy Properties Methods Events See also
TDBRadioGroup represents a group of radio buttons connected to a database.
Header
vcl/dbctrls.hpp
Description
A TDBRadioGroup object is a special group box for displaying data-aware radio buttons. Radio
buttons that are contained directly in the same control component are said to be “grouped”;
when a radio button is checked, all other radio buttons in its group become unchecked.
Database radio groups provide an easy way to ensure that the user enters one (or at most one)
of the options presented for a field. They are also useful for displaying data from fields that have
only a few possible values.
Link a radio group to a database just as you would any other data-aware control: Set the value
of its DataSource property to the name of a TDataSource object that points to the appropriate
dataset. Then specify the field in the dataset that you want to access as the value of the
DataField property.
To add radio buttons to a TDBRadioGroup, edit the Items property in the Object Inspector. Each
string in Items makes a radio button appear in the group box with the string as its caption. The
ItemIndex property indicates which radio button is currently selected.
When the user selects a radio button, the “value” of the selected button becomes the contents
of the linked field for the current record in the dataset. Specify values for the buttons by editing
the Values property in the Object Inspector; the first string in Values corresponds to the first
string in Items, and so forth. If no Values strings are set, each button’s caption serves as its
value.
Display the radio buttons in a single column or in multiple columns by setting the value of the
Columns property.

TDBRadioGroup properties
TDBRadioGroup Alphabetically Legend

In TDBRadioGroup
DataField
DataSource

Field
Items
ReadOnly
Value
Values

Derived from TCustomRadioGroup
Columns
ItemIndex

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
Caption
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDBRadioGroup properties
TDBRadioGroup By object Legend

Align
BoundsRect

Brush
Caption
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color
Columns

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DataField
DataSource
DesignInfo
DragCursor
DragMode
Enabled

Field
Font

Handle
Height
HelpContext
Hint
ItemIndex
Items
Left
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint

Parent
PopupMenu
ReadOnly
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Values
Value
Visible
Width

TDBRadioGroup::DataField
TDBRadioGroup See also
The field from which the radio group displays data.
__property System::AnsiString DataField;
Description
Use DataField to specify the name of the database field that the radio group will represent.

TDBRadioGroup::DataSource
TDBRadioGroup See also
Determines where the database radio group obtains the data to display.
__property Db::TDataSource* DataSource;
Description
DataSource holds a TDataSource object that points to a dataset component, such as a table.
The dataset component should be linked to the database you want to access.

TDBRadioGroup::Field
TDBRadioGroup See also
The TField component that the radio group is linked to.
__property Db::TField* Field;
Description
Field holds the TField object that the linked dataset component creates to access the database.

TDBRadioGroup::Items
TDBRadioGroup See also
A list of the radio buttons in the radio group.
__property Items;
Description
Items holds a TStrings object that lists the captions of the radio buttons in the group. (To add or
remove radio buttons, edit the Items list from the Object Inspector.) These captions become the
“values” of the radio buttons, unless you override them in the Values property; when a button is
selected, its value becomes the content of the linked field for the current record in the database.

TDBRadioGroup::ReadOnly
TDBRadioGroup See also
Determines whether the user can select a different radio button in the group, and hence modify
the data in the field.
__property bool ReadOnly;
Description
If ReadOnly is true, the radio group displays data from the current record, but cannot be used to
change the contents of the field. The default is false.

TDBRadioGroup::Value
TDBRadioGroup
The content of the linked field for the current record in the database.
__property System::AnsiString Value;
Description
Value holds the content of the linked field for the current record. If the user selects a different
radio button, the Value property changes.

TDBRadioGroup::Values
TDBRadioGroup See also
Overrides the buttons’ captions to determine the values of the radio buttons.
__property Classes::TStrings* Values;
Description
When the user selects a radio button, the “value” of that button is written to the linked field in
the database. By default, the value of a button is simply the caption that appears next to it on the
screen, as determined by the Items property.
In some cases, you may want the values of the radio buttons to differ from their captions. For
example, if you use radio buttons to represent a database field whose content can be “Y” or
“N”, you may want the buttons’ captions to be “Yes” and “No”. In this case, you would
enter “Yes” and “No” in the Items list, and enter “Y” and “N” in the Values list.
You can edit the Values list in the Object Inspector, just as you would the Items list. To keep the
buttons’ captions as their values, leave the Values property empty.

TDBRadioGroup events
TDBRadioGroup Alphabetically Legend

In TDBRadioGroup
OnChange

Derived from TWinControl
OnEnter
OnExit

Derived from TControl
OnClick
OnDragDrop
OnDragOver
OnEndDrag
OnStartDrag

TDBRadioGroup events
TDBRadioGroup By object Legend

OnChange
OnClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnStartDrag

TDBRadioGroup::OnChange
TDBRadioGroup See also
OnChange occurs when the user changes the data in the linked field.
__property Classes::TNotifyEvent OnChange;
Description
The OnChange event occurs when a change is made to the contents of the database field
accessed by the radio group. Use an OnChange event handler to implement any special
processing that should be executed when the radio group is updated.

TDBRadioGroup methods
TDBRadioGroup Alphabetically Legend

In TDBRadioGroup
~TDBRadioGroup

CanModify
TDBRadioGroup

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent

InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDBRadioGroup methods
TDBRadioGroup By object Legend

~TDBRadioGroup
Assign
BeginDrag
BringToFront
Broadcast
CanFocus

CanModify
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler

DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform
Realign

Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TDBRadioGroup
UpdateControlState
Update

TDBRadioGroup::~TDBRadioGroup
TDBRadioGroup
~TDBRadioGroup frees the memory associated with the TDBRadioGroup object. Do not call ~
TDBRadioGroup directly. Instead, use the delete keyword on the object, which causes ~
TDBRadioGroup to be invoked automatically.
__fastcall virtual ~TDBRadioGroup(void);
Description
~TDBRadioGroup frees internally created objects that control data access, then calls the
destructor of its parent object.

TDBRadioGroup::CanModify
TDBRadioGroup See also
Determines whether the user can select a different radio button in the group.
virtual bool __fastcall CanModify(void);
Description
CanModify returns true if the radio group is linked to an editable data source and ReadOnly is
set to false.

TDBRadioGroup::TDBRadioGroup
TDBRadioGroup
Creates and initializes a TDBRadioGroup instance.
__fastcall virtual TDBRadioGroup(Classes::TComponent* AOwner);
Description
TDBRadioGroup calls the inherited constructor method, then initializes internal objects and
variables used to control data access.

Scope
Published

Accessibility
Read-only

Scope
Protected

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl
TCustomGroupBox
TCustomRadioGroup

TDBRadioGroup example
TDBRadioGroup

TDBText
Hierarchy Properties Methods Events See also
The TDBText component is a data-aware control that displays text on a form.
Header
vcl/dbctrls.hpp
Description
Your application can display the contents of a field in the current record of a dataset in a
database text control, but the user won’t be able to modify the field’s contents.
Link the database text control with a dataset by specifying the data source component
(TDataSource) that identifies the dataset as the value of the label’s DataSource property.
Specify the field in the dataset you want to access as the value of the label’s DataField
property.
How the text of the caption aligns within the label is determined by the value of the Alignment
property. You can have the text control resize automatically to fit a changing caption if you set
the AutoSize property to true. If you prefer to have the text wrap, set WordWrap to true.
If you want a database text control to appear on top of a graphic, but you want to be able to see
through the control so that part of the graphic isn’t hidden, set the Transparent property to true.
If your application doesn’t require the data-aware capabilities of TDBText, you should use the
label component (TLabel) instead to conserve system resources.

TDBText properties
TDBText Alphabetically Legend

In TDBText
AutoSize
DataField
DataSource

Field
Derived from TCustomLabel

Alignment
Transparent
WordWrap

Derived from TGraphicControl
Canvas

Derived from TControl
Align
BoundsRect
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDBText properties
TDBText By object Legend

Alignment
Align
AutoSize
BoundsRect

Canvas
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

ControlState
ControlStyle
Cursor
DataField
DataSource
DesignInfo
DragCursor
DragMode
Enabled

Field
Font
Height
Hint
Left
Name

Owner
ParentColor
ParentFont
ParentShowHint
Parent
PopupMenu
ShowHint
Tag
Top
Transparent
Visible
Width
WordWrap

TDBText::AutoSize
TDBText See also Example
Determines whether the database text control automatically resizes to the width and length of
the current string.
__property AutoSize;
Description
When the AutoSize property is true, the database text control resizes to the width and length of
the current string in the component’s Caption property. If you type in text while AutoSize is true,
the control grows for each character you type. If you change the font size of the text, the control
resizes to the new font size. When AutoSize is false, the size of the control is not affected by the
length of the string in its Caption property.

TDBText::DataField
TDBText See also
Identifies the field from which the control displays data.
__property System::AnsiString DataField;
Description
The dataset the field is located in is specified in a data source component (TDataSource). The
DataSource property of the control specifies which data source component.

TDBText::DataSource
TDBText See also
Determines where database text control obtains its data to display.
__property Db::TDataSource* DataSource;
Description
Specify the data source component that identifies the dataset the data is found in.

TDBText::Field
TDBText See also
Returns the TField component the database text control is linked to.
__property Db::TField* Field;
Description
Use the Field object when you want to change the value of the data in the field
programmatically.

TDBText events
TDBText Alphabetically Legend

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBText events
TDBText By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDBText methods
TDBText Alphabetically

In TDBText
~TDBText
TDBText

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Invalidate
Perform
Refresh
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
Update

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress

MethodName
NewInstance

TDBText methods
TDBText By object

~TDBText
Assign
BeginDrag
BringToFront
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
DefaultHandler
DestroyComponents
Destroying
Dispatch
DragDrop
Dragging
EndDrag
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
GetTextBuf
GetTextLen
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
Perform
Refresh
RemoveComponent
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
TDBText
Update

TDBText::~TDBText
TDBText See also
~TDBText frees the memory associated with the TDBText object. Do not call ~TDBText directly.
Instead, use the delete keyword on the object, which causes ~TDBText to be invoked
automatically.
__fastcall virtual ~TDBText(void);
Description
~TDBText frees the helper objects of the TDBText before calling the destructor of its parent
object.

TDBText::TDBText
TDBText See also
TDBText creates an instance of TDBText.
__fastcall virtual TDBText(Classes::TComponent* AOwner);
Description
Call TDBText to instantiate a TDBText object at run time. For TDBText objects placed on forms
or data modules at design time, TDBText is called automatically.
After calling the inherited constructor to allocate and initialize a generic label object, TDBText
• Adds csReplicatable to ControlStyle.
• Sets AutoSize to false.
• Creates and initializes the helper objects needed to link to a dataset.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TGraphicControl
TCustomLabel

TDBText example
TDBText

TDdeClientConv
Hierarchy Properties Methods Events See also
A TDdeClientConv component establishes a DDE conversation with a DDE server application.
Header
vcl/ddeman.hpp
Description
Use TDdeClientConv in conjunction with a TDdeClientItem object to enable an application to act
as a DDE client. TDdeClientConv provides many properties, events, and methods that provide
services to
• Link to a specified DDE server with a specified DDE topic.
• Send data or macro commands to the DDE server after a link has been established.
• Specify a format for the data that is sent to the DDE server.
• Allow event handlers to respond when the DDE link is opened or closed.
TDdeClientItem objects are associated with a TDdeClientConv by setting their DdeConv
property.

TDdeClientConv properties
TDdeClientConv Alphabetically Legend

In TDdeClientConv
ConnectMode

Conv
DataMode

DdeFmt
DdeService
DdeTopic
FormatChars
ServiceApplication

WaitStat
Derived from TComponent

ComponentCount
ComponentIndex

Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TDdeClientConv properties
TDdeClientConv By object Legend

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

ConnectMode
Conv

DataMode
DdeFmt

DdeService
DdeTopic
DesignInfo
FormatChars
Name

Owner
ServiceApplication
Tag

WaitStat

TDdeClientConv::ConnectMode
TDdeClientConv See also
ConnectMode determines whether the link to the DDE server is established automatically when
the form is opened.
__property TDataMode ConnectMode;
Description
Use ConnectMode to change the way a DDE conversation is established. If ConnectMode is
ddeAutomatic, the link is established when it is defined by SetLink. If ConnectMode is
ddeManual, the application must call the OpenLink method or the PasteLink method to establish
the DDE conversation.

TDdeClientConv::Conv
TDdeClientConv See also
Conv is the handle for the current DDE conversation.
__property long Conv;
Description
Read Conv to get a handle to the DDE conversation when it is required for a Windows API
function call. Conv is available once a DDE conversation has been established by OpenLink or
PasteLink.

TDdeClientConv::DataMode
TDdeClientConv See also
DataMode provides an interface for a property that governs whether portions of the DDE
conversation execute automatically.
__property TDataMode DataMode;
Description
DataMode is not implemented for TDdeClientConv. Derived objects can use this property to
automatically execute portions of a DDE conversation, such as a RequestData or PokeData call.
Note
To determine the way the DDE conversation is established, use ConnectMode instead.

TDdeClientConv::DdeFmt
TDdeClientConv See also
DdeFmt is an integer value representing the standard clipboard format used for submitting or
requesting a data item.
__property int DdeFmt;
Description
Use DdeFmt to specify the format of DDE data items when it has not been specified by the
server.

TDdeClientConv::DdeService
TDdeClientConv See also
DdeService specifies the DDE server application to be linked to a DDE client.
__property System::AnsiString DdeService;
Description
Use DdeService to specify the server application to link to. Typically, DDEService is the file
name (with path, if necessary) of the DDE server application's main executable file without the .
EXE extension. If the DDE server is an Borland C++Builder application, DDEService is the
project name without the .DPR or .EXE extension. For example, to link to a TDdeServerConv
component in PROJ1.DPR, set DDEService to PROJ1.
At design time, specify DDEService by typing the DDE server application name in the object
inspector or by choosing Paste Link in the DDE Info dialog box. To establish a link at runtime,
specify the service and topic with the SetLink method.
Note
The necessary value for DdeService depends on the individual server application. See the
documentation of the DDE server application for specific information about how to specify the
server application.

TDdeClientConv::DdeTopic
TDdeClientConv See also
DdeTopic specifies the topic of a DDE conversation
__property System::AnsiString DdeTopic;
Description
Use DdeTopic to indicate the server-defined topic name of the DDE conversation. Typically,
DdeTopic is a file name (with path, if necessary) used by the server application. If the DDE
server is a Borland C++Builder application, by default DdeTopic is the caption of the form
containing the linked component. If the DDE client is linked to a TDdeServerConv component,
DdeTopic is the name of the server conversation component rather than the form caption.
At design time, specify DdeTopic either by typing the DdeTopic name in the object inspector or
by choosing Paste Link in the DDE Info dialog box. To establish a link at runtime, specify the
service and topic with the SetLink method.
Note
The server application defines the topic names available for a DDE conversation. See the
documentation for the DDE server application for specific information about the names of
available topics.

TDdeClientConv::FormatChars
TDdeClientConv See also
FormatChars determines if certain characters are filtered out of text data transferred from a DDE
server application.
__property bool FormatChars;
Description
Use FormatChars with DDE server applications that transfer backspaces, linefeeds, carriage
returns, and tabs with the text data. These formatting characters can cause incorrect spacing,
line breaks, or characters in the DDE client data. To prevent the formatting characters from
interfering with the formatting of the client data, set FormatChars to false. To include the
formatting characters sent by the DDE server, set FormatChars to true.

TDdeClientConv::ServiceApplication
TDdeClientConv See also
ServiceApplication specifies the main executable file name (with path, if necessary) of a DDE
server application, without the .EXE extension.
__property System::AnsiString ServiceApplication;
Description
Set ServiceApplication to the name of the server application. Typically, this is the same value as
the DdeService property. Sometimes, however, DDEService is a value other than the DDE
server application's executable file name.
If the server application is not running when the TDdeClientConv tries to establish a DDE
conversation, OpenLink uses the ServiceApplication property to launch the server.

TDdeClientConv::WaitStat
TDdeClientConv See also
WaitStat indicates whether the server is in the process of servicing a DDE macro that prohibits
asynchronous DDE transactions.
__property bool WaitStat;
Description
Read WaitStat to learn whether a DDE transaction can be started. When WaitStat is true, the
server is processing the last macro, and attempts to execute a macro, request data, or poke data
will fail. When WaitStat is false, the server is free to execute the next transaction in the DDE
conversation.

TDdeClientConv events
TDdeClientConv Alphabetically Legend

In TDdeClientConv
OnClose
OnOpen

TDdeClientConv events
TDdeClientConv By object Legend

OnClose
OnOpen

TDdeClientConv::OnClose
TDdeClientConv See also
OnClose occurs when the DDE conversation terminates for any reason.
__property Classes::TNotifyEvent OnClose;
Description
Write an OnClose event handler to take specific action when the DDE conversation ends. The
DDE conversation will end if the server terminates the conversation, if the link is closed or
changed, or if the TDdeClientConv object is destroyed.

TDdeClientConv::OnOpen
TDdeClientConv See also
OnOpen occurs immediately after the DDE link to the server has been established.
__property Classes::TNotifyEvent OnOpen;
Description
Write an OnOpen event handler to take specific action whenever a link is established to the DDE
server. The DDE link is established by the OnOpen method or the PasteLink method. SetLink
will also establish a DDE link if the ConnectMode is ddeAutomatic. OnOpen will not be called if
the link fails, such as when the server application can’t be launched.

TDdeClientConv methods
TDdeClientConv Alphabetically

In TDdeClientConv
~TDdeClientConv
CloseLink
ExecuteMacro
ExecuteMacroLines
OpenLink
PasteLink
PokeData
PokeDataLines
RequestData
SetLink
StartAdvise
TDdeClientConv

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDdeClientConv methods
TDdeClientConv By object

~TDdeClientConv
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CloseLink
DefaultHandler
DestroyComponents
Destroying
Dispatch
ExecuteMacroLines
ExecuteMacro
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
OpenLink
PasteLink
PokeDataLines
PokeData
RemoveComponent
RequestData
SetLink
StartAdvise
TDdeClientConv

TDdeClientConv::~TDdeClientConv
TDdeClientConv See also
~TDdeClientConv frees the memory associated with the TDdeClientConv object. Do not call ~
TDdeClientConv directly. Instead, use the delete keyword on the object, which causes ~
TDdeClientConv to be invoked automatically.
__fastcall virtual ~TDdeClientConv(void);
Description
~TDdeClientConv closes the link to the server and frees up all helper objects before calling the
destructor of its parent object.

TDdeClientConv::CloseLink
TDdeClientConv See also
CloseLink terminates an ongoing DDE conversation.
void __fastcall CloseLink(void);
Description
Use CloseLink when all communication with the DDE server is finished. After a link is closed, no
DDE communication can take place between the DDE client and server until another link is
opened.

TDdeClientConv::ExecuteMacro
TDdeClientConv See also
ExecuteMacro sends a macro command string to the DDE server application.
bool __fastcall ExecuteMacro(char * Cmd, bool waitFlg);

Description
Call ExecuteMacro to send a single macro command to the server application. To send multiple
macro commands, use ExecuteMacroLines instead. ExecuteMacro returns true if the macro was
successfully passed to the DDE server application. If ExecuteMacro was unable to send a
command string, ExecuteMacro returns false.
Cmd is a null-terminated string that contains the macro to be executed by the DDE server
application. The actual value of Cmd depends on the DDE server application. See the
documentation of the DDE server application for the command strings it will accept.
WaitFlg determines if this DDE client should wait until the DDE server application finishes
executing the macro before allowing another DDE transaction to succeed. If WaitFlg is set to
true, subsequent calls to ExecuteMacro, ExecuteMacroLines, PokeData, PokeDataLines, and
RequestData will fail until the DDE server application completes the macro.

Attempting to execute a macro or poke data before a DDE server application completes a
currently executing macro may cause the executing macro to fail or to produce unpredictable
results. See the documentation of the DDE server application for the results of sending
command strings or poking data before macro execution has completed.
Note
ExecuteMacro returns true if the macro command was successfully passed to the DDE server. A
true value does not ensure that the macro command will execute successfully once it has been
accepted by the server.

TDdeClientConv::ExecuteMacroLines
TDdeClientConv See also
ExecuteMacroLines sends a list of several macro commands to a DDE server application.
bool __fastcall ExecuteMacroLines(Classes::TStrings* Cmd, bool waitFlg)
;

Description
Call ExecuteMacroLines to send several macro commands to the server application. To send a
single macro command, use ExecuteMacro instead. ExecuteMacroLines returns true if the
macro list was successfully passed to the DDE server application. If ExecuteMacroLines was
unable to send a list of command strings, it returns false.
Cmd contains the list of macros to be executed by the DDE server application. WaitFlg
determines if this DDE client should wait until the DDE server application finishes executing all
the macros before allowing another DDE transaction to be sent. If WaitFlg is set to true,
subsequent calls to ExecuteMacro, ExecuteMacroLines, PokeData, PokeDataLines, and
RequestData will fail until the DDE server application completes all of the macros.

TDdeClientConv::OpenLink
TDdeClientConv See also
OpenLink initiates a new DDE conversation.
bool __fastcall OpenLink(void);
Description
Call OpenLink to establish a new DDE conversation with the DdeService. If the server
application is not running, OpenLink will launch the ServiceApplication. If the conversation is
successfully opened, an OnOpen event occurs and OpenLink returns true. If the conversation
isn't successfully opened, OpenLink returns false.
Note
If ConnectMode is ddeAutomatic, OpenLink is called automatically when the DdeTopic and
DdeService are specified by SetLink.

TDdeClientConv::PasteLink
TDdeClientConv See also
PasteLink opens a DDE conversation with the current Clipboard object.
bool __fastcall PasteLink(void);
Description
Call PasteLink to establish a DDE link to an object on the Clipboard. PasteLink sets the
DdeTopic or DdeService properties from the Clipboard. PasteLink returns true if the link is
successfully established.

TDdeClientConv::PokeData
TDdeClientConv See also
PokeData sends data to a DDE server application.
bool __fastcall PokeData(const System::AnsiString Item, char * Data);
Description
Use PokeData to transfer text data to a DDE server that supports poked data. Item specifies the
linked item in the DDE server. Data is a null-terminated string that specifies the text data to
transfer.
The value of the DDE item depends on the linked DDE server application. Item is typically a
selectable portion of text, such as a spreadsheet cell or a database field in an edit box. If the
DDE server is an Borland C++Builder application, Item is the name of the linked DDE server
component.
The usual direction of data flow is from the DDE server to the DDE client application. Some DDE
server applications won't accept poked data. PokeData returns true if the data was successfully
transferred, false if the data was not successfully transferred.
To poke a string list rather than a single string, use the PokeDataLines method.
Note
If either the ExecuteMacro or ExecuteMacroLines method was called with its WaitFlg parameter
set to true, PokeData will automatically fail until the server application has completed executing
the macro. The WaitStat property indicates when PokeData will attempt to poke data to the
server.

TDdeClientConv::PokeDataLines
TDdeClientConv See also
PokeDataLines sends multiple lines of data to a DDE server application.
bool __fastcall PokeDataLines(const System::AnsiString Item, Classes::
TStrings* Data);

Description
Use PokeDataLines to transfer multiple lines of text data to a DDE server that supports poked
data. Item specifies the linked item in the DDE server. Data is a set of strings that specifies the
text data to transfer.
The value of the DDE item depends on the linked DDE server application. Item is typically a
selectable portion of text, such as a spreadsheet cell or a database field in an edit box. If the
DDE server is an Borland C++Builder application, Item is the name of the linked DDE server
component.
The usual direction of data flow is from the DDE server to the DDE client application. Some DDE
server applications won't accept poked data. PokeData returns true if the data was successfully
transferred, false if the data was not successfully transferred.
To poke a single string rather than a string list, use the PokeData method.
Note
If either the ExecuteMacro or ExecuteMacroLines method was called with its WaitFlg parameter
set to true, PokeData will automatically fail until the server application has completed executing
the macro. The WaitStat property indicates when PokeData will attempt to poke data to the
server.

TDdeClientConv::RequestData
TDdeClientConv See also
RequestData requests data from a DDE server.
char * __fastcall RequestData(const System::AnsiString Item);
Description
Call RequestData to send a request to the DDE server for the data named by Item. RequestData
returns the value of the named DDE server item. RequestData automatically allocates memory
to store the returned data, but applications must dispose of this PChar string after processing it.
This is done with the StrDispose function.
If the DDE server contains DDE items that can be continually updated, data can be received and
updated automatically by creating TDdeClientItem objects for those items.
The value of the DDE item depends on the linked DDE server application. Item is typically a
selectable portion of text, such as a spreadsheet cell or a database field in an edit box. If the
DDE server is an Borland C++Builder application, Item is the name of the linked DDE server
component.
Note
See the documentation for the DDE server application for specific information about specifying a
DDE item.

TDdeClientConv::SetLink
TDdeClientConv See also
SetLink specifies the service and topic of a DDE conversation and attempts to open the link if
ConnectMode is ddeAutomatic.
bool __fastcall SetLink(const System::AnsiString Service, const System:
:AnsiString Topic);

Description
Call SetLink to fully specify a DDE conversation. If ConnectMode is ddeManual, calling SetLink
is equivalent to setting the DdeTopic and DdeService properties, and clearing all data from any
associated TDdeClientItem objects. If ConnectMode is ddeAutomatic, SetLink opens the link to
the DDE server as well.
The Service and Topic parameters specify the values for the DdeTopic and DdeService
properties, respectively.

TDdeClientConv::StartAdvise
TDdeClientConv See also
StartAdvise starts an advise loop for all of the TDdeClientItems associated with the current DDE
conversation.
bool __fastcall StartAdvise(void);
Description
Call StartAdvise to start an advise loop for all of the TDdeClientItems associated with the current
DDE conversation. StartAdvise returns true if loop startup is successful.

TDdeClientConv::TDdeClientConv
TDdeClientConv See also
TDdeClientConv creates an instance of TDdeClientConv.
__fastcall virtual TDdeClientConv(Classes::TComponent* AOwner);
Description
Call TDdeClientConv to create an instance of TDdeClientConv. After calling the constructor of its
parent object, TDdeClientConv creates the helper objects used to manage individual DDE client
items.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent

TDdeClientConv example
TDdeClientConv

TDdeClientItem
Hierarchy Properties Methods Events See also
TDdeClientItem defines an item in a DDE conversation.
Header
vcl/ddeman.hpp
Description
Use TDdeClientItem in conjunction with TDdeClientConv to enable an application to act as a
DDE client. A DDE client item specifies a single item supported by a DDE server. A single
TDdeClientConv object may be associated with multiple client items. If the DDE client
conversation has established a link with a DDE server, the server will automatically and
continually update all client items until the conversation is terminated.

TDdeClientItem properties
TDdeClientItem Alphabetically Legend

In TDdeClientItem
DdeConv
DdeItem
Lines
Text

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TDdeClientItem properties
TDdeClientItem By object Legend

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

DdeConv
DdeItem
DesignInfo
Lines
Name

Owner
Tag
Text

TDdeClientItem::DDEConv
TDdeClientItem See also
DDEConv specifies the DDE client conversation to associate with the DDE client item.
__property TDdeClientConv* DdeConv;
Description
Set DDEConv to associate the DDE client item with a DDE client conversation. The value of
DdeConv is the DDE client conversation object that defines the DDE conversation. The
DdeConv establishes the link to the server that provides the Text for the DDE client item.

TDdeClientItem::DDEItem
TDdeClientItem See also
DDEItem specifies the item of a DDE conversation.
__property System::AnsiString DdeItem;
Description
Set the DDEItem property to the name of a DDE item supported by the DDE server. The value of
DDEItem depends on the linked DDE server application. DDEItem is typically a selectable
portion of text, such as a spreadsheet cell or a database field in an edit box. If the DDE server is
a Borland C++Builder application, DDEItem is the name of the linked DDE server item.
At design time, specify DDEItem by typing the item string in the object inspector. Alternately,
DDEItem can be specified from the DDE conversation by pasting a link using the DDE Info
dialog box, which is called by clicking the ellipsis (...) button for DdeService or DdeTopic in the
object inspector. After choosing Paste Link in the DDE Info dialog box, choose the item from a
list of possible items for DDEItem in the object inspector when link information is on the
Clipboard.
Note
See the documentation for the DDE server application for the specific information about
specifying DDE items.

TDdeClientItem::Lines
TDdeClientItem See also
Lines contains the text data to exchange in a DDE conversation.
__property Classes::TStrings* Lines;
Description
Read Lines to get the text that is updated by the DDE server application. Lines is updated
automatically by the DDE server. When Lines is changed by the server, an OnChange event
occurs.
Set the Lines property to poke data to the DDE server.
Lines corresponds to the Text property. Whenever the value of Lines or Text is updated, the
other is also changed so that the first line of Lines is always equal to Text.
Note
Lines of data can also be sent to the DDE server by calling the PokeDataLines method of the
DDE client conversation.

TDdeClientItem::Text
TDdeClientItem See also Example
Text contains the text data to exchange in a DDE conversation.
__property System::AnsiString Text;

Read Text to get the text that is updated by the DDE server application. Text is updated
automatically by the DDE server. When Text is changed by the server, an OnChange event
occurs.
Set the Text property to poke data to the DDE server.
Text corresponds to the Lines property. Whenever the value of Lines or Text is updated, the
other is also changed so that the first line of Lines is always equal to Text.
Note
Data can also be sent to the DDE server by calling the PokeData method of the DDE client
conversation.

TDdeClientItem events
TDdeClientItem Alphabetically Legend

In TDdeClientItem
OnChange

TDdeClientItem events
TDdeClientItem By object Legend

OnChange

TDdeClientItem::OnChange
TDdeClientItem See also
OnChange occurs immediately after the DDE server updates the Lines property.
__property Classes::TNotifyEvent OnChange;
Description
Write an OnChange event handler to take specific action when the DDE server updates the text
for this DDE client item. The new value for the DDE client item can be found by reading the
Lines or Text property.

TDdeClientItem methods
TDdeClientItem Alphabetically

In TDdeClientItem
~TDdeClientItem
TDdeClientItem

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDdeClientItem methods
TDdeClientItem By object

~TDdeClientItem
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
TDdeClientItem

TDdeClientItem::~TDdeClientItem
TDdeClientItem See also
~TDdeClientItem frees the memory associated with the TDdeClientItem object. Do not call ~
TDdeClientItem directly. Instead, use the delete keyword on the object, which causes ~
TDdeClientItem to be invoked automatically.
__fastcall virtual ~TDdeClientItem(void);
~TDdeClientItem frees the memory associated with the Lines property before calling the
destructor of its parent object.

TDdeClientItem::TDdeClientItem
TDdeClientItem See also
TDdeClientItem creates an instance of TDdeClientItem.
__fastcall virtual TDdeClientItem(Classes::TComponent* AOwner);
Call TDdeClientItem to instantiate a TDdeClientItem at runtime. After calling the constructor of its
parent object, TDdeClientItem creates a helper object to manage the Lines property.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent

TDdeClientItem example
TDdeClientItem

TDdeServerItem
Hierarchy Properties Methods Events See also
TDDEServerItem defines the item of a DDE conversation.
Header
vcl/ddeman.hpp
Description
Use TDDEServerItem by itself, or, optionally, with a TDDEServerConv object to enable an
application to function as a DDE server. DDE clients link to an individual DDE server item by
referring to the Name property. Once a link to a DDE client is established, the DDE server item
can update the client to changes in the item data, or receive data that the DDE client pokes to
the item.

TDdeServerItem properties
TDdeServerItem Alphabetically Legend

In TDdeServerItem
Fmt

Lines
ServerConv
Text

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TDdeServerItem properties
TDdeServerItem By object Legend

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

DesignInfo
Fmt

Lines
Name

Owner
ServerConv
Tag
Text

TDdeServerItem::Fmt
TDdeServerItem See also
Fmt is the clipboard format the DDE client item uses to pass data to the DDE client.
__property int Fmt;
Description
Set Fmt in an OnChange event handler to specify a clipboard format for the data that is passed
to the DDE client if it is not text. The DDE data that is sent to the DDE client includes this format
so that clients can correctly interpret the data. Read Fmt when the client pokes data to the DDE
server item to determine the clipboard format the client used to format the data.

TDdeServerItem::Lines
TDdeServerItem See also
Lines contains the data to exchange in a DDE conversation.
__property Classes::TStrings* Lines;
Description
Set Lines to the data the DDE server item sends to the DDE client. Whenever the Lines property
changes, an OnChange event occurs and then the new value is sent to the DDE client. If the
DDE server item accepts poked data, Lines receives the data whenever the DDE client pokes
data to this item. When Lines is changed by a DDE client poking data, an OnPokeData event
occurs after the OnChange event.
Usually Lines contains text, and setting Lines sets the Fmt property to CF_TEXT. However,
Borland C++Builder strings can contain non-text data. If Lines does not specify text data, Fmt
must be changed to indicate the format of the data in an OnChange event handler.
Lines corresponds to the Text property. Whenever the value of Lines or Text is changed, the
other is updated so that the first line of Lines is always equal to Text.

TDdeServerItem::ServerConv
TDdeServerItem See also
ServerConv specifies the DDE server conversation to associate with the DDE server item.
__property TDdeServerConv* ServerConv;
Description
Set ServerConv to associate the DDE server item with a DDE topic represented by the DDE
server conversation. If ServerConv is not set, the DDE topic of the conversation is the value of
the Caption property of the form containing the TDDEServerItem component.

TDdeServerItem::Text
TDdeServerItem See also Example
Text contains the data to exchange in a DDE conversation.
__property System::AnsiString Text;
Description
Set Text to the data the DDE server item sends to the DDE client. Whenever the Text property
changes, an OnChange event occurs and then the new value is sent to the DDE client. If the
DDE server item accepts poked data, Text receives the data whenever the DDE client pokes
data to this item. When Text is changed by a DDE client poking data, an OnPokeData event
occurs after the OnChange event.
Usually Text contains text, and setting Text sets the Fmt property to CF_TEXT. However,
Borland C++Builder strings can contain non-text data. If Text does not specify text data, Fmt
must be changed to indicate the format of the data in an OnChange event handler.
Text corresponds to the Lines property. Whenever the value of Lines or Text is changed, the
other is updated so that the first line of Lines is always equal to Text.

TDdeServerItem events
TDdeServerItem Alphabetically Legend

In TDdeServerItem
OnChange
OnPokeData

TDdeServerItem events
TDdeServerItem By object Legend

OnChange
OnPokeData

TDdeServerItem::OnChange
TDdeServerItem See also
OnChange occurs when the Lines property changes, before the changes have been sent to the
DDE client.
__property Classes::TNotifyEvent OnChange;
Description
Write an OnChange event handler to take specific action when the DDE server item is about to
update the DDE client. The new value for the DDE client item can be found by reading the Lines
or Text property.
If the value of Lines does not contain text data, an OnChange event handler must be assigned to
change the value of Fmt. OnChange is called after Fmt gets set to CF_TEXT by setting the Lines
property, but before the data gets sent to the client.

TDdeServerItem::OnPokeData
TDdeServerItem See also
OnPokeData occurs after a DDE client changes the value of the Lines property.
__property Classes::TNotifyEvent OnPokeData;
Description
Write an OnPokeData event handler to take specific action when the DDE client pokes data to
this DDE server item. The new value for the item can be found by reading the Lines or Text
property.
When a DDE client pokes data to a DDE server items, the PokeData method is called. PokeData
causes the following events.
1 First, the new value is assigned to the Lines (Text) property.
2 An OnChange event occurs.
3 The new value is sent back to the DDE client.
4 An OnPokeData event occurs.

TDdeServerItem methods
TDdeServerItem Alphabetically

In TDdeServerItem
~TDdeServerItem
Change
CopyToClipboard
PokeData
TDdeServerItem

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDdeServerItem methods
TDdeServerItem By object

~TDdeServerItem
Assign
Change
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CopyToClipboard
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
PokeData
RemoveComponent
TDdeServerItem

TDdeServerItem::~TDdeServerItem
TDdeServerItem See also
~TDdeServerItem frees the memory associated with the TDdeServerItem object. Do not call ~
TDdeServerItem directly. Instead, use the delete keyword on the object, which causes ~
TDdeServerItem to be invoked automatically.
__fastcall virtual ~TDdeServerItem(void);
~TDdeServerItem frees the memory associated with the Lines property before calling the
destructor of its parent object.

TDdeServerItem::Change
TDdeServerItem See also
Change causes an OnChange event.
virtual void __fastcall Change(void);
Description
Call Change to trigger an OnChange event when not setting the Lines or Text property. Use
Change in conjunction with the OnChange event to enable the DDE server item to exchange
data that is not compatible with the strings used by the Lines and Text properties.

TDdeServerItem::CopyToClipboard
TDdeServerItem See also Example
CopyToClipboard copies the data specified in the Text or Lines property to the Windows
Clipboard, along with DDE link information.
void __fastcall CopyToClipboard(void);
Description
Use CopyToClipboard to enable DDE clients to link to the DDE server item by executing an
Edit|Paste Link command, or its equivalent in the command structure of the DDE client
application.
CopyToClipboard can be used to create a DDE link at runtime only. To create a link at design
time, select the TDdeServerItem object and choose Edit|Copy from the menu. Then, activate the
DDE client application and paste the link according to the rules of the DDE client application.
See the documentation for the DDE client application for specific information about pasting the
link.

TDdeServerItem::PokeData
TDdeServerItem See also
PokeData process data that has been poked to the DDE server item by a DDE client.
long __fastcall PokeData(long Data);
Description
Call PokeData to inform the DDE server item that the DDE conversation holds data that has
been poked from a DDE client. Data is the DDE handle to the poked data.
PokeData does the following:
1 Uses the Data handle to obtain the data that was poked.
2 Sets the Lines property to the new data value.
3 Triggers an OnChange event.
4 Sends the new value of the data back to the DDE client.
5 Triggers an OnPokeData event.

TDdeServerItem::TDdeServerItem
TDdeServerItem See also
TDdeServerItem creates an instance of TDdeServerItem.
__fastcall virtual TDdeServerItem(Classes::TComponent* AOwner);
Description
Call TDdeServerItem to instantiate a DDE server item at runtime. TDdeServerItem is called
automatically for TDdeServerItem objects placed on forms at design time.
After calling the constructor of its parent object, TDdeServerItem initializes the Fmt property to
CF_TEXT, and creates a helper object to manage the Lines property.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent

TDdeServerItem example
TDdeServerItem

TDdeServerConv
Hierarchy Properties Methods Events See also
TDdeServerConv represents a DDE topic of conversation with a DDE client.
Header
vcl/ddeman.hpp
Description
Use TDdeServerConv to establish a DDE topic with a DDE client application. Individual items
under the DDE topic are represented by TDdeServerItem objects. These items are linked to the
DDE server conversation by setting their ServerConv property.
Using a TDDEServerConv component is optional. Without a TDDEServerConv object, the client
can still enter into a DDE conversation and receive an update directly from a TDDEServerItem
object. However, a DDE server conversation is required to handle any macros that the DDE
client may send.
The Name property of the DDE server conversation provides the topic used by DDE clients to
establish a link to the DDE server conversation. DDE server items that are not associated with a
DDE server conversation use the Caption property of the form for the topic name. Use a
TDDEServerConv object when establishing multiple DDE topics in a single form, or when the
Caption of the form may not be unique or constant at runtime.

TDdeServerConv properties
TDdeServerConv Alphabetically Legend

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TDdeServerConv properties
TDdeServerConv By object Legend

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

DesignInfo
Name

Owner
Tag

TDdeServerConv events
TDdeServerConv Alphabetically Legend

In TDdeServerConv
OnClose
OnExecuteMacro
OnOpen

TDdeServerConv events
TDdeServerConv By object Legend

OnClose
OnExecuteMacro
OnOpen

TDdeServerConv::OnClose
TDdeServerConv See also
OnClose occurs when the DDE client terminates the DDE conversation.
__property Classes::TNotifyEvent OnClose;
Description
Write an OnClose event handler to take specific action when the DDE conversation ends. The
DDE conversation will end if the client terminates the conversation. It does not end if the
TDdeServerConv object is destroyed. In that case, the DDE server items simply remove
themselves from the DDE server conversation, and continue the link to the DDE client.
The Sender parameter is the DDE server conversation, not the DDE client.

TDdeServerConv::OnExecuteMacro
TDdeServerConv See also
OnExecuteMacro occurs when the DDE client sends a macro to the DDE server conversation.
typedef void __fastcall (__closure *TMacroEvent)(System::TObject*
Sender, Classes::TStrings* Msg);

__property TMacroEvent OnExecuteMacro;
Description
Write an OnExecuteMacro event handler to implement a response to macros sent by the DDE
client. The Sender parameter is the DDE server conversation. The Msg parameter gives the
macro string to execute.

TDdeServerConv::OnOpen
TDdeServerConv See also
OnOpen occurs immediately after the DDE link to the client has been established.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnOpen;
Description
Write an OnOpen event handler to take specific action whenever a link is established to a DDE
client. The Sender parameter is the DDE server conversation, not the DDE client.

TDdeServerConv methods
TDdeServerConv Alphabetically

In TDdeServerConv
~TDdeServerConv
ExecuteMacro
TDdeServerConv

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDdeServerConv methods
TDdeServerConv By object

~TDdeServerConv
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
Dispatch
ExecuteMacro
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
TDdeServerConv

TDdeServerConv::~TDdeServerConv
TDdeServerConv See also
~TDdeServerConv frees the memory associated with the TDdeServerConv object. Do not call ~
TDdeServerConv directly. Instead, use the delete keyword on the object, which causes ~
TDdeServerConv to be invoked automatically.
__fastcall virtual ~TDdeServerConv(void);
TDdeServerConv removes the DDE server conversation topic from the application, but does not
terminate any currently open DDE conversations. Instead, the DDE server items that were
associated with the DDE server conversation become associated with the form instead, and
continue their link to the DDE client.

TDdeServerConv::ExecuteMacro
TDdeServerConv See also
ExecuteMacro responds to macros sent by the DDE client.
long __fastcall ExecuteMacro(long Data);
Description
ExecuteMacro provides the only way for a Borland C++Builder application to respond to macros
sent by DDE clients. ExecuteMacro is called when the DDE client sends a Macro over the DDE
link. Data is the handle to the DDE data that contains the macro.
ExecuteMacro retrieves the strings of the macro from Data, and calls the OnExecuteMacro event
handler. If there is no OnExecuteMacro event handler, the macro is ignored. Whether or not
there is an OnExecuteMacro event handler, the DDE client always receives notification that the
macro was successfully transmitted, unless Data contains no macro.

TDdeServerConv::TDdeServerConv
TDdeServerConv See also
TDdeServerConv creates an instance of TDdeServerConv.
__fastcall virtual TDdeServerConv(Classes::TComponent* AOwner);
Description
Call TDdeServerConv to create an instance of TDdeServerConv at runtime. For
TDdeServerConv objects placed on forms at design time, TDdeServerConv is called
automatically.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent

TDdeServerConv example
TDdeServerConv

TDesigner
Hierarchy Properties Methods
The TDesigner object is an abstract type derived directly from TObject that provides the basis for
all form designers in the Borland C++Builder environment.
Header
vcl/forms.hpp
Description
The abstract designer object provides two properties used by all designer objects and defines
five abstract methods that working designer objects must override.

TDesigner properties
TDesigner Alphabetically

In TDesigner
Form
IsControl

TDesigner properties
TDesigner By object

Form
IsControl

TDesigner::Form
TDesigner
The Form property provides a reference to the form currently being designed.
__property TForm* Form;

TDesigner::IsControl
TDesigner
The IsControl property specifies whether the form is in its form state or its control state.
__property bool IsControl;

TDesigner methods
TDesigner Alphabetically

In TDesigner
~TDesigner
IsDesignMsg
Modified
Notification
PaintGrid
TDesigner
ValidateRename

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDesigner methods
TDesigner By object

~TDesigner
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
IsDesignMsg
MethodAddress
MethodName
Modified
NewInstance
Notification
PaintGrid
TDesigner
ValidateRename

TDesigner::~TDesigner
TDesigner
~TDesigner frees the memory associated with the TDesigner object. Do not call ~TDesigner
directly. Instead, use the delete keyword on the object, which causes ~TDesigner to be invoked
automatically.
__fastcall virtual ~TDesigner(void);

TDesigner::IsDesignMsg
TDesigner
The IsDesignMsg method determines when a message should be handled by a designer.
virtual bool __fastcall IsDesignMsg(Controls::TControl* Sender,
Messages::TMessage &Message);

Description
The IsDesignMsg method is called for each message sent to a component in the designer. This
method returns true if the message is a design message, meaning one the designer should
handle for the component.

TDesigner::Modified
TDesigner Example
The Modified method notifies property and component editors when a change is made to a
component.
virtual void __fastcall Modified(void);
Description
When any change is made to a component the property and component editors call this method,
allowing the designer to respond to the change.

TDesigner::Notification
TDesigner
The Notification method allows the designer to respond when a notification is sent to the form.
virtual void __fastcall Notification(Classes::TComponent* AComponent,
Classes::TOperation Operation);

Description
When a form receives a notification, it calls the Notification method of the designer, allowing the
designer to respond to all the notifications the form receives.

TDesigner::PaintGrid
TDesigner
The PaintGrid method paints the alignment grid on the form's canvas.
virtual void __fastcall PaintGrid(void);

TDesigner::TDesigner
TDesigner
TDesigner creates a new TDesigner object.
__fastcall TDesigner(void);

TDesigner::ValidateRename
TDesigner
This method is usually called by the form's ValidateRename method to provide tighter
restrictions on renaming, such as prohibiting reserved words.
virtual void __fastcall ValidateRename(Classes::TComponent* AComponent,
const System::AnsiString CurName, const System::AnsiString NewName);

Hierarchy

TObject

TDesigner example
TDesigner

TDirectoryListBox
Hierarchy Properties Methods Events See also
TDirectoryListBox is a that is aware of the directory structure of the current drive.
Header
vcl/filectrl.hpp

TDirectoryListBoxTDirectoryListBoxthe user to change directories or drives.
You can synchronize a directory list box with a file list box, so that when the user uses a
directory list box to change directories, the file list box displays the files in the new directory. This
is the event handler for the OnChange event for the directory list box:
void __fastcall TForm1::DirectoryListBox1Change(TObject *Sender)
{
FileListBox1->Directory = DirectoryListBox1->Directory;

}

TDirectoryListBox properties
TDirectoryListBox Alphabetically Legend

In TDirectoryListBox
CaseSensitive

Directory
DirLabel
Drive
FileList

PreserveCase
Derived from TCustomListBox

Canvas
Columns
IntegralHeight
ItemHeight
ItemIndex
Items

SelCount
Selected
TopIndex

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex

Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDirectoryListBox properties
TDirectoryListBox By object Legend

Align
BoundsRect

Brush
Canvas
CaseSensitive

ClientHeight
ClientOrigin
ClientRect

ClientWidth
Color
Columns

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
Directory
DirLabel
DragCursor
DragMode
Drive
Enabled
FileList
Font

Handle
Height
HelpContext
Hint
IntegralHeight
ItemHeight
ItemIndex
Items
Left
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu

PreserveCase
SelCount

Selected
ShowHint

Showing
TabOrder
TabStop
Tag
TopIndex
Top
Visible
Width

TDirectoryListBox::CaseSensitive
TDirectoryListBox See also
CaseSensitive determines if the disk system supports case-sensitive directory information.
__property bool CaseSensitive;
Description
Use CaseSensitive to find whether or not the current file system supports case-sensitive file
names. CaseSensitive returns true if it does and false if it does not.

TDirectoryListBox::Directory
TDirectoryListBox See also
Directory determines the current directory for the directory list box control.
__property System::AnsiString Directory;
Description
The directory list box displays the value of the Directory property as the current directory in the
list box. Examine the example to see how a directory list box and a file list box can work together
through their Directory properties.
Example
For a file list box and a directory list box on a form, this code changes the current directory in the
directory list box and displays the files in that directory in the file list box when the user changes
directories using the directory list box:
void __fastcall TForm1::DirectoryListBox1Change(TObject* Sender)
{
FileListBox1->Directory = DirectoryListBox1->Directory;

}

TDirectoryListBox::DirLabel
TDirectoryListBox See also
DirLabel provides a simple way to display the current directory as the caption of a label control.
__property Stdctrls::TLabel* DirLabel;
Description
Use DirLabel to specify the label to update with the current directory. When the current directory
changes in the directory list box, the change is reflected in the caption of the label.

TDirectoryListBox::Drive
TDirectoryListBox See also
Drive determines the drive for which the list box displays the directory structure.
__property char Drive;
Description
When the value of Drive changes, the Directory value changes also to the current directory on
the specified drive.
Example
The following example assumes that a drive combo box, a file list box, and a directory list box
are on a form. This code changes the drive displayed in the drive combo box, displays the
current directory of the selected drive in the directory list box, and displays the files in the current
directory of the selected drive in the file list box when the user selects a drive in the drive combo
box:
void __fastcall TForm1->DriveComboBox1Change(TObject* Sender)
{
DirectoryListBox1->Drive = DriveComboBox1->Drive;
FileListBox1->Directory = DirectoryListBox1->Directory;

}

TDirectoryListBox::FileList
TDirectoryListBox See also
FileList provides a simple way to connect a directory list box with a file list box.
__property TFileListBox* FileList;
Description
Use FileList to specify the file list box in which to display the files of the current directory.
Set FileList to the file list box that will display the files in the directory. Set the Directory property
of the directory list box.
Example
This example uses a button, an edit box, a label, a drive combo box, a directory list box, a file list
box, and a filter combo box on a form. When the user clicks the button, the rest of the controls
on the form begin working together like the controls in an open or save dialog box.
void __fastcall TForm1::Button1Click(TObject* Sender)
{
DriveComboBox1->DirList = DirectoryListBox1;
DirectoryListBox1->FileList = FileListBox1;
DirectoryListBox1->DirLabel = Label1;
FileListBox1->FileEdit = Edit1;
FilterComboBox1->FileList = FileListBox1;

}

TDirectoryListBox::PreserveCase
TDirectoryListBox See also
PreserveCase indicates whether the file system preserves the case of file names when writing to
disk.
__property bool PreserveCase;
Description
Use PreserveCase to find whether or not the current file system preserves the case-sensitivity of
file names. PreserveCase returns true if it does and false if it does not.

TDirectoryListBox events
TDirectoryListBox Alphabetically Legend

In TDirectoryListBox
OnChange

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDirectoryListBox events
TDirectoryListBox By object Legend

OnChange
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDirectoryListBox::OnChange
TDirectoryListBox See also
OnChange occurs when the user selects a new directory with the mouse or keyboard when the
user moves the selection bar and presses enter.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnChange;
Description
Use OnChange to write an event handler to process an action when a new directory is selected.
Example
OnChange can be used to write an event handler to synchronize a directory list box with a file list
box (TFileListBox), so that when the user uses a directory list box to change directories, the file
list box displays the files in the new directory. This is the event handler for the OnChange event
for the directory list box:
void __fastcall TForm1::DirectoryListBox1Change(TObject* Sender);
{
FileListBox1->Directory := DirectoryListBox1->Directory;

}

TDirectoryListBox methods
TDirectoryListBox Alphabetically

In TDirectoryListBox
~TDirectoryListBox
DisplayCase
FileCompareText
GetItemPath
OpenCurrent
TDirectoryListBox
Update

Derived from TCustomListBox
Clear
ItemAtPos
ItemRect

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDirectoryListBox methods
TDirectoryListBox By object

~TDirectoryListBox
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DisplayCase
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FileCompareText
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetItemPath
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
ItemAtPos

ItemRect
MethodAddress
MethodName
NewInstance
OpenCurrent
PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TDirectoryListBox
UpdateControlState
Update

TDirectoryListBox::~TDirectoryListBox
TDirectoryListBox See also
~TDirectoryListBox frees the memory associated with the TDirectoryListBox object. Do not call ~
TDirectoryListBox directly. Instead, use the delete keyword on the object, which causes ~
TDirectoryListBox to be invoked automatically.
__fastcall virtual ~TDirectoryListBox(void);
Description
~TDirectoryListBox frees the bitmaps used for the Open, Close and Current folders, and then
calls the destructor of its parent object.

TDirectoryListBox::DisplayCase
TDirectoryListBox See also
DisplayCase either preserves or converts the case of the string passed to it.
System::AnsiString __fastcall DisplayCase(const System::AnsiString S);
Description
DisplayCase converts S to all lower case, using the currently installed language driver, if neither
PreserveCase nor CaseSensitive are true. Otherwise it simply returns S unmodified.

TDirectoryListBox::FileCompareText
TDirectoryListBox See also
FileCompareText compares two strings taking into account the case sensitivity of the file system.
int __fastcall FileCompareText(const System::AnsiString A, const
System::AnsiString B);

Description
FileCompareText compares the strings passed to it as A and B, if CaseSensitive is false.
Otherwise it uses AnsiCompareStr to compare the strings.

TDirectoryListBox::GetItemPath
TDirectoryListBox See also
GetItemPath returns the path of a directory in the directory list box.
System::AnsiString __fastcall GetItemPath(int Index);
Description
Use GetItemPath to get the path of a directory by specifying the directory with the Index value.
The first directory in the list has an index value of 0.
Example
This example uses a directory list box, a button, and a label on a form. When the user selects a
directory in the directory list box and clicks the button, the selected directory opens, and the path
of the second directory displayed in the list box appears as the caption of the label.
void __fastcall TForm1::Button1Click(TObject* Sender);
{
DirectoryListBox1->OpenCurrent();
Label1->Caption = DirectoryListBox1->GetItemPath(1);

}

TDirectoryListBox::OpenCurrent
TDirectoryListBox
OpenCurrent opens the selected directory.
void __fastcall OpenCurrent(void);
Description
OpenCurrent opens the directory selected in the directory list box, as if the user had double-
clicked the directory.

Example
This example uses a directory list box, a button, and a label on a form. When the user selects a
directory in the directory list box and clicks the button, the selected directory opens, and the path
of the second directory displayed in the list box appears as the caption of the label.
void __fastcall TForm1::Button1Click(TObject* Sender)
{
DirectoryListBox1->OpenCurrent();
Label1->Caption = DirectoryListBox1->GetItemPath(1);

}

TDirectoryListBox::TDirectoryListBox
TDirectoryListBox See also
TDirectoryListBox instantiates a directory list box.
__fastcall virtual TDirectoryListBox(Classes::TComponent* AOwner);
Description
Call TDirectoryListBox to instantiate a directory list box at runtime. For directory list boxes
created at design time, TDirectoryListBox is called automatically.
TDirectoryListBox allocates memory for a directory list box, and calls the constructor of its parent
object. Then it set the following properties:
• Width to 145.
• Style to lbOwnerDrawFixed.
• Sorted to false.
Then it creates and loads bitmaps for the Open, Close and Current folders and initializes the
directory to the current directory on the default drive.

TDirectoryListBox::Update
TDirectoryListBox Example
Update refreshes the directory list.
void __fastcall Update(void);
Description
Update updates and refreshes the directory list for the directory list box control to reflect the
current settings.

Example
The following sample code sets the directory of DirectoryListBox1 to C:\TEMP when the form is
created. When Button1 is pressed, a subdirectory called MYDIR is added to C:\TEMP, but note
that it is not updated in DirectoryListBox1 until Button2 is pressed and Update is called.
void __fastcall TForm1::Button1Click(TObject* Sender)
{
::CreateDirectory("c:\temp\mydir",NULL);

}
void __fastcall TForm1::FormCreate(TObject* Sender);
{
DirectoryListBox1->Directory = "c:\temp";

}
void __fastcall TForm1::Button2Click(TObject* Sender);
{
DirectoryListBox1->Update();

}

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomListBox

TDirectoryListBox example
TDirectoryListBox

TDragObject
Hierarchy Methods See also
The TDragObject is a base class used for drag and drop operations in Borland C++Builder.
Header
vcl/controls.hpp
Description
Use TDragObject to implement drag and drop of object’s data, instead of the control containing
the data by deriving from TDragObject and overriding its virtual methods as needed. Create the
custom drag object in the OnStartDrag event. Use the public IsDragObject function within a
target’s OnDragOver event when accepting a drag drop.
TDragObject allows more flexible drag and drop handling. Normally, the Source parameter of the
OnDragOver and OnDragDrop events is the control that stars the drag operation. If multiple
controls of differing kinds need to start a drag of the same kind of data (e.g. a filename, text, a
dollar amount, etc.), the source would need support for each kind of control. A drag object allows
the target to need only know how to handle a drag object as a source since each of the source
controls can create the same kind of drag object in their OnStartDrag events. The OnDragOver
and OnDragDrop events can tell if the source is a drag object, as opposed to the control, by
calling IsDragObject.
Drag objects can be dragged between multiple .DLLs as well as inside the main .EXE.

TDragObject methods
TDragObject Alphabetically Legend

In TDragObject
~TDragObject

Finished
GetDragCursor
GetDragImages
GetName
HideDragImage
Instance
ShowDragImage
TDragObject

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDragObject methods
TDragObject By object Legend

~TDragObject
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress

Finished
FreeInstance
Free
GetDragCursor
GetDragImages
GetName

HideDragImage
InheritsFrom
InitInstance
InstanceSize
Instance
MethodAddress
MethodName
NewInstance
ShowDragImage
TDragObject

TDragObject::~TDragObject
TDragObject
~TDragObject frees the memory associated with the TDragObject object. Do not call ~
TDragObject directly. Instead, use the delete keyword on the object, which causes ~
TDragObject to be invoked automatically.
__fastcall virtual ~TDragObject(void);

TDragObject::Finished
TDragObject See also
Finished is called when the mouse is released indicating the drag operation is complete.
virtual void __fastcall Finished(System::TObject* Target, int X, int Y,
bool Accepted);

Description
Finished does nothing by default, but can be overridden to provide more meaningful behavior.
The Target is the object that accepted the drag. Target can be NULL. Accepted returns true if
the Target accepted the drag and drop. Finished is overridden and implemented in
TDragControlObject.

TDragObject::GetDragCursor
TDragObject See also
GetDragCursor is called whenever the mouse is moved to retrieve which cursor should be
currently displayed.
virtual TCursor __fastcall GetDragCursor(bool Accepted, int X, int Y);
Description
If the target control at the X, Y position (in pixels) accepts the drag (Accepted is true), the drag
object sets the drag cursor to crDrag cursor; otherwise, crNoDrop cursor is displayed by default.

TDragObject::GetDragImages
TDragObject See also
GetDragImages is called at the beginning of a drag and drop operation and returns the control's
image list containing the image to be displayed while dragging.
virtual TCustomImageList* __fastcall GetDragImages(void);
Description
The image list normally contains only one image, and the VCL automatically creates and
maintains the image list. This can be NULL, and only the cursor used.

TDragObject::GetName
TDragObject See also
GetName returns a name string identifying the drag operation.
virtual System::AnsiString __fastcall GetName(void);
Description
By default GetName returns the name of the class, but can be overridden to return a more
meaningful string.

TDragObject::HideDragImage
TDragObject See also
HideDragImage is a virtual method which contains no functionality in its implementation.
virtual void __fastcall HideDragImage(void);
Description
HideDragImage is a virtual method and can therefore be overridden in a class derived from
TDragObject. HideDragImage is overridden in the derived class TDragControlObject.

TDragObject::Instance
TDragObject See also
The Instance method returns the instance (module) handle of the EXE or DLL that created the
drag object.
virtual int __fastcall Instance(void);

TDragObject::ShowDragImage
TDragObject See also
ShowDragImage is a virtual method which contains no functionality in its implementation.
virtual void __fastcall ShowDragImage(void);
Description
ShowDragImage is a virtual method and can therefore be overridden in a class derived from
TDragObject. ShowDragImage is overridden in the derived class TDragControlObject.

TDragObject::TDragObject
TDragObject
TDragObject creates a new TDragObject object.
__fastcall TDragObject(void);

Scope
Protected

Hierarchy

TObject

TDragObject example
TDragObject

TDrawGrid
Hierarchy Properties Methods Events
TDrawGrid is a grid control that permits the display of an existing data structure in column and
row format. TDrawGrid is an indirect descendent of TWinControl.
Header
vcl/grids.hpp

TDrawGrid properties
TDrawGrid Alphabetically Legend

Derived from TCustomGrid
BorderStyle
Col
ColCount
ColWidths
DefaultColWidth
DefaultDrawing
DefaultRowHeight
EditorMode
FixedColor
FixedCols
FixedRows

GridHeight
GridLineWidth

GridWidth
LeftCol

Options
Row
RowCount
RowHeights
ScrollBars
Selection
TabStops
TopRow

VisibleColCount
VisibleRowCount

Derived from TCustomControl
Canvas

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent

ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDrawGrid properties
TDrawGrid By object Legend

Align
BorderStyle
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
ColCount
Color
Col
ColWidths

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DefaultColWidth
DefaultDrawing
DefaultRowHeight
DesignInfo
DragCursor
DragMode
EditorMode
Enabled
FixedColor
FixedCols
FixedRows
Font

GridHeight
GridLineWidth

GridWidth
Handle

Height
HelpContext
Hint
LeftCol
Left
Name
Options

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu
RowCount
RowHeights
Row
ScrollBars
Selection
ShowHint

Showing

TabOrder
TabStops
TabStop
Tag
TopRow
Top

VisibleColCount
VisibleRowCount

Visible
Width

TDrawGrid events
TDrawGrid Alphabetically Legend

In TDrawGrid
OnColumnMoved
OnDrawCell
OnGetEditMask
OnGetEditText
OnRowMoved
OnSelectCell
OnSetEditText
OnTopLeftChanged

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TDrawGrid events
TDrawGrid By object Legend

OnClick
OnColumnMoved
OnDblClick
OnDragDrop
OnDragOver
OnDrawCell
OnEndDrag
OnEnter
OnExit
OnGetEditMask
OnGetEditText
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnRowMoved
OnSelectCell
OnSetEditText
OnStartDrag
OnTopLeftChanged

TDrawGrid::OnColumnMoved
TDrawGrid
OnColumnMoved occurs when the user moves a grid column.
typedef void __fastcall (__closure *TMovedEvent)(System::TObject*
Sender, long FromIndex, long ToIndex);

__property TMovedEvent OnColumnMoved;
Description
Use OnColumnMoved to perform special processing when the user moves a grid column.
OnColumnMoved does not occur unless the goColMoving option (Options property) is set.

TDrawGrid::OnDrawCell
TDrawGrid See also
OnDrawCell occurs when the cells of the grid need to be drawn.
typedef void __fastcall (__closure *TDrawCellEvent)(System::TObject*
Sender, long Col, long Row, const Windows::TRect &Rect, TGridDrawState
State);

__property TDrawCellEvent OnDrawCell;
Description
If the DefaultDrawing property is false, the code you write in the OnDrawCell event handler
draws in the cells. If DefaultDrawing is true, the contents of the cells are automatically drawn
using the default background and the canvas of the grid and is initialized so that the background
color is the brush color and the font has the default font color. If the cell is part of the selection,
the background color is changed to the selection color and the pen color is changed to the
selected text color.
The state passed will reflect whether the cell is a fixed cell, the focused cell or in the selection.

TDrawGrid::OnGetEditMask
TDrawGrid See also
OnGetEditMask occurs when the edit mask for the in-place editor needs to be retrieved.
typedef void __fastcall (__closure *TGetEditEvent)(System::TObject*
Sender, long ACol, long ARow, System::AnsiString & Value);

__property TGetEditEvent OnGetEditMask;
Description
Use OnGetEditMask to perform special processing when the mask for the in-place editor needs
to be retrieved. OnGetEditMask does not occur unless the goEditing option (Options property) is
set.

TDrawGrid::OnGetEditText
TDrawGrid See also
OnGetEditText occurs when text needs to be retrieved from the grid.
typedef void __fastcall (__closure *TGetEditEvent)(System::TObject*
Sender, long ACol, long ARow, System::AnsiString & Value);

__property TGetEditEvent OnGetEditText;
Description
Use OnGetEditText to perform special processing when text needs to retrieved from the grid.
OnGetEditText does not occur unless the goEditing (Options property) is set.

TDrawGrid::OnRowMoved
TDrawGrid
OnRowMoved occurs when the user moves a grid row.
typedef void __fastcall (__closure *TMovedEvent)(System::TObject*
Sender, long FromIndex, long ToIndex);

__property TMovedEvent OnRowMoved;
Description
Use OnRowMoved to perform special processing when the user moves a grid row.
OnRowMoved does not occur unless the goRowMoving option (Options property) is set.

OnRowMoved
OnRowMoved occurs when the user moves a grid row.
typedef void __fastcall (__closure *TMovedEvent)(System::TObject*
Sender, long FromIndex, long ToIndex);

__property TMovedEvent OnRowMoved;
Description
Use OnRowMoved to perform special processing when the user moves a grid row.
OnRowMoved does not occur unless the goRowMoving option (Options property) is set.

TDrawGrid::OnSelectCell
TDrawGrid
OnSelectCell occurs when a cell is selected in the grid.
typedef void __fastcall (__closure *TSelectCellEvent)(System::TObject*
Sender, long Col, long Row, bool &CanSelect);

__property TSelectCellEvent OnSelectCell;
Description
Use OnSelectCell to perform special processing when a cell is selected in the grid.

TDrawGrid::OnSetEditText
TDrawGrid

OnSetEditText occurs when text is edited inside a cell.
typedef void __fastcall (__closure *TSetEditEvent)(System::TObject*
Sender, long ACol, long ARow, const System::AnsiString Value);

__property TSetEditEvent OnSetEditText;

TDrawGrid::OnTopLeftChanged
TDrawGrid See also
OnTopLeftChanged occurs when the TopRow property or the LeftCol property changes.
__property Classes::TNotifyEvent OnTopLeftChanged;
Description
Use OnTopLeftChanged to perform special processing when the TopRow property or the LeftCol
property changes.

TDrawGrid methods
TDrawGrid Alphabetically

In TDrawGrid
CellRect
MouseToCell

Derived from TCustomGrid
~TCustomGrid
TCustomGrid

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification

GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDrawGrid methods
TDrawGrid By object

~TCustomGrid
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
CellRect
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
MouseToCell
NewInstance

PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TCustomGrid
UpdateControlState
Update

~TDrawGrid
~TDrawGrid frees the memory associated with the TDrawGrid object. Do not call ~TDrawGrid
directly. Instead, use the delete keyword on the object, which causes ~TDrawGrid to be invoked
automatically.
__fastcall virtual ~TDrawGrid(void);

TDrawGrid::CellRect
TDrawGrid See also Example
Creates a rectangle of type TRect for the cell defined by the column ACol and the row ARow.
Windows::TRect __fastcall CellRect(long ACol, long ARow);
Description
If the cell indicated by ACol and ARow is not visible, CellRect returns an empty rectangle.

TDrawGrid::MouseToCell
TDrawGrid
Returns the column and row of the cell the mouse pointer is positioned on.
void __fastcall MouseToCell(int X, int Y, long &ACol, long &ARow);
Description
The X and Y parameters are the screen coordinates of the mouse pointer. The ACol parameter
is the number of the column where the mouse pointer is positioned, and the ARow parameter is
the number of the row.
Usually the MouseToCell method is used in a mouse event handler, which supplies the mouse
coordinates to the method call.

TDrawGrid
TDrawGrid creates a new TDrawGrid object.
__fastcall virtual TDrawGrid(Classes::TComponent* AOwner);CellRect
method

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl
TCustomGrid

TDrawGrid example
TDrawGrid

TDragControlObject
Hierarchy Properties Methods See also
TDragControlObject object provides for normal drag and drop operations.
Header
vcl/controls.hpp
Description
TDragControlObject object is used to perform normal drag and drop operations within Borland
C++Builder. When TDragControlObject is used the OnDragOver and OnDragDrop events
receive the control being dragged as the Sender, instead of the drag object itself.

TDragControlObject properties
TDragControlObject Alphabetically Legend

In TDragControlObject
Control

TDragControlObject properties
TDragControlObject By object Legend

Control

TDragControlObject::Control
TDragControlObject See also
The Control property returns the control that is being dragged in the drag and drop operation.
__property TControl* Control;
Description
Control is useful in determining which control is currently being dragged.

TDragControlObject methods
TDragControlObject Alphabetically

In TDragControlObject
~TDragControlObject
Finished
GetDragCursor
GetDragImages
HideDragImage
ShowDragImage
TDragControlObject

Derived from TDragObject
GetName
Instance

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDragControlObject methods
TDragControlObject By object

~TDragControlObject
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Finished
FreeInstance
Free
GetDragCursor
GetDragImages
GetName
HideDragImage
InheritsFrom
InitInstance
InstanceSize
Instance
MethodAddress
MethodName
NewInstance
ShowDragImage
TDragControlObject

TDragControlObject::~TDragControlObject
TDragControlObject
~TDragControlObject frees the memory associated with the TDragControlObject object. Do not
call ~TDragControlObject directly. Instead, use the delete keyword on the object, which causes ~
TDragControlObject to be invoked automatically.
__fastcall virtual ~TDragControlObject(void);

TDragControlObject::Finished
TDragControlObject See also
Finished ends a drag and drop operation and calls the OnEndDrag event handler.
virtual void __fastcall Finished(System::TObject* Target, int X, int Y,
bool Accepted);

Description
Accepted indicates whether the Target control at X, Y position accepts the drag and drop
operation. If the control does not accept the drag and drop, the control’s DragCanceled method
is called before the OnEndDrag event handler.

TDragControlObject::GetDragCursor
TDragControlObject See also
GetDragCursor returns the correct drag cursor that should be displayed at the X, Y position for
the drag and drop operation.
virtual TCursor __fastcall GetDragCursor(bool Accepted, int X, int Y);
Description
If the control at the X, Y position accepts the drag (in an OnDragOver event handler), the drag
object sets the drag cursor to the control's DragCursor property; otherwise, it displays the
crNoDrop cursor.

TDragControlObject::GetDragImages
TDragControlObject See also
GetDragImages returns the control's image list containing the image to be displayed while
dragging.
virtual TCustomImageList* __fastcall GetDragImages(void);
Description
GetDragImages calls a control’s GetDragImages method. An image list normally contains only
one image, and the VCL automatically creates and maintains the image list. For most controls in
the VCL GetDragImages returns NULL unless the method has been overridden to do otherwise
as in the TCustomTreeView.

TDragControlObject::HideDragImage
TDragControlObject See also
The HideDragImage method hides the image used in the drag cursor.
virtual void __fastcall HideDragImage(void);
Description
If the control being dragged contains an image list containing an image for dragging, it will be
hidden. This allows control over when a drag image is displayed.

TDragControlObject::ShowDragImage
TDragControlObject See also
The ShowDragImage method shows the image used in the drag cursor.
virtual void __fastcall ShowDragImage(void);
Description
If the control being dragged contains an image list containing an image for dragging, it will be
show. This allows control over when a drag image is shown.

TDragControlObject::TDragControlObject
TDragControlObject
TDragControlObject creates a new TDragControlObject object.
__fastcall TDragControlObject(TControl* AControl);

Accessibility
Read-only

Hierarchy

TObject

TDragObject

TDragControlObject example
TDragControlObject

TDriveComboBox
Hierarchy Properties Methods Events See also
TDriveComboBox is a specialized combo box that displays all the drives available when the
application runs.
Header
vcl/filectrl.hpp
Description
Add TDriveComboBox to a form to allow users to select a drive. Use TDriveComboBox along
with TFileListBox, TFilterComboBox, and TDirectoryListBox to add full file selection capabilities
to a form.
To add a standard Windows 95 file open or save dialog to an application, use TOpenDialog or
TSaveDialog instead.

TDriveComboBox properties
TDriveComboBox Alphabetically Legend

In TDriveComboBox
DirList
Drive
TextCase

Derived from TCustomComboBox
Canvas

DroppedDown
ItemIndex
Items
SelLength
SelStart
SelText

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth

Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name

Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Text
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TDriveComboBox properties
TDriveComboBox By object Legend

Align
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DirList
DragCursor
DragMode
Drive
DroppedDown
Enabled
Font

Handle
Height
HelpContext
Hint
ItemIndex
Items
Left
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu
SelLength

SelStart
SelText

ShowHint
Showing

TabOrder
TabStop
Tag
TextCase
Text
Top
Visible
Width

TDriveComboBox::DirList
TDriveComboBox See also
DirList connects the drive combo box to a directory list box.
__property TDirectoryListBox* DirList;
Description
Set DirList to a directory list box control that should update when the user changes the drive.
When a new drive is selected in the drive combo box, the specified directory list box updates to
display the directory structure and the current directory on the new drive.
Note
If the form contains a file list box as well, it can be updated automatically using the FileList
property of the directory list box object.

TDriveComboBox::Drive
TDriveComboBox See also
Drive is the currently selected drive displayed in the edit portion of the combo box.
__property char Drive;
Description
Set Drive to initialize the combo box to a particular drive. Read Drive to obtain the drive that was
selected by the user.
When the user uses the drive combo box to select a new drive, the selected drive becomes the
value of the Drive property. The value of the Text property also changes to the new volume
name when the Drive property value changes.

TDriveComboBox::TextCase
TDriveComboBox See also
TextCase determines if the volume name in the Text property appears in uppercase or
lowercase.
__property TTextCase TextCase;
Description
Set TextCase to the case that should be used to represent the drive letter. These are the
possible values:
Value Meaning

tcLowerCase The volume name specified in the Text property is displayed in lowercase
letters.

tcUpperCase The volume name specified in the Text property is displayed in uppercase
letters.

Note
Changes made to the TextCase property at design time don’t appear until the application runs.

TDriveComboBox events
TDriveComboBox Alphabetically Legend

In TDriveComboBox
OnChange

Derived from TCustomComboBox
OnDropDown

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnStartDrag

TDriveComboBox events
TDriveComboBox By object Legend

OnChange
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnDropDown
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnStartDrag

TDriveComboBox::OnChange
TDriveComboBox
OnChange occurs immediately after the user selects a new drive using the drive combo box.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnChange;
Description
Write an OnChange event handler to take specific action when the Drive property changes. If the
DirList property has been set, the directory list box is See also
DirList property, TDirectoryListBox object

TDriveComboBox methods
TDriveComboBox Alphabetically

In TDriveComboBox
~TDriveComboBox
TDriveComboBox

Derived from TCustomComboBox
Clear
SelectAll

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification

GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TDriveComboBox methods
TDriveComboBox By object

~TDriveComboBox
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo

Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SelectAll
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TDriveComboBox
UpdateControlState
Update

TDriveComboBox::~TDriveComboBox
TDriveComboBox See also
~TDriveComboBox frees the memory associated with the TDriveComboBox object. Do not call ~
TDriveComboBox directly. Instead, use the delete keyword on the object, which causes ~
TDriveComboBox to be invoked automatically.
__fastcall virtual ~TDriveComboBox(void);

TDriveComboBox::TDriveComboBox
TDriveComboBox See also
TDriveComboBox creates and initializes an instance of TDriveComboBox.
__fastcall virtual TDriveComboBox(Classes::TComponent* AOwner);
Description
Call TDriveComboBox to create a TDriveComboBox object at runtime. Drive combo boxes
placed on a form at design time are created automatically.
After allocating the memory for the combo box, TDriveComboBox fills the combo box with all the
drives on the system, and initializes the Drive property to the current drive.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomComboBox

TDriveComboBox example
TDriveComboBox

EAbort
Hierarchy Properties Methods See also
EAbort is the exception class for errors that should not display an error message dialog box.
Header
vcl/sysutils.hpp
Description
Call EAbort to raise an exception without displaying an error message in a dialog box. If
applications do not trap such “silent” exceptions, the EAbort exception is passed to
TApplication::HandleException.
The easiest way to raise an EAbort exception is to call the Abort procedure.

EAbort properties
EAbort Alphabetically

Derived from Exception
HelpContext
Message

EAbort properties
EAbort By object

HelpContext
Message

EAbort methods
EAbort Alphabetically

In EAbort
~EAbort
EAbort

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EAbort methods
EAbort By object

~EAbort
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EAbort
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EAbort::~EAbort
EAbort
~EAbort frees the memory associated with the EAbort object. Do not call ~EAbort directly.
Instead, use the delete keyword on the object, which causes ~EAbort to be invoked
automatically.
__fastcall virtual ~EAbort(void);

EAbort::EAbort
EAbort See also
EAbort creates a new EAbort object.
__fastcall EAbort(const System::AnsiString Msg);
__fastcall EAbort(const System::AnsiString Msg, const System::TVarRec *
Args, const int Args_Size);

__fastcall EAbort(int Ident);
__fastcall EAbort(int Ident, const System::TVarRec *Args, const int
Args_Size);

__fastcall EAbort(const System::AnsiString Msg, int AHelpContext);
__fastcall EAbort(const System::AnsiString Msg, const System::TVarRec *
Args, const int Args_Size, int AHelpContext);

__fastcall EAbort(int Ident, int AHelpContext);
__fastcall EAbort(int Ident, const System::TVarRec *Args, const int
Args_Size, int AHelpContext)

Description
Call EAbort to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EAbort example
EAbort

EAccessViolation
Hierarchy Properties Methods See also
EAccessViolation is the exception class for invalid memory access errors.
Header
vcl/sysutils.hpp
Description
EAccessViolation is raised when an application
• Dereferences a NULL pointer.
• Writes to a code page.
• Attempts to access a memory address for which there is no virtual memory allocated to the

application.
Note
Applications should not raise EAccessViolation directly, but should, instead, rely on the runtime
to raise this exception.

EAccessViolation properties
EAccessViolation Alphabetically

Derived from Exception
HelpContext
Message

EAccessViolation properties
EAccessViolation By object

HelpContext
Message

EAccessViolation methods
EAccessViolation Alphabetically

In EAccessViolation
~EAccessViolation
EAccessViolation

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EAccessViolation methods
EAccessViolation By object

~EAccessViolation
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EAccessViolation
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EAccessViolation::~EAccessViolation
EAccessViolation
~EAccessViolation frees the memory associated with the EAccessViolation object. Do not call ~
EAccessViolation directly. Instead, use the delete keyword on the object, which causes ~
EAccessViolation to be invoked automatically.
__fastcall virtual ~EAccessViolation(void);

EAccessViolation::EAccessViolation
EAccessViolation See also
EAccessViolation creates a new EAccessViolation object.
__fastcall EAccessViolation(const System::AnsiString Msg);
__fastcall EAccessViolation(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size);

__fastcall EAccessViolation(int Ident);
__fastcall EAccessViolation(int Ident, const System::TVarRec *Args,
const int Args_Size);

__fastcall EAccessViolation(const System::AnsiString Msg, int
AHelpContext);

__fastcall EAccessViolation(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EAccessViolation(int Ident, int AHelpContext);
__fastcall EAccessViolation(int Ident, const System::TVarRec *Args,
const int Args_Size, int AHelpContext)

Description
Call EAccessViolation to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EAccessViolation example
EAccessViolation

EBitsError
Hierarchy Properties Methods See also
EBitsError is the exception class for invalid attempts to access an array of Boolean values.
Header
vcl/classes.hpp
Description
EBitsError is raised when an application attempts to access a Boolean array (an instance of the
TBits class) using an index value that is too large or too small. This can occur when the value of
the Index parameter of the Bits property is
• Less than zero.
• Equal to or greater than the Size property.

EBitsError properties
EBitsError Alphabetically

Derived from Exception
HelpContext
Message

EBitsError properties
EBitsError By object

HelpContext
Message

EBitsError methods
EBitsError Alphabetically

In EBitsError
~EBitsError
EBitsError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EBitsError methods
EBitsError By object

~EBitsError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EBitsError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EBitsError::~EBitsError
EBitsError See also
~EBitsError frees the memory associated with the EBitsError object.
__fastcall virtual ~EBitsError(void);
Do not call ~EBitsError directly. Instead, use the delete keyword on the object, which causes ~
EBitsError to be invoked automatically.

EBitsError::EBitsError
EBitsError
EBitsError creates a new EBitsError object.

__fastcall EBitsError(const System::AnsiString Msg);
__fastcall EBitsError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EMathError(int Ident);
__fastcall EBitsError(int Ident, const System::TVarRec *Args, const int
Args_Size);

__fastcall EBitsError(const System::AnsiString Msg, int AHelpContext);
__fastcall EBitsError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EBitsError(int Ident, int AHelpContext);
__fastcall EBitsError(int Ident, const System::TVarRec *Args, const int
Args_Size, int AHelpContext)

Description
Call EBitsError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EBitsError example
EBitsError

EClassNotFound
Hierarchy Properties Methods See also
EClassNotFound is the exception class for the failure to find a specified component when
reading from a stream.
Header
vcl/classes.hpp
Description
EClassNotFound is raised if a class name that has not been linked into the current application is
encountered when reading a component from a stream. This can happen when a component
exists on a form, but has been removed from the type declaration.

EClassNotFound properties
EClassNotFound Alphabetically

Derived from Exception
HelpContext
Message

EClassNotFound properties
EClassNotFound By object

HelpContext
Message

EClassNotFound methods
EClassNotFound Alphabetically

In EClassNotFound
~EClassNotFound
EClassNotFound

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EClassNotFound methods
EClassNotFound By object

~EClassNotFound
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EClassNotFound
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EClassNotFound::~EClassNotFound
EClassNotFound See also
~EClassNotFound frees the memory associated with the EClassNotFound object.
__fastcall virtual ~EClassNotFound(void);

Do not call ~EClassNotFound directly. Instead, use the delete keyword on the object, which
causes ~EClassNotFound to be invoked automatically.

EClassNotFound::EClassNotFound
EClassNotFound See also
EClassNotFound creates a new EClassNotFound object.
__fastcall EClassNotFound(const System::AnsiString Msg);
__fastcall EClassNotFound(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EClassNotFound(int Ident);
__fastcall EClassNotFound(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EClassNotFound(const System::AnsiString Msg, int
AHelpContext);

__fastcall EClassNotFound(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EClassNotFound(int Ident, int AHelpContext);
__fastcall EClassNotFound(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EClassNotFound to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception
EStreamError
EFilerError

EClassNotFound example
EClassNotFound

EConvertError
Hierarchy Properties Methods See also
EConvertError is the exception class for string and object conversion errors.
Header
vcl/sysutils.hpp
Description
EConvertError is raised when
• An application makes an unsuccessful attempt to convert an integer, float, date, or time to a

string, or to convert a string to one of these other types.
• An application passes an invalid argument to a formatting routine.
• An application attempts to assign one type of component derived from TPersistent to another

component derived from TPersistent when such an assignment is not possible. For example,
EConvertError is raised by the attempted assignment of a TButton control to a TEdit control.

EConvertError properties
EConvertError Alphabetically

Derived from Exception
HelpContext
Message

EConvertError properties
EConvertError By object

HelpContext
Message

EConvertError methods
EConvertError Alphabetically

In EConvertError
~EConvertError
EConvertError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EConvertError methods
EConvertError By object

~EConvertError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EConvertError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EConvertError::~EConvertError
EConvertError
~EConvertError frees the memory associated with the EConvertError object. Do not call ~
EConvertError directly. Instead, use the delete keyword on the object, which causes ~
EConvertError to be invoked automatically.
__fastcall virtual ~EConvertError(void);

EConvertError::EConvertError
EConvertError See also
EConvertError creates a new EConvertError object.
__fastcall EConvertError(const System::AnsiString Msg);
__fastcall EConvertError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EConvertError(int Ident);
__fastcall EConvertError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EConvertError(const System::AnsiString Msg, int
AHelpContext);

__fastcall EConvertError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EConvertError(int Ident, int AHelpContext);
__fastcall EConvertError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EConvertError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EConvertError example
EConvertError

EComponentError
Hierarchy Properties Methods See also
EComponentError is the exception class for registering and renaming components.
Header
vcl/classes.hpp
Description
EComponentError is raised when:
• Borland C++Builder cannot register a component.
• An application cannot rename a component.
• A request is made to retrieve the COM interface of a component that doesn’t support COM.
To register a component, write a procedure called “Register” in the interface section of the
component’s unit file. This procedure must call RegisterComponents for each component you
want to register.
Failure to rename a component occurs when an application tries to rename the component at
runtime, and the new name is the same as the name of another component or is not a valid C++
identifier.

EComponentError properties
EComponentError Alphabetically

Derived from Exception
HelpContext
Message

EComponentError properties
EComponentError By object

HelpContext
Message

EComponentError methods
EComponentError Alphabetically

In EComponentError
~EComponentError
EComponentError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EComponentError methods
EComponentError By object

~EComponentError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EComponentError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EComponentError::~EComponentError
EComponentError See also
~EComponentError frees the memory associated with the EComponentError object. Do not call
~EComponentError directly. Instead, use the delete keyword on the object, which causes ~
EComponentError to be invoked automatically.
__fastcall virtual ~EComponentError(void);

EComponentError::EComponentError
EComponentError See also
EComponentError creates a new EComponentError object.
__fastcall EComponentError(const System::AnsiString Msg);
__fastcall EComponentError(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size);

__fastcall EComponentError(int Ident);
__fastcall EComponentError(int Ident, const System::TVarRec *Args,
const int Args_Size);

__fastcall EComponentError(const System::AnsiString Msg, int
AHelpContext);

__fastcall EComponentError(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EComponentError(int Ident, int AHelpContext);
__fastcall EComponentError(int Ident, const System::TVarRec *Args,
const int Args_Size, int AHelpContext)

Description
Call EComponentError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EComponentError example
EComponentError

EControlC
Hierarchy Properties Methods
EControlC is the exception class for Ctrl+C key presses in console applications.
Header
vcl/sysutils.hpp
Description
EControlC is raised when a user presses Ctrl+C to terminate a console application.

EControlC properties
EControlC Alphabetically

Derived from Exception
HelpContext
Message

EControlC properties
EControlC By object

HelpContext
Message

EControlC methods
EControlC Alphabetically

In EControlC
~EControlC
EControlC

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EControlC methods
EControlC By object

~EControlC
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EControlC
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EControlC::~EControlC
EControlC
~EControlC frees the memory associated with the EControlC object. Do not call ~EControlC
directly. Instead, use the delete keyword on the object, which causes ~EControlC to be invoked
automatically.
__fastcall virtual ~EControlC(void);

EControlC::EControlC
EControlC See also
EControlC creates a new EControlC object.
__fastcall EControlC(const System::AnsiString Msg);
__fastcall EControlC(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EControlC(int Ident);
__fastcall EControlC(int Ident, const System::TVarRec *Args, const int
Args_Size);

__fastcall EControlC(const System::AnsiString Msg, int AHelpContext);
__fastcall EControlC(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EControlC(int Ident, int AHelpContext);
__fastcall EControlC(int Ident, const System::TVarRec *Args, const int
Args_Size, int AHelpContext)

Description
Call EControlC to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EControlC example
EControlC

EDatabaseError
Hierarchy Properties Methods See also
EDatabaseError is the exception class for database errors.
Header
vcl/db.hpp
Description
EDatabaseError is raised when a component detects a database error. Use EDatabaseError in
an exception handling block or to create a database exception.

EDatabaseError properties
EDatabaseError Alphabetically

Derived from Exception
HelpContext
Message

EDatabaseError properties
EDatabaseError By object

HelpContext
Message

EDatabaseError methods
EDatabaseError Alphabetically

In EDatabaseError
~EDatabaseError
EDatabaseError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EDatabaseError methods
EDatabaseError By object

~EDatabaseError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EDatabaseError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EDatabaseError::~EDatabaseError
EDatabaseError
~EDatabaseError frees the memory associated with the EDatabaseError object. Do not call ~
EDatabaseError directly. Instead, use the delete keyword on the object, which causes ~
EDatabaseError to be invoked automatically.
__fastcall virtual ~EDatabaseError(void);

EDatabaseError::EDatabaseError
EDatabaseError
EDatabaseError creates a new EDatabaseError object.

__fastcall EDatabaseError(const System::AnsiString Msg);
__fastcall EDatabaseError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EDatabaseError(int Ident);
__fastcall EDatabaseError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EDatabaseError(const System::AnsiString Msg, int
AHelpContext);

__fastcall EDatabaseError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EDatabaseError(int Ident, int AHelpContext);
__fastcall EDatabaseError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EDatabaseError example
EDatabaseError

EDBEditError
Hierarchy Properties Methods See also
EDBEditError is the exception class for data that are incompatible with a specified mask.
Header
vcl/mask.hpp
Description
EDBEditError is raised when an application attempts to use data that are incompatible with the
mask specified for a field.
A mask restricts the data that can be put into an edit box or data field. Use the EditMask property
to specify a mask.

EDBEditError properties
EDBEditError Alphabetically

Derived from Exception
HelpContext
Message

EDBEditError properties
EDBEditError By object

HelpContext
Message

EDBEditError methods
EDBEditError Alphabetically

In EDBEditError
~EDBEditError
EDBEditError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EDBEditError methods
EDBEditError By object

~EDBEditError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EDBEditError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EDBEditError::~EDBEditError
EDBEditError
~EDBEditError frees the memory associated with the EDBEditError object. Do not call ~
EDBEditError directly. Instead, use the delete keyword on the object, which causes ~
EDBEditError to be invoked automatically.
__fastcall virtual ~EDBEditError(void);

EDBEditError::EDBEditError
EDBEditError
EDBEditError creates a new EDBEditError object.
__fastcall EDBEditError(const System::AnsiString Msg);
__fastcall EDBEditError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EDBEditError(int Ident);
__fastcall EDBEditError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EDBEditError(const System::AnsiString Msg, int AHelpContext)
;

__fastcall EDBEditError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EDBEditError(int Ident, int AHelpContext);
__fastcall EDBEditError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EDBEditError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EDBEditError example
EDBEditError

EDBEngineError
Hierarchy Properties Methods See also
EDBEngineError is the exception class for Borland Database Engine errors.
Header
vcl/db.hpp
Description
EDBEngineError is raised whenever a BDE error occurs. Its Errors property contains TDBError
objects.

EDBEngineError properties
EDBEngineError Alphabetically Legend

In EDBEngineError
ErrorCount
Errors

Derived from Exception
HelpContext
Message

EDBEngineError properties
EDBEngineError By object Legend

ErrorCount
Errors

HelpContext
Message

EDBEngineError::ErrorCount
EDBEngineError
The total number of errors contained in the Errors property.
__property int ErrorCount;

EDBEngineError::Errors
EDBEngineError
A list of the entire Borland Database Engine error stack.
__property TDBError* Errors[int Index];

Errors is an index of TDBError objects. The first error has an index value of 0.

EDBEngineError methods
EDBEngineError Alphabetically

In EDBEngineError
~EDBEngineError
EDBEngineError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EDBEngineError methods
EDBEngineError By object

~EDBEngineError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EDBEngineError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EDBEngineError::~EDBEngineError
EDBEngineError See also
~EDBEngineError frees the memory associated with the EDBEngineError object. Do not call ~
EDBEngineError directly. Instead, use the delete keyword on the object, which causes ~
EDBEngineError to be invoked automatically.
__fastcall virtual ~EDBEngineError(void);

~EDBEngineError first disposes of each TDBError instance referenced in the Errors property,
and then calls its parent’s destructor to dispose of the EDBEngineError instance itself.

EDBEngineError::EDBEngineError
EDBEngineError
Creates an instance of EDBEngineError using a specified BDE error code.
__fastcall EDBEngineError(const System::AnsiString Msg);
__fastcall EDBEngineError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EDBEngineError(int Ident);
__fastcall EDBEngineError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EDBEngineError(const System::AnsiString Msg, int
AHelpContext);

__fastcall EDBEngineError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EDBEngineError(int Ident, int AHelpContext);
__fastcall EDBEngineError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

See also
~ method, Exception object, object

Accessibility
Read-only

Hierarchy

TObject

Exception
EDatabaseError

EDBEngineError example
EDBEngineError

TEdit
Hierarchy Properties Methods Events See also
TEdit is a wrapper for a Windows single-line edit control.
Header
vcl/stdctrls.hpp
Description
Use a TEdit object to put a standard Windows edit control on a form. Edit controls are used to
retrieve text that users type. Edit controls can also display text to the user.
When only displaying text to the user, choose an edit control to allow users to select text and
copy it to the Clipboard. Choose a label object if the selection capabilities of an edit control are
not needed.
TEdit implements the generic behavior introduced in TCustomEdit. TEdit publishes many of the
properties inherited from TCustomEdit, but does not introduce any new behavior. For specialized
edit controls, use other descendant classes of TCustomEdit or derive from it.

TEdit properties
TEdit Alphabetically Legend

Derived from TCustomEdit
AutoSelect
AutoSize
BorderStyle
CharCase
HideSelection
MaxLength
Modified
OEMConvert
PasswordChar

ReadOnly
SelLength
SelStart
SelText

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth

Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name

Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Text
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState

ComponentStyle
DesignInfo

Owner
Tag

TEdit properties
TEdit By object Legend

Align
AutoSelect
AutoSize
BorderStyle
BoundsRect

Brush
CharCase
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
Enabled
Font

Handle
Height
HelpContext
HideSelection
Hint
Left
MaxLength
Modified
Name
OEMConvert

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PasswordChar
PopupMenu

ReadOnly
SelLength
SelStart
SelText
ShowHint

Showing
TabOrder
TabStop
Tag
Text
Top
Visible
Width

TEdit events
TEdit Alphabetically Legend

Derived from TCustomEdit
OnChange

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TEdit events
TEdit By object Legend

OnChange
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

OnChange
Occurs when the content of the edit control changes.
__property OnChange;

TEdit methods
TEdit Alphabetically

In TEdit
~TEdit
TEdit

Derived from TCustomEdit
Clear
ClearSelection
CopyToClipboard
CutToClipboard
GetSelTextBuf
PasteFromClipboard
SelectAll
SetSelTextBuf

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf

Show
Derived from TComponent

DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TEdit methods
TEdit By object

~TEdit
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClearSelection
Clear
ClientToScreen
ContainsControl
ControlAtPos
CopyToClipboard
CutToClipboard
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetSelTextBuf
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate

MethodAddress
MethodName
NewInstance
PaintTo
PasteFromClipboard
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SelectAll
SendToBack
SetBounds
SetFocus
SetSelTextBuf
SetTextBuf
Show
TEdit
UpdateControlState
Update

TEdit::~TEdit
TEdit
~TEdit frees the memory associated with the TEdit object. Do not call ~TEdit directly. Instead,
use the delete keyword on the object, which causes ~TEdit to be invoked automatically.
__fastcall virtual ~TEdit(void);

TEdit::TEdit
TEdit
TEdit creates a new TEdit object.
__fastcall virtual TEdit(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomEdit

TEdit example
TEdit

EDivByZero
Hierarchy Properties Methods See also
EDivByZero is the exception class for integer divide-by-zero errors.
Header
vcl/sysutils.hpp
Description
EDivByZero is raised when an application tries to divide an integer by zero. In practice, this error
is easy to trap and correct in a try...catch block.
Note
Floating-point divide-by-zero errors raise the EZeroDivide exception.

EDivByZero properties
EDivByZero Alphabetically

Derived from Exception
HelpContext
Message

EDivByZero properties
EDivByZero By object

HelpContext
Message

EDivByZero methods
EDivByZero Alphabetically

In EDivByZero
~EDivByZero
EDivByZero

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EDivByZero methods
EDivByZero By object

~EDivByZero
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EDivByZero
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EDivByZero::~EDivByZero
EDivByZero
~ frees the memory associated with the object. Do not call ~ directly. Instead, use the delete
keyword on the object, which causes ~ to be invoked automatically.
__fastcall virtual ~EDivByZero(void);

EDivByZero::EDivByZero
EDivByZero
EDivByZero creates a new EDivByZero object.

__fastcall EDivByZero(const System::AnsiString Msg);
__fastcall EDivByZero(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EDivByZero(int Ident);
__fastcall EDivByZero(int Ident, const System::TVarRec *Args, const int
Args_Size);

__fastcall EDivByZero(const System::AnsiString Msg, int AHelpContext);
__fastcall EDivByZero(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EDivByZero(int Ident, int AHelpContext);
__fastcall EDivByZero(int Ident, const System::TVarRec *Args, const int
Args_Size, int AHelpContext)

Description
Call EDivByZero to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception
EIntError

EDivByZero example
EDivByZero

EExternalException
Hierarchy Properties Methods
EExternalException is the exception class for invalid exception codes.
Header
vcl/sysutils.hpp
Description
EExternalException is raised when Borland C++Builder detects an unrecognized exception
code. Borland C++Builder recognizes the following exception codes:
• STATUS_INTEGER_DIVIDE_BY_ZERO
• STATUS_ARRAY_BOUNDS_EXCEEDED
• STATUS_FLOAT_OVERFLOW
• STATUS_FLOAT_INEXACT_RESULT
• STATUS_FLOAT_INVALID_OPERATION
• STATUS_FLOAT_STACK_CHECK
• STATUS_FLOAT_DIVIDE_BY_ZERO
• STATUS_INTEGER_OVERFLOW
• STATUS_FLOAT_UNDERFLOW
• STATUS_FLOAT_DENORMAL_OPERAND
• STATUS_ACCESS_VIOLATION
• STATUS_PRIVILEGED_INSTRUCTION
• STATUS_CONTROL_C_EXIT
• STATUS_STACK_OVERFLOW
Any exception code that is not on the list above raises an EExternalException.

EExternalException properties
EExternalExceptionAlphabetically

Derived from Exception
HelpContext
Message

EExternalException properties
EExternalExceptionBy object

HelpContext
Message

EExternalException methods
EExternalExceptionAlphabetically

In EExternalException
~EExternalException
EExternalException

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EExternalException methods
EExternalExceptionBy object

~EExternalException
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EExternalException
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EExternalException::~EExternalException
EExternalException
~EExternalException frees the memory associated with the EExternalException object. Do not
call ~EExternalException directly. Instead, use the delete keyword on the object, which causes ~
EExternalException to be invoked automatically.
__fastcall virtual ~EExternalException(void);

EExternalException::EExternalException
EExternalExceptionSee also
EExternalException creates a new EExternalException object.
__fastcall EExternalException(const System::AnsiString Msg);
__fastcall EExternalException(const System::AnsiString Msg, const
System::TVarRec *Args, const int Args_Size);

__fastcall EExternalException(int Ident);
__fastcall EExternalException(int Ident, const System::TVarRec *Args,
const int Args_Size);

__fastcall EExternalException(const System::AnsiString Msg, int
AHelpContext);

__fastcall EExternalException(const System::AnsiString Msg, const
System::TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EExternalException(int Ident, int AHelpContext);
__fastcall EExternalException(int Ident, const System::TVarRec *Args,
const int Args_Size, int AHelpContext)

Description
Call EExternalException to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EExternalException example
EExternalException

EFCreateError
Hierarchy Properties Methods See also
EFCreateError is the exception class for streaming file-creation errors.
Header
vcl/classes.hpp
Description
EFCreateError is raised when an application unsuccessfully attempts to create a file. This can
occur, for example, if a user specifies an invalid file name, or specifies the name of an existing
file that cannot be overwritten because the user lacks appropriate access permission.

EFCreateError properties
EFCreateError Alphabetically

Derived from Exception
HelpContext
Message

EFCreateError properties
EFCreateError By object

HelpContext
Message

EFCreateError methods
EFCreateError Alphabetically

In EFCreateError
~EFCreateError
EFCreateError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EFCreateError methods
EFCreateError By object

~EFCreateError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EFCreateError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EFCreateError::~EFCreateError
EFCreateError See also
~EFCreateError frees the memory associated with the EFCreateError object. Do not call ~
EFCreateError directly. Instead, use the delete keyword on the object, which causes ~
EFCreateError to be invoked automatically.
__fastcall virtual ~EFCreateError(void);

EFCreateError::EFCreateError
EFCreateError See also
EFCreateError creates a new EFCreateError object.
__fastcall EFCreateError(const System::AnsiString Msg);
__fastcall EFCreateError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EFCreateError(int Ident);
__fastcall EFCreateError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EFCreateError(const System::AnsiString Msg, int
AHelpContext);

__fastcall EFCreateError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EFCreateError(int Ident, int AHelpContext);
__fastcall EFCreateError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EFCreateError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception
EStreamError

EFCreateError example
EFCreateError

EFilerError
Hierarchy Properties Methods See also
EFilerError is the exception class for file stream errors.
Header
vcl/classes.hpp
Description
EFilerError is raised when an attempt is made to register the same class twice.
EFilerError is also the immediate ancestor of the following exceptions that occur when reading or
writing streams:
Exception Description

EReadError Cannot read the specified number of bytes
EWriteError Cannot write the specified number of bytes
EClassNotFound Component is not linked to application
EInvalidImage Cannot read a resource file
EMethodNotFound Cannot find the implementation of a method

EFilerError properties
EFilerError Alphabetically

Derived from Exception
HelpContext
Message

EFilerError properties
EFilerError By object

HelpContext
Message

EFilerError methods
EFilerError Alphabetically

In EFilerError
~EFilerError
EFilerError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EFilerError methods
EFilerError By object

~EFilerError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EFilerError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EFilerError::~EFilerError
EFilerError See also
~EFilerError frees the memory associated with the EFilerError object. Do not call ~EFilerError
directly. Instead, use the delete keyword on the object, which causes ~EFilerError to be invoked
automatically.
__fastcall virtual ~EFilerError(void);

EFilerError::EFilerError
EFilerError See also
EFilerError creates a new EFilerError object.
__fastcall EFilerError(const System::AnsiString Msg);
__fastcall EFilerError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EFilerError(int Ident);
__fastcall EFilerError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EFilerError(const System::AnsiString Msg, int AHelpContext)
;

__fastcall EFilerError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EFilerError(int Ident, int AHelpContext);
__fastcall EFilerError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EFilerError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception
EStreamError

EFilerError example
EFilerError

EFOpenError
Hierarchy Properties Methods See also
EFOpenError is the exception class for file-opening errors during streaming.
Header
vcl/classes.hpp
Description
EFOpenError is raised when an application cannot open a specified file. This can occur, for
example, because the file doesn’t exist or is not in the directory where the application is
searching for it.

EFOpenError properties
EFOpenError Alphabetically

Derived from Exception
HelpContext
Message

EFOpenError properties
EFOpenError By object

HelpContext
Message

EFOpenError methods
EFOpenError Alphabetically

In EFOpenError
~EFOpenError
EFOpenError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EFOpenError methods
EFOpenError By object

~EFOpenError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EFOpenError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EFOpenError::~EFOpenError
EFOpenError See also
~EFOpenError frees the memory associated with the EFOpenError object. Do not call ~
EFOpenError directly. Instead, use the delete keyword on the object, which causes ~
EFOpenError to be invoked automatically.
__fastcall virtual ~EFOpenError(void);

EFOpenError::EFOpenError
EFOpenError See also
EFOpenError creates a new EFilerError object.
__fastcall EFOpenError(const System::AnsiString Msg);
__fastcall EFOpenError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EFOpenError(int Ident);
__fastcall EFOpenError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EFOpenError(const System::AnsiString Msg, int AHelpContext)
;

__fastcall EFOpenError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EFOpenError(int Ident, int AHelpContext);
__fastcall EFOpenError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EFOpenError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception
EStreamError

EFOpenError example
EFOpenError

EInOutError
Hierarchy Properties Methods See also
EInOutError is the exception class for file input/output errors.
Header
vcl/sysutils.hpp
Description
EInOutError is raised when an operating-system file input/output error occurs, provided the $I+
directive is in effect. The resulting error code is returned in the local ErrorCode variable, which
can take the following values.
Error code Meaning

2 File not found.
3 Invalid file name.
4 Too many open files.
5 Access denied.
100 EOF.
101 Disk full.
106 Invalid input.
Note
If an I/O error occurs when an application is in the $I- state, the application must call the
IOResult function to clear the error.

EInOutError properties
EInOutError Alphabetically

Derived from Exception
HelpContext
Message

EInOutError properties
EInOutError By object

HelpContext
Message

EInOutError methods
EInOutError Alphabetically

In EInOutError
~EInOutError
EInOutError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInOutError methods
EInOutError By object

~EInOutError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EInOutError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInOutError::~EInOutError
EInOutError
~EInOutError frees the memory associated with the EInOutError object. Do not call ~
EInOutError directly. Instead, use the delete keyword on the object, which causes ~EInOutError
to be invoked automatically.
__fastcall virtual ~EInOutError(void);

EInOutError::EInOutError
EInOutError See also
EInOutError creates a new EInOutError object.
__fastcall EInOutError(const System::AnsiString Msg);
__fastcall EInOutError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EInOutError(int Ident);
__fastcall EInOutError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EInOutError(const System::AnsiString Msg, int AHelpContext)
;

__fastcall EInOutError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EInOutError(int Ident, int AHelpContext);
__fastcall EInOutError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EInOutError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EInOutError example
EInOutError

EIntError
Hierarchy Properties Methods See also
EIntError is the base class for integer math error exceptions.
Header
vcl/sysutils.hpp
Description
EIntError is a generic integer math exception. Although it is never raised in the runtime library, it
is the base from which other integer math exceptions descend. These are the integer math
exceptions:
Exception Meaning

EDivByZero An attempt was made to divide by zero
ERangeError Number or expression out of range
EIntOverflow Integer operation overflowed

EIntError properties
EIntError Alphabetically

Derived from Exception
HelpContext
Message

EIntError properties
EIntError By object

HelpContext
Message

EIntError methods
EIntError Alphabetically

In EIntError
~EIntError
EIntError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EIntError methods
EIntError By object

~EIntError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EIntError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EIntError::~EIntError
EIntError
~EIntError frees the memory associated with the EIntError object. Do not call ~EIntError directly.
Instead, use the delete keyword on the object, which causes ~EIntError to be invoked
automatically.
__fastcall virtual ~EIntError(void);

EIntError::EIntError
EIntError
EIntError creates a new EIntError object.

__fastcall EIntError(const System::AnsiString Msg);
__fastcall EIntError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EIntError(int Ident);
__fastcall EIntError(int Ident, const System::TVarRec *Args, const int
Args_Size);

__fastcall EIntError(const System::AnsiString Msg, int AHelpContext);
__fastcall EIntError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EIntError(int Ident, int AHelpContext);
__fastcall EIntError(int Ident, const System::TVarRec *Args, const int
Args_Size, int AHelpContext)

Description
Call EIntError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EIntError example
EIntError

EIntOverflow
Hierarchy Properties Methods See also
EIntOverflow is the exception class for integer calculations whose results are too large to fit in
the allocated register.
Header
vcl/sysutils.hpp
Description
EIntOverflow is an integer math exception. It occurs when a calculated result is too large to fit in
the register allocated for it and data is therefore lost.
EIntOverflow is raised only if overflow checking is turned on. To turn on overflow checking,
include the $Q+ directive in project source code, or select Project|Options, choose the Compiler
tab, and check the Overflow-checking option in the dialog box.
Note
Overflow is determined by the size of the machine register and does not occur consistently in
16- and 32-bit versions of Borland C++Builder. A calculation which would overflow in a 16-bit
program may not overflow in a 32-bit program; in 32-bit programs a range-check exception may
occur instead. If overflow occurs before assignment, an EIntOverflow exception is raised; but if
the error is checked at the point of assignment, ERangeError is raised.
Floating-point register overflows raise the EOverflow exception.

EIntOverflow properties
EIntOverflow Alphabetically

Derived from Exception
HelpContext
Message

EIntOverflow properties
EIntOverflow By object

HelpContext
Message

EIntOverflow methods
EIntOverflow Alphabetically

In EIntOverflow
~EIntOverflow
EIntOverflow

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EIntOverflow methods
EIntOverflow By object

~EIntOverflow
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EIntOverflow
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EIntOverflow::~EIntOverflow
EIntOverflow
~EIntOverflow frees the memory associated with the EIntOverflow object. Do not call ~
EIntOverflow directly. Instead, use the delete keyword on the object, which causes ~
EIntOverflow to be invoked automatically.
__fastcall virtual ~EIntOverflow(void);

EIntOverflow::EIntOverflow
EIntOverflow
EIntOverflow creates a new EIntOverflow object.

__fastcall EIntOverflow(const System::AnsiString Msg);
__fastcall EIntOverflow(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EIntOverflow(int Ident);
__fastcall EIntOverflow(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EIntOverflow(const System::AnsiString Msg, int AHelpContext)
;

__fastcall EIntOverflow(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EIntOverflow(int Ident, int AHelpContext);
__fastcall EIntOverflow(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EIntOverflow to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception
EIntError

EIntOverflow example
EIntOverflow

EInvalidOp
Hierarchy Properties Methods See also
EInvalidOp is the exception class for undefined floating-point operations.
Header
vcl/sysutils.hpp
Description
EInvalidOp is raised when the processor encounters an undefined instruction, invalid operation,
or floating-point processor stack overflow.
Note
Do not confuse this object with EInvalidOperation.

EInvalidOp properties
EInvalidOp Alphabetically

Derived from Exception
HelpContext
Message

EInvalidOp properties
EInvalidOp By object

HelpContext
Message

EInvalidOp methods
EInvalidOp Alphabetically

In EInvalidOp
~EInvalidOp
EInvalidOp

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidOp methods
EInvalidOp By object

~EInvalidOp
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EInvalidOp
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidOp::EInvalidOp
EInvalidOp
EInvalidOp creates a new EInvalidOp object.
__fastcall EInvalidOp(const System::AnsiString Msg);

EInvalidOp::~EInvalidOp
EInvalidOp
~EInvalidOp frees the memory associated with the EInvalidOp object. Do not call ~EInvalidOp
directly. Instead, use the delete keyword on the object, which causes ~EInvalidOp to be invoked
automatically.
__fastcall virtual ~EInvalidOp(void);

Hierarchy

TObject

Exception
EMathError

EInvalidOp example
EInvalidOp

EInvalidCast
Hierarchy Properties Methods
EInvalidCast is the exception class for typecasting errors.
Header
vcl/sysutils.hpp
Description
EInvalidCast is raised when an application tries to typecast an object illegally using the as
operator.

EInvalidCast properties
EInvalidCast Alphabetically

Derived from Exception
HelpContext
Message

EInvalidCast properties
EInvalidCast By object

HelpContext
Message

EInvalidCast methods
EInvalidCast Alphabetically

In EInvalidCast
~EInvalidCast
EInvalidCast

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidCast methods
EInvalidCast By object

~EInvalidCast
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EInvalidCast
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidCast::~EInvalidCast
EInvalidCast
~EInvalidCast frees the memory associated with the EInvalidCast object. Do not call ~
EInvalidCast directly. Instead, use the delete keyword on the object, which causes ~
EInvalidCast to be invoked automatically.
__fastcall virtual ~EInvalidCast(void);

EInvalidCast::EInvalidCast
EInvalidCast
EInvalidCast creates a new EInvalidCast object.
__fastcall EInvalidCast(const System::AnsiString Msg);
__fastcall EInvalidCast(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EInvalidCast(int Ident);
__fastcall EInvalidCast(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EInvalidCast(const System::AnsiString Msg, int AHelpContext)
;

__fastcall EInvalidCast(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EInvalidCast(int Ident, int AHelpContext);
__fastcall EInvalidCast(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EInvalidCast to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EInvalidCast example
EInvalidCast

EInvalidGridOperation
Hierarchy Properties Methods See also
EInvalidGridOperation is the exception class for illegal grid operations.
Header
vcl/grids.hpp
Description
EInvalidGridOperation is raised when an application attempts an illegal operation on a grid. For
example, EInvalidGridOperation is raised if an application tries to access a cell or column that
does not exist within the grid.

EInvalidGridOperation properties
EInvalidGridOperation Alphabetically

Derived from Exception
HelpContext
Message

EInvalidGridOperation properties
EInvalidGridOperation By object

HelpContext
Message

EInvalidGridOperation methods
EInvalidGridOperation Alphabetically

In EInvalidGridOperation
~EInvalidGridOperation

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidGridOperation methods
EInvalidGridOperation By object

~EInvalidGridOperation
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidGridOperation::~EInvalidGridOperation
EInvalidGridOperation
~EInvalidGridOperation frees the memory associated with the EInvalidGridOperation object. Do
not call ~EInvalidGridOperation directly. Instead, use the delete keyword on the object, which
causes ~EInvalidGridOperation to be invoked automatically.
__fastcall virtual ~EInvalidGridOperation(void);

EInvalidGridOperation
EInvalidGridOperation creates a new EInvalidGridOperation object.
__fastcall EInvalidGridOperation(const System::AnsiString Msg);
__fastcall EInvalidGridOperation(const System::AnsiString Msg, const
System::TVarRec *Args, const int Args_Size);

__fastcall EInvalidGridOperation(int Ident);
__fastcall EInvalidGridOperation(int Ident, const System::TVarRec *
Args, const int Args_Size);

__fastcall EInvalidGridOperation(const System::AnsiString Msg, int
AHelpContext);

__fastcall EInvalidGridOperation(const System::AnsiString Msg, const
System::TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EInvalidGridOperation(int Ident, int AHelpContext);
__fastcall EInvalidGridOperation(int Ident, const System::TVarRec *
Args, const int Args_Size, int AHelpContext)

Description
Call EInvalidGridOperation to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EInvalidGridOperation example
EInvalidGridOperation

EInvalidGraphicOperation
Hierarchy Properties Methods See also
EInvalidGraphicOperation is the exception class for illegal operations on graphics.
Header
vcl/graphics.hpp
Description
EInvalidGraphicOperation is raised when an illegal operation is attempted on a graphic. For
example, an EInvalidGraphicOperation exception is raised when an application attempts to
resize an icon or copy an icon to the clipboard.

EInvalidGraphicOperation properties
EInvalidGraphicOperation Alphabetically

Derived from Exception
HelpContext
Message

EInvalidGraphicOperation properties
EInvalidGraphicOperation By object

HelpContext
Message

EInvalidGraphicOperation methods
EInvalidGraphicOperation Alphabetically

In EInvalidGraphicOperation
~EInvalidGraphicOperation
EInvalidGraphicOperation

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidGraphicOperation methods
EInvalidGraphicOperation By object

~EInvalidGraphicOperation
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EInvalidGraphicOperation
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidGraphicOperation::~EInvalidGraphicOperation
EInvalidGraphicOperation
~EInvalidGraphicOperation frees the memory associated with the EInvalidGraphicOperation
object. Do not call ~EInvalidGraphicOperation directly. Instead, use the delete keyword on the
object, which causes ~EInvalidGraphicOperation to be invoked automatically.
__fastcall virtual ~EInvalidGraphicOperation(void);

EInvalidGraphicOperation::EInvalidGraphicOperation
EInvalidGraphicOperation
EInvalidGraphicOperation creates a new EInvalidGraphicOperation object.
__fastcall EInvalidGraphicOperation(const System::AnsiString Msg);
__fastcall EInvalidGraphicOperation(const System::AnsiString Msg, const
System::TVarRec *Args, const int Args_Size);

__fastcall EInvalidGraphicOperation(int Ident);
__fastcall EInvalidGraphicOperation(int Ident, const System::TVarRec *
Args, const int Args_Size);

__fastcall EInvalidGraphicOperation(const System::AnsiString Msg, int
AHelpContext);

__fastcall EInvalidGraphicOperation(const System::AnsiString Msg, const
System::TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EInvalidGraphicOperation(int Ident, int AHelpContext);
__fastcall EInvalidGraphicOperation(int Ident, const System::TVarRec *
Args, const int Args_Size, int AHelpContext)

Description
Call EInvalidGraphicOperation to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EInvalidGraphicOperation example
EInvalidGraphicOperation

EInvalidGraphic
Hierarchy Properties Methods See also
EInvalidGraphic is the exception class for unrecognized graphic files.
Header
vcl/graphics.hpp
Description
EInvalidGraphic is raised when
• An application attempts to load a file that is not a valid bitmap, icon, metafile, or user-defined

graphic type into a picture.
• An application attempts to load a file with an unrecognized extension.
• An image does not match the format specified in a call to LoadFromClipboardFormat or

SaveToClipboardFormat.

EInvalidGraphic properties
EInvalidGraphic Alphabetically

Derived from Exception
HelpContext
Message

EInvalidGraphic properties
EInvalidGraphic By object

HelpContext
Message

EInvalidGraphic methods
EInvalidGraphic Alphabetically

In EInvalidGraphic
~EInvalidGraphic
EInvalidGraphic

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidGraphic methods
EInvalidGraphic By object

~EInvalidGraphic
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EInvalidGraphic
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidGraphic::~EInvalidGraphic
EInvalidGraphic
~EInvalidGraphic frees the memory associated with the EInvalidGraphic object. Do not call ~
EInvalidGraphic directly. Instead, use the delete keyword on the object, which causes ~
EInvalidGraphic to be invoked automatically.
__fastcall virtual ~EInvalidGraphic(void);

EInvalidGraphic::EInvalidGraphic
EInvalidGraphic See also
EInvalidGraphic creates a new EInvalidGraphic object.
__fastcall EInvalidGraphic(const System::AnsiString Msg);
__fastcall EInvalidGraphic(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size);

__fastcall EInvalidGraphic(int Ident);
__fastcall EInvalidGraphic(int Ident, const System::TVarRec *Args,
const int Args_Size);

__fastcall EInvalidGraphic(const System::AnsiString Msg, int
AHelpContext);

__fastcall EInvalidGraphic(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EInvalidGraphic(int Ident, int AHelpContext);
__fastcall EInvalidGraphic(int Ident, const System::TVarRec *Args,
const int Args_Size, int AHelpContext)

Description
Call EInvalidGraphic to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EInvalidGraphic example
EInvalidGraphic

EInvalidArgument
Hierarchy Properties Methods See also
EInvalidArgument is the exception class for out-of-range parameters in specialized math and
accounting functions.
Header
vcl/math.hpp
Description
EInvalidArgument is raised by some functions in the Math unit (mostly financial functions) when
one of the parameters is out of range or makes the calculation impossible.

EInvalidArgument properties
EInvalidArgument Alphabetically

Derived from Exception
HelpContext
Message

EInvalidArgument properties
EInvalidArgument By object

HelpContext
Message

EInvalidArgument methods
EInvalidArgument Alphabetically

In EInvalidArgument
~EInvalidArgument
EInvalidArgument

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidArgument methods
EInvalidArgument By object

~EInvalidArgument
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EInvalidArgument
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidArgument::~EInvalidArgument
EInvalidArgument
~EInvalidArgument frees the memory associated with the EInvalidArgument object. Do not call ~
EInvalidArgument directly. Instead, use the delete keyword on the object, which causes ~
EInvalidArgument to be invoked automatically.
__fastcall virtual ~EInvalidArgument(void);

EInvalidArgument::EInvalidArgument
EInvalidArgument See also
EInvalidArgument creates a new EInvalidArgument object.
__fastcall EInvalidArgument(const System::AnsiString Msg);
__fastcall EInvalidArgument(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size);

__fastcall EInvalidArgument(int Ident);
__fastcall EInvalidArgument(int Ident, const System::TVarRec *Args,
const int Args_Size);

__fastcall EInvalidArgument(const System::AnsiString Msg, int
AHelpContext);

__fastcall EInvalidArgument(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EInvalidArgument(int Ident, int AHelpContext);
__fastcall EInvalidArgument(int Ident, const System::TVarRec *Args,
const int Args_Size, int AHelpContext)

Description
Call EInvalidArgument to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception
EMathError

EInvalidArgument example
EInvalidArgument

EInvalidImage
Hierarchy Properties Methods See also
EInvalidImage is the exception class for unsuccessful attempts to read resource files.
Header
vcl/classes.hpp
Description
EInvalidImage is raised when an application cannot read a resource file. This occurs most often
because the specified file is not a resource file.
This error can occur if the TStream object’s read and write methods are used inconsistently.
Always use ReadComponentRes to read components written with WriteComponentRes, and
ReadComponent to read components written with WriteComponent. Failure to use the
corresponding read and write methods can result in EInvalidImage exceptions.

EInvalidImage properties
EInvalidImage Alphabetically

Derived from Exception
HelpContext
Message

EInvalidImage properties
EInvalidImage By object

HelpContext
Message

EInvalidImage methods
EInvalidImage Alphabetically

In EInvalidImage
~EInvalidImage
EInvalidImage

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidImage methods
EInvalidImage By object

~EInvalidImage
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EInvalidImage
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidImage::~EInvalidImage
EInvalidImage See also
~EInvalidImage frees the memory associated with the EInvalidImage object. Do not call ~
EInvalidImage directly. Instead, use the delete keyword on the object, which causes ~
EInvalidImage to be invoked automatically.
__fastcall virtual ~EInvalidImage(void);

EInvalidImage::EInvalidImage
EInvalidImage See also
EInvalidImage creates a new EInvalidImage object.
__fastcall EInvalidImage(const System::AnsiString Msg);
__fastcall EInvalidImage(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EInvalidImage(int Ident);
__fastcall EInvalidImage(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EInvalidImage(const System::AnsiString Msg, int
AHelpContext);

__fastcall EInvalidImage(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EInvalidImage(int Ident, int AHelpContext);
__fastcall EInvalidImage(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EInvalidImage to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception
EStreamError
EFilerError

EInvalidImage example
EInvalidImage

EInvalidOperation
Hierarchy Properties Methods See also
EInvalidOperation is the exception class for invalid operations on a component.
Header
vcl/controls.hpp
Description
EInvalidOperation is raised when an application attempts an operation that requires a window
handle on a component does not have a parent (Parent = NULL). This exception can also occur
if a drag-and-drop operation is attempted from a form (for example, Form1->BeginDrag).
Note
Do not confuse this object with EInvalidOp.

EInvalidOperation properties
EInvalidOperation Alphabetically

Derived from Exception
HelpContext
Message

EInvalidOperation properties
EInvalidOperation By object

HelpContext
Message

EInvalidOperation methods
EInvalidOperation Alphabetically

In EInvalidOperation
~EInvalidOperation
EInvalidOperation

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidOperation methods
EInvalidOperation By object

~EInvalidOperation
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EInvalidOperation
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidOperation::~EInvalidOperation
EInvalidOperation See also
~EInvalidOperation frees the memory associated with the EInvalidOperation object. Do not call ~
EInvalidOperation directly. Instead, use the delete keyword on the object, which causes ~
EInvalidOperation to be invoked automatically.
__fastcall virtual ~EInvalidOperation(void);

EInvalidOperation::EInvalidOperation
EInvalidOperation See also
EInvalidOperation creates a new EInvalidOperation object.
__fastcall EInvalidOperation(const System::AnsiString Msg);
__fastcall EInvalidOperation(const System::AnsiString Msg, const
System::TVarRec *Args, const int Args_Size);

__fastcall EInvalidOperation(int Ident);
__fastcall EInvalidOperation(int Ident, const System::TVarRec *Args,
const int Args_Size);

__fastcall EInvalidOperation(const System::AnsiString Msg, int
AHelpContext);

__fastcall EInvalidOperation(const System::AnsiString Msg, const
System::TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EInvalidOperation(int Ident, int AHelpContext);
__fastcall EInvalidOperation(int Ident, const System::TVarRec *Args,
const int Args_Size, int AHelpContext)

Description
Call EInvalidOperation to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EInvalidOperation example
EInvalidOperation

EInvalidPointer
Hierarchy Properties Methods
EInvalidPointer is the exception class for invalid pointer operations.
Header
vcl/sysutils.hpp
Description
EInvalidPointer is raised when an application attempts an invalid pointer operation. For example,
it can occur if an application tries to dispose of the same pointer twice, or refers to a pointer
which has already been disposed of.

EInvalidPointer properties
EInvalidPointer Alphabetically

Derived from Exception
HelpContext
Message

EInvalidPointer properties
EInvalidPointer By object

HelpContext
Message

EInvalidPointer methods
EInvalidPointer Alphabetically

In EInvalidPointer
~EInvalidPointer
EInvalidPointer

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidPointer methods
EInvalidPointer By object

~EInvalidPointer
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EInvalidPointer
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EInvalidPointer::~EInvalidPointer
EInvalidPointer
~EInvalidPointer frees the memory associated with the EInvalidPointer object. Do not call ~
EInvalidPointer directly. Instead, use the delete keyword on the object, which causes ~
EInvalidPointer to be invoked automatically.
__fastcall virtual ~EInvalidPointer(void);

EInvalidPointer::EInvalidPointer
EInvalidPointer
EInvalidPointer creates a new EInvalidPointer object.
__fastcall EInvalidPointer(const System::AnsiString Msg);
__fastcall EInvalidPointer(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size);

__fastcall EInvalidPointer(int Ident);
__fastcall EInvalidPointer(int Ident, const System::TVarRec *Args,
const int Args_Size);

__fastcall EInvalidPointer(const System::AnsiString Msg, int
AHelpContext);

__fastcall EInvalidPointer(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EInvalidPointer(int Ident, int AHelpContext);
__fastcall EInvalidPointer(int Ident, const System::TVarRec *Args,
const int Args_Size, int AHelpContext)

Description
Call EInvalidPointer to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EInvalidPointer example
EInvalidPointer

EListError
Hierarchy Properties Methods See also
EListError is the exception class for list and string errors.
Header
vcl/classes.hpp
Description
EListError is raised when an error is made in a list, string, or TStringList object. This exception
commonly occurs when an application refers to an item that is out of the list’s range.
EListError also occurs if an application tries to add a duplicate string to a TStringList object when
the value of the Duplicates property is dupError.
An EListError exception is raised when an application attempts to insert a string into a sorted
string list, since the insertion of a string at a specified position may put the list out of order.

EListError properties
EListError Alphabetically

Derived from Exception
HelpContext
Message

EListError properties
EListError By object

HelpContext
Message

EListError methods
EListError Alphabetically

In EListError
~EListError
EListError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EListError methods
EListError By object

~EListError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EListError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EListError::~EListError
EListError See also
~EListError frees the memory associated with the EListError object. Do not call ~EListError
directly. Instead, use the delete keyword on the object, which causes ~EListError to be invoked
automatically.
__fastcall virtual ~EListError(void);

EListError::EListError
EListError
EListError creates a new EListError object.
__fastcall EListError(const System::AnsiString Msg);
__fastcall EListError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EListError(int Ident);
__fastcall EListError(int Ident, const System::TVarRec *Args, const int
Args_Size);

__fastcall EListError(const System::AnsiString Msg, int AHelpContext);
__fastcall EListError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EListError(int Ident, int AHelpContext);
__fastcall EListError(int Ident, const System::TVarRec *Args, const int
Args_Size, int AHelpContext)

Description
Call EListError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EListError example
EListError

EMathError
Hierarchy Properties Methods See also
EMathError is the exception class for floating-point math errors.
Header
vcl/sysutils.hpp
Description
EMathError is the base class from which all specific floating-point math exceptions descend. It is
never raised on its own.
The following exceptions descend from EMathError:
Exception Meaning

EInvalidArgument Parameter out of range
EInvalidOp Processor encountered an undefined instruction
EOverflow Floating-point operation overflowed
EUnderflow Floating-point operation underflowed
EZeroDivide Attempt to divide by zero

EMathError properties
EMathError Alphabetically

Derived from Exception
HelpContext
Message

EMathError properties
EMathError By object

HelpContext
Message

EMathError methods
EMathError Alphabetically

In EMathError
~EMathError
EMathError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EMathError methods
EMathError By object

~EMathError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EMathError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EMathError::~EMathError
EMathError
~EMathError frees the memory associated with the EMathError object. Do not call ~EMathError
directly. Instead, use the delete keyword on the object, which causes ~EMathError to be invoked
automatically.
__fastcall virtual ~EMathError(void);

EMathError::EMathError
EMathError See also
EMathError creates a new EMathError object.
__fastcall EMathError(const System::AnsiString Msg);
__fastcall EMathError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EMathError(int Ident);
__fastcall EMathError(int Ident, const System::TVarRec *Args, const int
Args_Size);

__fastcall EMathError(const System::AnsiString Msg, int AHelpContext);
__fastcall EMathError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EMathError(int Ident, int AHelpContext);
__fastcall EMathError(int Ident, const System::TVarRec *Args, const int
Args_Size, int AHelpContext)

Description
Call EMathError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EMathError example
EMathError

EMCIDeviceError
Hierarchy Properties Methods See also
EMCIDeviceError is the exception class for devices that provide a Media Control Interface (MCI)
driver.
Header
vcl/mplayer.hpp
Description
EMCIDeviceError is raised if an error occurs when accessing a multimedia device. The most
common cause for the exception is trying to access a multimedia device before it has been
opened with the TMediaPlayer::Open method.

EMCIDeviceError properties
EMCIDeviceError Alphabetically

Derived from Exception
HelpContext
Message

EMCIDeviceError properties
EMCIDeviceError By object

HelpContext
Message

EMCIDeviceError methods
EMCIDeviceError Alphabetically

In EMCIDeviceError
~EMCIDeviceError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EMCIDeviceError methods
EMCIDeviceError By object

~EMCIDeviceError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EMCIDeviceError::~EMCIDeviceError
EMCIDeviceError
~EMCIDeviceError frees the memory associated with the EMCIDeviceError object. Do not call ~
EMCIDeviceError directly. Instead, use the delete keyword on the object, which causes ~
EMCIDeviceError to be invoked automatically.
__fastcall virtual ~EMCIDeviceError(void);

EMCIDeviceError
EMCIDeviceError creates a new EMCIDeviceError object.
__fastcall EMCIDeviceError(const System::AnsiString Msg);
__fastcall EMCIDeviceError(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size);

__fastcall EMCIDeviceError(int Ident);
__fastcall EMCIDeviceError(int Ident, const System::TVarRec *Args,
const int Args_Size);

__fastcall EMCIDeviceError(const System::AnsiString Msg, int
AHelpContext);

__fastcall EMCIDeviceError(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EMCIDeviceError(int Ident, int AHelpContext);
__fastcall EMCIDeviceError(int Ident, const System::TVarRec *Args,
const int Args_Size, int AHelpContext)

Description
Call EMCIDeviceError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EMCIDeviceError example
EMCIDeviceError

EMenuError
Hierarchy Properties Methods See also
EMenuError is the exception class for errors involving menu items.
Header
vcl/menus.hpp
Description
EMenuError is raised if an error occurs while an application is working with menu items. For
example, an EMenuError exception occurs if an application attempts to delete a menu item that
doesn’t exist.

EMenuError properties
EMenuError Alphabetically

Derived from Exception
HelpContext
Message

EMenuError properties
EMenuError By object

HelpContext
Message

EMenuError methods
EMenuError Alphabetically

In EMenuError
~EMenuError
EMenuError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EMenuError methods
EMenuError By object

~EMenuError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EMenuError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EMenuError::~EMenuError
EMenuError
~ frees the memory associated with the EMenuError object. Do not call ~ directly. Instead, use
the delete keyword on the object, which causes ~ to be invoked automatically.
__fastcall virtual ~EMenuError(void);

EMenuError::EMenuError
EMenuError
EMenuError creates a new EMenuError object.

__fastcall EMenuError(const System::AnsiString Msg);
__fastcall EMenuError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EMenuError(int Ident);
__fastcall EMenuError(int Ident, const System::TVarRec *Args, const int
Args_Size);

__fastcall EMenuError(const System::AnsiString Msg, int AHelpContext);
__fastcall EMenuError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EMenuError(int Ident, int AHelpContext);
__fastcall EMenuError(int Ident, const System::TVarRec *Args, const int
Args_Size, int AHelpContext)

Description
Call to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EMenuError example
EMenuError

EMethodNotFound
Hierarchy Properties Methods See also
EMethodNotFound is the exception class for the failure to find a specified method when reading
from a stream.
Header
vcl/classes.hpp
Description
EMethodNotFound is raised when a method is used by an application, but its implementation
cannot be found.
Note
This exception is raised only at design time.

EMethodNotFound properties
EMethodNotFound Alphabetically

Derived from Exception
HelpContext
Message

EMethodNotFound properties
EMethodNotFound By object

HelpContext
Message

EMethodNotFound methods
EMethodNotFound Alphabetically

In EMethodNotFound
~EMethodNotFound
EMethodNotFound

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EMethodNotFound methods
EMethodNotFound By object

~EMethodNotFound
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EMethodNotFound
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EMethodNotFound::~EMethodNotFound
EMethodNotFound See also
~EMethodNotFound frees the memory associated with the EMethodNotFound object. Do not call
~EMethodNotFound directly. Instead, use the delete keyword on the object, which causes ~
EMethodNotFound to be invoked automatically.
__fastcall virtual ~EMethodNotFound(void)

EMethodNotFound::EMethodNotFound
EMethodNotFound See also
EMethodNotFound creates a new EMethodNotFound object.
__fastcall EMethodNotFound(const System::AnsiString Msg);
__fastcall EMethodNotFound(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size);

__fastcall EMethodNotFound(int Ident);
__fastcall EMethodNotFound(int Ident, const System::TVarRec *Args,
const int Args_Size);

__fastcall EMethodNotFound(const System::AnsiString Msg, int
AHelpContext);

__fastcall EMethodNotFound(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EMethodNotFound(int Ident, int AHelpContext);
__fastcall EMethodNotFound(int Ident, const System::TVarRec *Args,
const int Args_Size, int AHelpContext)

Description
Call EMethodNotFound to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception
EStreamError
EFilerError

EMethodNotFound example
EMethodNotFound

TEnumPropDesc
Hierarchy Methods See also
TEnumPropDesc provides the mapping between strings used to name the values of a property
in an OLE control object and the values themselves.
Header
vcl/olectrls.hpp
Description
Use TEnumPropDesc to interpret the strings used by an OLE control object to represent the
values of one of its properties. TEnumPropDesc can provide a list of possible value strings to a
callback function, or map between the string names of property values and the values
themselves. TEnumPropDesc objects are made available through the GetEnumPropDesc
method of an OLE control object.

TEnumPropDesc methods
TEnumPropDesc Alphabetically

In TEnumPropDesc
~TEnumPropDesc
GetStrings
StringToValue
TEnumPropDesc
ValueToString

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TEnumPropDesc methods
TEnumPropDesc By object

~TEnumPropDesc
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
GetStrings
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
StringToValue
TEnumPropDesc
ValueToString

TEnumPropDesc::~TEnumPropDesc
TEnumPropDesc See also
~TEnumPropDesc frees the memory associated with the TEnumPropDesc object. Do not call ~
TEnumPropDesc directly. Instead, use the delete keyword on the object, which causes ~
TEnumPropDesc to be invoked automatically.
__fastcall virtual ~TEnumPropDesc(void);
Description
~TEnumPropDesc frees the internal list used to map value strings to property values.

TEnumPropDesc::GetStrings
TEnumPropDesc See also
GetStrings calls the callback Proc for each property value string.
void __fastcall GetStrings(Classes::TGetStrProc Proc);
Description
Use GetStrings to execute code for every property value string represented in the
TEnumPropDesc object. The callback Proc is called for every value, with the S parameter set to
a string that gives the integer value followed by the string representation of that value.
For example, consider a TEnumPropDesc object that represents a color property, with values
equal to TColor values. The callback Proc would be called for every built-in color name with
strings of the form ‘255 – clRed’.

TEnumPropDesc::StringToValue
TEnumPropDesc See also
StringToValue maps a string representation of the property value to the integer value.
int __fastcall StringToValue(const System::AnsiString S);
Description
Use StringToValue to map the string representation of a property value used by an OLE control
object to an integer value that is a more accurate representation of the property value. If the
property value is not an integer, the integer associated with the string can be a pointer to the
value.

TEnumPropDesc::TEnumPropDesc
TEnumPropDesc See also
TEnumPropDesc creates an instance of TEnumPropDesc.
__fastcall TEnumPropDesc(int DispID, int ValueCount, Ole2::ITypeInfo*
TypeInfo);

Description
TEnumPropDesc is called by an OLE control object to represent the values of one of its
properties. Applications should not need to create instances of TEnumPropDesc. When working
with OLE properties, get the TEnumPropDesc objects from the OLE control object.
DispID identifies the property of the OLE object, ValueCount is the number of distinct values the
property can take, and TypeInfo is an ITypeInfo object that the constructor can use to capture
the values and their strings.

TEnumPropDesc::ValueToString
TEnumPropDesc See also
ValueToString maps an integer that indicates the value of the property to the string
representation of that value used by the OLE control object.
System::AnsiString __fastcall ValueToString(int V);
Description
Use ValueToString to map the integer value of a property value to the string representation used
by an OLE control object. If the property value is not an integer, the integer associated with the
string can be a pointer to the value.

Hierarchy

TObject

TEnumPropDesc example
TEnumPropDesc

EOleCtrlError
Hierarchy Properties Methods See also
EOleCtrlError is the exception class for ActiveX controls.
Header
vcl/olectrls.hpp
Description
EOleCtrlError is raised when an application cannot link to an ActiveX control.

EOleCtrlError properties
EOleCtrlError Alphabetically

Derived from Exception
HelpContext
Message

EOleCtrlError properties
EOleCtrlError By object

HelpContext
Message

EOleCtrlError methods
EOleCtrlError Alphabetically

In EOleCtrlError
~EOleCtrlError
EOleCtrlError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EOleCtrlError methods
EOleCtrlError By object

~EOleCtrlError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
DefaultHandler
Dispatch
EOleCtrlError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EOleCtrlError::~EOleCtrlError
EOleCtrlError
~EOleCtrlError frees the memory associated with the EOleCtrlError object. Do not call ~
EOleCtrlError directly. Instead, use the delete keyword on the object, which causes ~
EOleCtrlError to be invoked automatically.
__fastcall virtual ~EOleCtrlError(void);

EOleCtrlError::EOleCtrlError
EOleCtrlError See also
EOleCtrlError creates a new EOleCtrlError object.
__fastcall EOleCtrlError(const System::AnsiString Msg);
__fastcall EOleCtrlError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EOleCtrlError(int Ident);
__fastcall EOleCtrlError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EOleCtrlError(const System::AnsiString Msg, int
AHelpContext);

__fastcall EOleCtrlError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EOleCtrlError(int Ident, int AHelpContext);
__fastcall EOleCtrlError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EOleCtrlError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EOleCtrlError example
EOleCtrlError

EOleError
Hierarchy Properties Methods See also
EOleError is the exception class for OLE automation errors.
Header
vcl/oleauto.hpp
Description
EOleError is raised when an application cannot access an OLE automation object.

EOleError properties
EOleError Alphabetically

Derived from Exception
HelpContext
Message

EOleError properties
EOleError By object

HelpContext
Message

EOleError methods
EOleError Alphabetically

In EOleError
~EOleError
EOleError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EOleError methods
EOleError By object

~EOleError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EOleError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EOleError::~EOleError
EOleError
~EOleError frees the memory associated with the EOleError object. Do not call ~EOleError
directly. Instead, use the delete keyword on the object, which causes ~EOleError to be invoked
automatically.
__fastcall virtual ~EOleError(void);

EOleError::EOleError
EOleError See also
EOleError creates a new EOleError object.
__fastcall EOleError(const System::AnsiString Msg);
__fastcall EOleError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EOleError(int Ident);
__fastcall EOleError(int Ident, const System::TVarRec *Args, const int
Args_Size);

__fastcall EOleError(const System::AnsiString Msg, int AHelpContext);
__fastcall EOleError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EOleError(int Ident, int AHelpContext);
__fastcall EOleError(int Ident, const System::TVarRec *Args, const int
Args_Size, int AHelpContext)

Description
Call EOleError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EOleError example
EOleError

EOleException
Hierarchy Properties Methods See also
EOleException encapsulates exceptions raised by OLE automation servers.
Header
vcl/oleauto.hpp
Description
EOleException is raised when an OLE automation server generates an exception during
runtime. It captures essential information about the exception, including the source of the error,
error code, description, help file, and ID number for context-sensitive help. The error description
and ID number (if available) are included in a message generated by CreateHelp; the other
information is stored in the Source, ErrorCode, and HelpFile properties defined for
EOleException.

EOleException properties
EOleException Alphabetically Legend

In EOleException
ErrorCode
HelpFile
Source

Derived from Exception
HelpContext
Message

EOleException properties
EOleException By object Legend

ErrorCode
HelpContext

HelpFile
Message

Source

EOleException::ErrorCode
EOleException
The error code passed from the source of the exception.
__property int ErrorCode;
Description
ErrorCode contains the numerical error code passed from the application that raised the
exception.

EOleException::HelpFile
EOleException
The name and location of the help file that contains information about the error that occurred.
__property System::AnsiString HelpFile;
Description
HelpFile lists the name and complete directory path of the help file that contains information
about the error.

EOleException::Source
EOleException
The source of the exception.
__property System::AnsiString Source;
Description
Source gives the source of the exception. Usually, this is the name of an application program.

EOleException methods
EOleException Alphabetically

In EOleException
~EOleException
EOleException

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EOleException methods
EOleException By object

~EOleException
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EOleException
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EOleException::~EOleException
EOleException
~EOleException frees the memory associated with the EOleException object. Do not call ~
EOleException directly. Instead, use the delete keyword on the object, which causes ~
EOleException to be invoked automatically.
__fastcall virtual ~EOleException(void);

EOleException::EOleException
EOleException See also
Creates and initializes an instance of EOleException.
__fastcall EOleException(const System::AnsiString Msg);
__fastcall EOleException(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EOleException(int Ident);
__fastcall EOleException(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EOleException(const System::AnsiString Msg, int
AHelpContext);

__fastcall EOleException(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EOleException(int Ident, int AHelpContext);
__fastcall EOleException(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EOleException to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.
The EOleException method initializes the ErrorCode, HelpFile, and Source properties of
EOleException using information passed in the OLE EXCEPINFO structure. It calls the inherited
CreateHelp method to display the error description and ID number from EXCEPINFO.

Accessibility
Read-only

Hierarchy

TObject

Exception
EOleError

EOleException example
EOleException

EOleSysError
Hierarchy Properties Methods See also
EOleSysError is the exception class for OLE API errors.
Header
vcl/oleauto.hpp
Description
EOleSysError is raised when the OLE API returns an error at runtime.

EOleSysError properties
EOleSysError Alphabetically Legend

In EOleSysError
ErrorCode

Derived from Exception
HelpContext
Message

EOleSysError properties
EOleSysError By object Legend

ErrorCode
HelpContext
Message

EOleSysError::ErrorCode
EOleSysError
The numerical error code returned by the API.
__property int ErrorCode;
Description
ErrorCode is the numerical error code returned by the OLE API.

EOleSysError methods
EOleSysError Alphabetically

In EOleSysError
~EOleSysError
EOleSysError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EOleSysError methods
EOleSysError By object

~EOleSysError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EOleSysError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EOleSysError::~EOleSysError
EOleSysError
~EOleSysError frees the memory associated with the EOleSysError object. Do not call ~
EOleSysError directly. Instead, use the delete keyword on the object, which causes ~
EOleSysError to be invoked automatically.
__fastcall virtual ~EOleSysError(void);

EOleSysError::EOleSysError
EOleSysError See also
Creates an EOleSysError instance.
__fastcall EOleSysError(const System::AnsiString Msg);
__fastcall EOleSysError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EOleSysError(int Ident);
__fastcall EOleSysError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EOleSysError(const System::AnsiString Msg, int AHelpContext)
;

__fastcall EOleSysError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EOleSysError(int Ident, int AHelpContext);
__fastcall EOleSysError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EOleSysError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Accessibility
Read-only

Hierarchy

TObject

Exception
EOleError

EOleSysError example
EOleSysError

EOutlineError
Hierarchy Properties Methods See also
EOutlineError is the exception class for outline components.
Header
vcl/outline.hpp
Description
EOutlineError is raised when an error occurs as an application works with an outline component.
For example, an EOutlineError exception occurs when an application
• Attempts to access an outline using an invalid node index.
• Attempts to expand a node whose parent isn’t expanded.
• Attempts to load items from a file using an invalid file extension.

EOutlineError properties
EOutlineError Alphabetically

Derived from Exception
HelpContext
Message

EOutlineError properties
EOutlineError By object

HelpContext
Message

EOutlineError methods
EOutlineError Alphabetically

In EOutlineError
~EOutlineError
EOutlineError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EOutlineError methods
EOutlineError By object

~EOutlineError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EOutlineError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EOutlineError::~EOutlineError
EOutlineError
~EOutlineError frees the memory associated with the EOutlineError object. Do not call ~
EOutlineError directly. Instead, use the delete keyword on the object, which causes ~
EOutlineError to be invoked automatically.
__fastcall virtual ~EOutlineError(void);

EOutlineError::EOutlineError
EOutlineError See also
EOutlineError creates a new EOutlineError object.
__fastcall EOutlineError(const System::AnsiString Msg);
__fastcall EOutlineError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EOutlineError(int Ident);
__fastcall EOutlineError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EOutlineError(const System::AnsiString Msg, int
AHelpContext);

__fastcall EOutlineError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EOutlineError(int Ident, int AHelpContext);
__fastcall EOutlineError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EOutlineError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EOutlineError example
EOutlineError

EOutOfMemory
Hierarchy Properties Methods See also
EOutOfMemory is the exception class for unsuccessful attempts to allocate memory.
Header
vcl/sysutils.hpp
Description
EOutOfMemory is raised when an application attempts to allocate dynamic memory, but there is
not enough free memory in the system to meet the request.
Memory for the EOutOfMemory exception is itself preallocated whenever a Borland C++Builder
application starts and remains allocated as long as the application is running.
Note
Never raise EOutOfMemory directly. Instead, use the OutOfMemoryError procedure.

EOutOfMemory properties
EOutOfMemory Alphabetically

Derived from Exception
HelpContext
Message

EOutOfMemory properties
EOutOfMemory By object

HelpContext
Message

EOutOfMemory methods
EOutOfMemory Alphabetically

In EOutOfMemory
~EOutOfMemory
EOutOfMemory
FreeInstance

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EOutOfMemory methods
EOutOfMemory By object

~EOutOfMemory
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EOutOfMemory
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EOutOfMemory::~EOutOfMemory
EOutOfMemory
Memory for this exception is preallocated when an application starts and should remain allocated
as long as the application is running. For this reason, ~EOutOfMemory has no effect.
__fastcall virtual ~EOutOfMemory(void);

EOutOfMemory::EOutOfMemory
EOutOfMemory See also
EOutOfMemory creates a new EOutOfMemory object.
__fastcall EOutOfMemory(const System::AnsiString Msg);
__fastcall EOutOfMemory(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EOutOfMemory(int Ident);
__fastcall EOutOfMemory(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EOutOfMemory(const System::AnsiString Msg, int AHelpContext)
;

__fastcall EOutOfMemory(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EOutOfMemory(int Ident, int AHelpContext);
__fastcall EOutOfMemory(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EOutOfMemory to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

EOutOfMemory::FreeInstance
EOutOfMemory
The FreeInstance method for EOutOfMemory is inoperative.
virtual void __fastcall FreeInstance(void);
Description
EOutOfMemory overrides the inherited FreeInstance method. Memory for this exception is
preallocated when an application starts and should remain allocated as long as the application is
running. For this reason, the FreeInstance method has been disabled; calling FreeInstance has
no effect on an EOutOfMemory object.

Hierarchy

TObject

Exception

EOutOfMemory example
EOutOfMemory

EOutOfResources
Hierarchy Properties Methods See also
EOutOfResources is the exception class for unsuccessful attempts to allocate Windows handles.
Header
vcl/controls.hpp
Description
EOutOfResources is raised when an application attempts to create a Windows handle and
Windows has no more handles to allocate.

EOutOfResources properties
EOutOfResources Alphabetically

Derived from Exception
HelpContext
Message

EOutOfResources properties
EOutOfResources By object

HelpContext
Message

EOutOfResources methods
EOutOfResources Alphabetically

In EOutOfResources
~EOutOfResources
EOutOfResources

Derived from EOutOfMemory
FreeInstance

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EOutOfResources methods
EOutOfResources By object

~EOutOfResources
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EOutOfResources
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EOutOfResources::~EOutOfResources
EOutOfResources See also
~EOutOfResources frees the memory associated with the EOutOfResources object. Do not call
~EOutOfResources directly. Instead, use the delete keyword on the object, which causes ~
EOutOfResources to be invoked automatically.
__fastcall virtual ~EOutOfResources(void);

EOutOfResources::EOutOfResources
EOutOfResources See also
EOutOfResources creates a new EOutOfResources object.
__fastcall EOutOfResources(const System::AnsiString Msg);
__fastcall EOutOfResources(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size);

__fastcall EOutOfResources(int Ident);
__fastcall EOutOfResources(int Ident, const System::TVarRec *Args,
const int Args_Size);

__fastcall EOutOfResources(const System::AnsiString Msg, int
AHelpContext);

__fastcall EOutOfResources(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EOutOfResources(int Ident, int AHelpContext);
__fastcall EOutOfResources(int Ident, const System::TVarRec *Args,
const int Args_Size, int AHelpContext)

Description
Call EOutOfResources to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception
EOutOfMemory

EOutOfResources example
EOutOfResources

EOverflow
Hierarchy Properties Methods See also
EOverflow is the exception class for floating-point register overflows.
Header
vcl/sysutils.hpp
Description
EOverflow is raised when a calculated result is too large to fit in the floating-point register
allocated for it and data is therefore lost.
Note
Integer register overflows raise the EIntOverflow exception.

EOverflow properties
EOverflow Alphabetically

Derived from Exception
HelpContext
Message

EOverflow properties
EOverflow By object

HelpContext
Message

EOverflow methods
EOverflow Alphabetically

In EOverflow
~EOverflow
EOverflow

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EOverflow methods
EOverflow By object

~EOverflow
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EOverflow
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EOverflow::~EOverflow
EOverflow
~EOverflow frees the memory associated with the EOverflow object. Do not call ~EOverflow
directly. Instead, use the delete keyword on the object, which causes ~EOverflow to be invoked
automatically.
__fastcall virtual ~EOverflow(void);

EOverflow::EOverflow
EOverflow
EOverflow creates a new EOverflow object.
__fastcall EOverflow(const System::AnsiString Msg);
__fastcall EOverflow(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EOverflow(int Ident);
__fastcall EOverflow(int Ident, const System::TVarRec *Args, const int
Args_Size);

__fastcall EOverflow(const System::AnsiString Msg, int AHelpContext);
__fastcall EOverflow(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EOverflow(int Ident, int AHelpContext);
__fastcall EOverflow(int Ident, const System::TVarRec *Args, const int
Args_Size, int AHelpContext)

Description
Call EOverflow to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception
EMathError

EOverflow example
EOverflow

EParserError
Hierarchy Properties Methods See also
EParserError is the exception class for text-to-binary streaming conversion errors.
Header
vcl/classes.hpp
Description
EParserError is raised when an error occurs during text-to-binary conversion, usually due to a
syntax error in the source text.

EParserError properties
EParserError Alphabetically

Derived from Exception
HelpContext
Message

EParserError properties
EParserError By object

HelpContext
Message

EParserError methods
EParserError Alphabetically

In EParserError
~EParserError
EParserError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EParserError methods
EParserError By object

~EParserError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EParserError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EParserError::~EParserError
EParserError See also
~EParserError frees the memory associated with the EParserError object. Do not call ~
EParserError directly. Instead, use the delete keyword on the object, which causes ~
EParserError to be invoked automatically.
__fastcall virtual ~EParserError(void);

EParserError::EParserError
EParserError See also
EParserError creates a new EParserError object.
__fastcall EParserError(const System::AnsiString Msg);
__fastcall EParserError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EParserError(int Ident);
__fastcall EParserError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EParserError(const System::AnsiString Msg, int AHelpContext)
;

__fastcall EParserError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EParserError(int Ident, int AHelpContext);
__fastcall EParserError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EParserError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EParserError example
EParserError

EPrinter
Hierarchy Properties Methods
EPrinter is the exception class for printing errors.
Header
vcl/printers.hpp
Description
EPrinter is raised when a printing error occurs. For example, if an application attempts to use a
printer that doesn’t exist, or if a job can’t be sent to the printer for some other reason, an
EPrinter exception is raised.

EPrinter properties
EPrinter Alphabetically

Derived from Exception
HelpContext
Message

EPrinter properties
EPrinter By object

HelpContext
Message

EPrinter methods
EPrinter Alphabetically

In EPrinter
~EPrinter
EPrinter

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EPrinter methods
EPrinter By object

~EPrinter
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EPrinter
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EPrinter::~EPrinter
EPrinter
~EPrinter frees the memory associated with the EPrinter object. Do not call ~EPrinter directly.
Instead, use the delete keyword on the object, which causes ~EPrinter to be invoked
automatically.
__fastcall virtual ~EPrinter(void);

EPrinter::EPrinter
EPrinter See also
EPrinter creates a new EPrinter object.
__fastcall EPrinter(const System::AnsiString Msg);
__fastcall EPrinter(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EPrinter(int Ident);
__fastcall EPrinter(int Ident, const System::TVarRec *Args, const int
Args_Size);

__fastcall EPrinter(const System::AnsiString Msg, int AHelpContext);
__fastcall EPrinter(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EPrinter(int Ident, int AHelpContext);
__fastcall EPrinter(int Ident, const System::TVarRec *Args, const int
Args_Size, int AHelpContext)

Description
Call EPrinter to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EPrinter example
EPrinter

EPrivilege
Hierarchy Properties Methods
EPrivilege is the exception class for processor privilege violations.
Header
vcl/sysutils.hpp
Description
EPrivilege is raised when an application tries to execute a processor instruction that is invalid for
the current processor privilege level.

EPrivilege properties
EPrivilege Alphabetically

Derived from Exception
HelpContext
Message

EPrivilege properties
EPrivilege By object

HelpContext
Message

EPrivilege methods
EPrivilege Alphabetically

In EPrivilege
~EPrivilege
EPrivilege

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EPrivilege methods
EPrivilege By object

~EPrivilege
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EPrivilege
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EPrivilege::~EPrivilege
EPrivilege
~EPrivilege frees the memory associated with the EPrivilege object. Do not call ~EPrivilege
directly. Instead, use the delete keyword on the object, which causes ~EPrivilege to be invoked
automatically.
__fastcall virtual ~EPrivilege(void);

EPrivilege::EPrivilege
EPrivilege See also
EPrivilege creates a new EPrivilege object.
__fastcall EPrivilege(const System::AnsiString Msg);
__fastcall EPrivilege(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EPrivilege(int Ident);
__fastcall EPrivilege(int Ident, const System::TVarRec *Args, const int
Args_Size);

__fastcall EPrivilege(const System::AnsiString Msg, int AHelpContext);
__fastcall EPrivilege(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EPrivilege(int Ident, int AHelpContext);
__fastcall EPrivilege(int Ident, const System::TVarRec *Args, const int
Args_Size, int AHelpContext)

Description
Call EPrivilege to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EPrivilege example
EPrivilege

EPropertyError
Hierarchy Properties Methods See also
EPropertyError is the exception class for unsuccessful attempts to set the value of a property.
Header
vcl/dsgnintf.hpp
Description
EPropertyError is raised by the SetValue (or Edit) methods of property-editor objects when they
cannot set a requested property value. This usually occurs because the requested value is out of
range or of an invalid data type.

EPropertyError properties
EPropertyError Alphabetically

Derived from Exception
HelpContext
Message

EPropertyError properties
EPropertyError By object

HelpContext
Message

EPropertyError methods
EPropertyError Alphabetically

In EPropertyError
~EPropertyError
EPropertyError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EPropertyError methods
EPropertyError By object

~EPropertyError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EPropertyError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EPropertyError::~EPropertyError
EPropertyError
~EPropertyError frees the memory associated with the EPropertyError object. Do not call ~
EPropertyError directly. Instead, use the delete keyword on the object, which causes ~
EPropertyError to be invoked automatically.
__fastcall virtual ~EPropertyError(void);

EPropertyError::EPropertyError
EPropertyError See also
EPropertyError creates a new EPropertyError object.
__fastcall EPropertyError(const System::AnsiString Msg);
__fastcall EPropertyError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EPropertyError(int Ident);
__fastcall EPropertyError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EPropertyError(const System::AnsiString Msg, int
AHelpContext);

__fastcall EPropertyError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EPropertyError(int Ident, int AHelpContext);
__fastcall EPropertyError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EPropertyError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EPropertyError example
EPropertyError

EPropReadOnly
Hierarchy Properties Methods
EPropReadOnly is the exception class for invalid attempts to write to a property using OLE
automation.
Header
vcl/sysutils.hpp
Description
EPropReadOnly is raised when an application tries to write to a read-only property using OLE
automation.

EPropReadOnly properties
EPropReadOnly Alphabetically

Derived from Exception
HelpContext
Message

EPropReadOnly properties
EPropReadOnly By object

HelpContext
Message

EPropReadOnly methods
EPropReadOnly Alphabetically

In EPropReadOnly
~EPropReadOnly
EPropReadOnly

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EPropReadOnly methods
EPropReadOnly By object

~EPropReadOnly
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EPropReadOnly
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EPropReadOnly::~EPropReadOnly
EPropReadOnly
~EPropReadOnly frees the memory associated with the EPropReadOnly object. Do not call ~
EPropReadOnly directly. Instead, use the delete keyword on the object, which causes ~
EPropReadOnly to be invoked automatically.
__fastcall virtual ~EPropReadOnly(void);

EPropReadOnly::EPropReadOnly
EPropReadOnly See also
EPropReadOnly creates a new EPropReadOnly object.
__fastcall EPropReadOnly(const System::AnsiString Msg);
__fastcall EPropReadOnly(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EPropReadOnly(int Ident);
__fastcall EPropReadOnly(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EPropReadOnly(const System::AnsiString Msg, int
AHelpContext);

__fastcall EPropReadOnly(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EPropReadOnly(int Ident, int AHelpContext);
__fastcall EPropReadOnly(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EPropReadOnly to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EPropReadOnly example
EPropReadOnly

EPropWriteOnly
Hierarchy Properties Methods
EPropWriteOnly is the exception class for invalid attempts to read a property using OLE
automation.
Header
vcl/sysutils.hpp
Description
EPropWriteOnly is raised when an application tries to read a write-only property using OLE
automation.

EPropWriteOnly properties
EPropWriteOnly Alphabetically

Derived from Exception
HelpContext
Message

EPropWriteOnly properties
EPropWriteOnly By object

HelpContext
Message

EPropWriteOnly methods
EPropWriteOnly Alphabetically

In EPropWriteOnly
~EPropWriteOnly
EPropWriteOnly

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EPropWriteOnly methods
EPropWriteOnly By object

~EPropWriteOnly
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EPropWriteOnly
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EPropWriteOnly::~EPropWriteOnly
EPropWriteOnly
~EPropWriteOnly frees the memory associated with the EPropWriteOnly object. Do not call ~
EPropWriteOnly directly. Instead, use the delete keyword on the object, which causes ~
EPropWriteOnly to be invoked automatically.
__fastcall virtual ~EPropWriteOnly(void);

EPropWriteOnly::EPropWriteOnly
EPropWriteOnly See also
EPropWriteOnly creates a new EPropWriteOnly object.
__fastcall EPropWriteOnly(const System::AnsiString Msg);
__fastcall EPropWriteOnly(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EPropWriteOnly(int Ident);
__fastcall EPropWriteOnly(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EPropWriteOnly(const System::AnsiString Msg, int
AHelpContext);

__fastcall EPropWriteOnly(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EPropWriteOnly(int Ident, int AHelpContext);
__fastcall EPropWriteOnly(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EPropWriteOnly to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EPropWriteOnly example
EPropWriteOnly

ERangeError
Hierarchy Properties Methods See also
ERangeError is the exception class for integer values that are too large for the declared type to
which they are assigned.
Header
vcl/sysutils.hpp
Description
ERangeError is an integer math exception. It occurs when
• An integer expression’s value exceeds the bounds of the specified integer type to which it is

assigned.
• Source code attempts to access an item in an array using an index value that is not within the

defined array.
ERangeError is raised only if range checking is turned on. To turn on range checking, include
the $R+ directive in project source code, or select Project|Options, choose the Compiler tab, and
check the Range-checking option in the dialog box.

ERangeError properties
ERangeError Alphabetically

Derived from Exception
HelpContext
Message

ERangeError properties
ERangeError By object

HelpContext
Message

ERangeError methods
ERangeError Alphabetically

In ERangeError
~ERangeError
ERangeError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

ERangeError methods
ERangeError By object

~ERangeError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
ERangeError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

ERangeError::~ERangeError
ERangeError
~ERangeError frees the memory associated with the ERangeError object. Do not call ~
ERangeError directly. Instead, use the delete keyword on the object, which causes ~
ERangeError to be invoked automatically.
__fastcall virtual ~ERangeError(void);

ERangeError::ERangeError
ERangeError See also
ERangeError creates a new ERangeError object.
__fastcall ERangeError(const System::AnsiString Msg);
__fastcall ERangeError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall ERangeError(int Ident);
__fastcall ERangeError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall ERangeError(const System::AnsiString Msg, int AHelpContext)
;

__fastcall ERangeError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall ERangeError(int Ident, int AHelpContext);
__fastcall ERangeError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call ERangeError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception
EIntError

ERangeError example
ERangeError

EReadError
Hierarchy Properties Methods See also
EReadError is the exception class for unsuccessful attempts to read data from a stream.
Header
vcl/classes.hpp
Description
EReadError is raised when an application attempts to read data from a stream but cannot read
the specified number of bytes.
An EReadError exception may also be raised if Borland C++Builder is unable to read a property
while creating a form. This can occur because a component reads the form resource incorrectly,
or because the resource is corrupt.

EReadError properties
EReadError Alphabetically

Derived from Exception
HelpContext
Message

EReadError properties
EReadError By object

HelpContext
Message

EReadError methods
EReadError Alphabetically

In EReadError
~EReadError
EReadError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EReadError methods
EReadError By object

~EReadError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EReadError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EReadError::~EReadError
EReadError See also
~EReadError frees the memory associated with the EReadError object. Do not call ~
EReadError directly. Instead, use the delete keyword on the object, which causes ~EReadError
to be invoked automatically.
__fastcall virtual ~EReadError(void);

EReadError::EReadError
EReadError See also
EReadError creates a new EReadError object.
__fastcall EReadError(const System::AnsiString Msg);
__fastcall EReadError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EReadError(int Ident);
__fastcall EReadError(int Ident, const System::TVarRec *Args, const int
Args_Size);

__fastcall EReadError(const System::AnsiString Msg, int AHelpContext);
__fastcall EReadError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EReadError(int Ident, int AHelpContext);
__fastcall EReadError(int Ident, const System::TVarRec *Args, const int
Args_Size, int AHelpContext)

Description
Call EReadError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception
EStreamError
EFilerError

EReadError example
EReadError

ERegistryException
Hierarchy Properties Methods See also
ERegistryException is the exception class for registry errors.
Header
vcl/registry.hpp
Description
ERegistryException is raised when an application cannot
• Create a new key in the registry.
• Read a data value associated with a key.
• Read a binary data value associated with a key into a local buffer.
• Write a data value to a key.
Key creation fails when an application attempts to create a subkey under a key for which it does
not have KEY_CREATE_SUB_KEY security access.
Reading a data value associated with a key fails when an application does not have KEY_READ
security access, or because the application attempts to read the wrong kind of data from a key,
such as reading string data from an integer data value.
Reading a binary data value into a local buffer fails when an application does not allocate a
buffer large enough for the data.
Writing a data value to a key fails because an application does not have KEY_WRITE security
access for the current key.

ERegistryException properties
ERegistryExceptionAlphabetically

Derived from Exception
HelpContext
Message

ERegistryException properties
ERegistryExceptionBy object

HelpContext
Message

ERegistryException methods
ERegistryExceptionAlphabetically

In ERegistryException
~ERegistryException
ERegistryException

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

ERegistryException methods
ERegistryExceptionBy object

~ERegistryException
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
ERegistryException
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

ERegistryException::~ERegistryException
ERegistryException
~ERegistryException frees the memory associated with the ERegistryException object. Do not
call ~ERegistryException directly. Instead, use the delete keyword on the object, which causes ~
ERegistryException to be invoked automatically.
__fastcall virtual ~ERegistryException(void);

ERegistryException::ERegistryException
ERegistryExceptionSee also
ERegistryException creates a new ERegistryException object.
__fastcall ERegistryException(const System::AnsiString Msg);
__fastcall ERegistryException(const System::AnsiString Msg, const
System::TVarRec *Args, const int Args_Size);

__fastcall ERegistryException(int Ident);
__fastcall ERegistryException(int Ident, const System::TVarRec *Args,
const int Args_Size);

__fastcall ERegistryException(const System::AnsiString Msg, int
AHelpContext);

__fastcall ERegistryException(const System::AnsiString Msg, const
System::TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall ERegistryException(int Ident, int AHelpContext);
__fastcall ERegistryException(int Ident, const System::TVarRec *Args,
const int Args_Size, int AHelpContext)

Description
Call ERegistryException to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

ERegistryException example
ERegistryException

EResNotFound
Hierarchy Properties Methods See also
EResNotFound is the exception class for unlocatable resources.
Header
vcl/classes.hpp
Description
EResNotFound is raised when Borland C++Builder cannot find a specified resource (such as a
form, bitmap, or icon) in a .DFM or .RES file, or when the resource is not linked into the
application.
If you receive this exception on startup of an application, or when you create a form, check the
form’s .CPP file for the #pragma resource “*.dfm” directive. If this directive is missing or
commented out, the .DFM file will not be included in the executable and an EResNotFound
exception will be generated.

EResNotFound properties
EResNotFound Alphabetically

Derived from Exception
HelpContext
Message

EResNotFound properties
EResNotFound By object

HelpContext
Message

EResNotFound methods
EResNotFound Alphabetically

In EResNotFound
~EResNotFound
EResNotFound

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EResNotFound methods
EResNotFound By object

~EResNotFound
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EResNotFound
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EResNotFound::~EResNotFound
EResNotFound See also
~EResNotFound frees the memory associated with the EResNotFound object. Do not call ~
EResNotFound directly. Instead, use the delete keyword on the object, which causes ~
EResNotFound to be invoked automatically.
__fastcall virtual ~EResNotFound(void);

EResNotFound::EResNotFound
EResNotFound See also
EResNotFound creates a new EResNotFound object.
__fastcall EResNotFound(const System::AnsiString Msg);
__fastcall EResNotFound(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EResNotFound(int Ident);
__fastcall EResNotFound(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EResNotFound(const System::AnsiString Msg, int AHelpContext)
;

__fastcall EResNotFound(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EResNotFound(int Ident, int AHelpContext);
__fastcall EResNotFound(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EResNotFound to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EResNotFound example
EResNotFound

EStackOverflow
Hierarchy Properties Methods
EStackOverflow is the exception class for stack overflows.
Header
vcl/sysutils.hpp
Description
EStackOverflow is raised when the current thread’s stack grows into the final guard page—that
is, when the system cannot grow the stack dynamically. This can happen because of extremely
large local variables, deeply recursive routines, or invalid assembly-language code.

EStackOverflow properties
EStackOverflow Alphabetically

Derived from Exception
HelpContext
Message

EStackOverflow properties
EStackOverflow By object

HelpContext
Message

EStackOverflow methods
EStackOverflow Alphabetically

In EStackOverflow
~EStackOverflow
EStackOverflow

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EStackOverflow methods
EStackOverflow By object

~EStackOverflow
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EStackOverflow
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EStackOverflow::~EStackOverflow
EStackOverflow
~EStackOverflow frees the memory associated with the EStackOverflow object. Do not call ~
EStackOverflow directly. Instead, use the delete keyword on the object, which causes ~
EStackOverflow to be invoked automatically.
__fastcall virtual ~EStackOverflow(void);

EStackOverflow::EStackOverflow
EStackOverflow See also
EStackOverflow creates a new EStackOverflow object.
__fastcall EStackOverflow(const System::AnsiString Msg);
__fastcall EStackOverflow(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EStackOverflow(int Ident);
__fastcall EStackOverflow(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EStackOverflow(const System::AnsiString Msg, int
AHelpContext);

__fastcall EStackOverflow(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EStackOverflow(int Ident, int AHelpContext);
__fastcall EStackOverflow(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EStackOverflow to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EStackOverflow example
EStackOverflow

EStringListError
Hierarchy Properties Methods See also
EStringListError is the exception class for invalid list-box references.
Header
vcl/classes.hpp
Description
EStringListError is raised when an application attempts to access a list box (for example, to add
an item) using an invalid index.

EStringListError properties
EStringListError Alphabetically

Derived from Exception
HelpContext
Message

EStringListError properties
EStringListError By object

HelpContext
Message

EStringListError methods
EStringListError Alphabetically

In EStringListError
~EStringListError
EStringListError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EStringListError methods
EStringListError By object

~EStringListError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EStringListError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EStringListError::~EStringListError
EStringListError See also
~EStringListError frees the memory associated with the EStringListError object. Do not call ~
EStringListError directly. Instead, use the delete keyword on the object, which causes ~
EStringListError to be invoked automatically.
__fastcall virtual ~EStringListError(void);

EStringListError::EStringListError
EStringListError See also
EStringListError creates a new EStringListError object.
__fastcall EStringListError(const System::AnsiString Msg);
__fastcall EStringListError(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size);

__fastcall EStringListError(int Ident);
__fastcall EStringListError(int Ident, const System::TVarRec *Args,
const int Args_Size);

__fastcall EStringListError(const System::AnsiString Msg, int
AHelpContext);

__fastcall EStringListError(const System::AnsiString Msg, const System:
:TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EStringListError(int Ident, int AHelpContext);
__fastcall EStringListError(int Ident, const System::TVarRec *Args,
const int Args_Size, int AHelpContext)

Description
Call EStringListError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EStringListError example
EStringListError

EStreamError
Hierarchy Properties Methods See also
EStreamError is the exception class for streaming errors.
Header
vcl/classes.hpp
Description
EStreamError is the ancestor from which all streaming exception classes descend.
EStreamError is itself raised when resources cannot be allocated for a memory stream.

EStreamError properties
EStreamError Alphabetically

Derived from Exception
HelpContext
Message

EStreamError properties
EStreamError By object

HelpContext
Message

EStreamError methods
EStreamError Alphabetically

In EStreamError
~EStreamError
EStreamError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EStreamError methods
EStreamError By object

~EStreamError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EStreamError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EStreamError::~EStreamError
EStreamError See also
~EStreamError frees the memory associated with the EStreamError object. Do not call ~
EStreamError directly. Instead, use the delete keyword on the object, which causes ~
EStreamError to be invoked automatically.
__fastcall virtual ~EStreamError(void);

EStreamError::EStreamError
EStreamError See also
EStreamError creates a new EStreamError object.
__fastcall EStreamError(const System::AnsiString Msg);
__fastcall EStreamError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EStreamError(int Ident);
__fastcall EStreamError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EStreamError(const System::AnsiString Msg, int AHelpContext)
;

__fastcall EStreamError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EStreamError(int Ident, int AHelpContext);
__fastcall EStreamError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EStreamError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EStreamError example
EStreamError

EThread
Hierarchy Properties Methods See also
EThread is the exception class for thread synchronization errors.
Header
vcl/classes.hpp
Description
EThread is raised when conflicts arise in multithreaded applications. This can occur if
Synchronize is called before a previous call to it has completed execution.

EThread properties
EThread Alphabetically

Derived from Exception
HelpContext
Message

EThread properties
EThread By object

HelpContext
Message

EThread methods
EThread Alphabetically

In EThread
~EThread
EThread

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EThread methods
EThread By object

~EThread
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EThread
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EThread::~EThread
EThread See also
~EThread frees the memory associated with the EThread object. Do not call ~EThread directly.
Instead, use the delete keyword on the object, which causes ~EThread to be invoked
automatically.
__fastcall virtual ~EThread(void);

EThread::EThread
EThread See also
EThread creates a new EThread object.
__fastcall EThread(const System::AnsiString Msg);
__fastcall EThread(const System::AnsiString Msg, const System::TVarRec
*Args, const int Args_Size);

__fastcall EThread(int Ident);
__fastcall EThread(int Ident, const System::TVarRec *Args, const int
Args_Size);

__fastcall EThread(const System::AnsiString Msg, int AHelpContext);
__fastcall EThread(const System::AnsiString Msg, const System::TVarRec
*Args, const int Args_Size, int AHelpContext);

__fastcall EThread(int Ident, int AHelpContext);
__fastcall EThread(int Ident, const System::TVarRec *Args, const int
Args_Size, int AHelpContext)

Description
Call EThread to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EThread example
EThread

ETreeViewError
Hierarchy Properties Methods See also
ETreeViewError is the exception class for unsuccessful attempts to access a tree view node.
Header
vcl/comctrls.hpp
Description
ETreeViewError is raised when an invalid index is requested from a TTreeView component.

ETreeViewError properties
ETreeViewError Alphabetically

Derived from Exception
HelpContext
Message

ETreeViewError properties
ETreeViewError By object

HelpContext
Message

ETreeViewError methods
ETreeViewError Alphabetically

Derived from Exception
~Exception
Exception

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

ETreeViewError methods
ETreeViewError By object

~Exception
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
Exception
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

~ETreeViewError
~ETreeViewError frees the memory associated with the ETreeViewError object. Do not call ~
ETreeViewError directly. Instead, use the delete keyword on the object, which causes ~
ETreeViewError to be invoked automatically.
__fastcall virtual ~ETreeViewError(void);

ETreeViewError
ETreeViewError creates a new ETreeViewError object.
__fastcall ETreeViewError(const System::AnsiString Msg);
__fastcall ETreeViewError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall ETreeViewError(int Ident);
__fastcall ETreeViewError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall ETreeViewError(const System::AnsiString Msg, int
AHelpContext);

__fastcall ETreeViewError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall ETreeViewError(int Ident, int AHelpContext);
__fastcall ETreeViewError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call ETreeViewError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

ETreeViewError example
ETreeViewError

EUnderflow
Hierarchy Properties Methods See also
EUnderflow is the exception class for values that are too small to be represented with a floating-
point variable.
Header
vcl/sysutils.hpp
Description
When a floating-point math operation produces a value that is too small to be represented in a
floating-point variable, the result ordinarily becomes zero. However, an application can change
the numeric coprocessor’s control word to unmask underflow hardware exceptions; in this case,
EUnderflow is raised when the coprocessor reports an underflow hardware exception. The
control word is reset after the exception.

EUnderflow properties
EUnderflow Alphabetically

Derived from Exception
HelpContext
Message

EUnderflow properties
EUnderflow By object

HelpContext
Message

EUnderflow methods
EUnderflow Alphabetically

In EUnderflow
~EUnderflow
EUnderflow

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EUnderflow methods
EUnderflow By object

~EUnderflow
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EUnderflow
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EUnderflow::~EUnderflow
EUnderflow
~EUnderflow frees the memory associated with the EUnderflow object. Do not call ~EUnderflow
directly. Instead, use the delete keyword on the object, which causes ~EUnderflow to be invoked
automatically.
__fastcall virtual ~EUnderflow(void);

EUnderflow::EUnderflow
EUnderflow See also
EUnderflow creates a new EUnderflow object.
__fastcall EUnderflow(const System::AnsiString Msg);
__fastcall EUnderflow(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EUnderflow(int Ident);
__fastcall EUnderflow(int Ident, const System::TVarRec *Args, const int
Args_Size);

__fastcall EUnderflow(const System::AnsiString Msg, int AHelpContext);
__fastcall EUnderflow(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EUnderflow(int Ident, int AHelpContext);
__fastcall EUnderflow(int Ident, const System::TVarRec *Args, const int
Args_Size, int AHelpContext)

Description
Call EUnderflow to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception
EMathError

EUnderflow example
EUnderflow

EVariantError
Hierarchy Properties Methods See also
EVariantError is the exception class for errors involving variant data types.
Header
vcl/sysutils.hpp
Description
EVariantError is raised when
• An application attempts an invalid variant typecast or operation.
• A variant does not contain a required OLE IDispatch object.
• The VarArrayCreate function is unable to create a requested variant array.
• A variant-array operation is attempted on something that is not a variant array.
• A variant-array index is out of bounds.

EVariantError properties
EVariantError Alphabetically

Derived from Exception
HelpContext
Message

EVariantError properties
EVariantError By object

HelpContext
Message

EVariantError methods
EVariantError Alphabetically

In EVariantError
~EVariantError
EVariantError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EVariantError methods
EVariantError By object

~EVariantError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EVariantError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EVariantError::~EVariantError
EVariantError
~EVariantError frees the memory associated with the EVariantError object. Do not call ~
EVariantError directly. Instead, use the delete keyword on the object, which causes ~
EVariantError to be invoked automatically.
__fastcall virtual ~EVariantError(void);

EVariantError::EVariantError
EVariantError See also
EVariantError creates a new EVariantError object.
__fastcall EVariantError(const System::AnsiString Msg);
__fastcall EVariantError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EVariantError(int Ident);
__fastcall EVariantError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EVariantError(const System::AnsiString Msg, int
AHelpContext);

__fastcall EVariantError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EVariantError(int Ident, int AHelpContext);
__fastcall EVariantError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EVariantError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception

EVariantError example
EVariantError

EWriteError
Hierarchy Properties Methods See also
EWriteError is the exception class for unsuccessful attempts to write data to a stream.
Header
vcl/classes.hpp
Description
EWriteError is raised when:
• The WriteBuffer method of a stream object is unable to write the specified number of bytes.
• The IDE is unable to write one of a component’s properties to a stream. This can occur when

you try to save a form at design time.

EWriteError properties
EWriteError Alphabetically

Derived from Exception
HelpContext
Message

EWriteError properties
EWriteError By object

HelpContext
Message

EWriteError methods
EWriteError Alphabetically

In EWriteError
~EWriteError
EWriteError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EWriteError methods
EWriteError By object

~EWriteError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EWriteError
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EWriteError::~EWriteError
EWriteError See also
~EWriteError frees the memory associated with the EWriteError object. Do not call ~EWriteError
directly. Instead, use the delete keyword on the object, which causes ~EWriteError to be invoked
automatically.
__fastcall virtual ~EWriteError(void);

EWriteError::EWriteError
EWriteError See also
EWriteError creates a new EWriteError object.
__fastcall EWriteError(const System::AnsiString Msg);
__fastcall EWriteError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EWriteError(int Ident);
__fastcall EWriteError(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EWriteError(const System::AnsiString Msg, int AHelpContext)
;

__fastcall EWriteError(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EWriteError(int Ident, int AHelpContext);
__fastcall EWriteError(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EWriteError to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception
EStreamError
EFilerError

EWriteError example
EWriteError

Exception
Hierarchy Properties Methods
Exception is the base class for all runtime exceptions.
Header
vcl/sysutils.hpp
Description
Exception encapsulates the fundamental properties and methods for all exceptions. Use
Exception as the base class for creating custom exceptions.
All methods introduced for the Exception object are constructors that provide alternative ways to
create exception messages. Some constructors also create help context IDs. Typically, an
application calls these constructors dynamically when an exception occurs.
Exception messages can be hard-coded strings, formatted strings, or strings (including formatted
strings) loaded from an application resource.
Exceptions are raised when a runtime error occurs in an application, such as attempting to divide
by zero. When an exception is raised, typically an exception instance displays a dialog box
describing the error condition. If an application does not handle the exception condition, then the
default exception handler is called. This handler also displays a dialog box with an OK button
that usually permits an application to continue processing when the user clicks OK.
The Exception object provides a consistent interface for error conditions, and enables
applications to handle error conditions in a graceful manner.
Note
Standard practice is to name all derived exceptions beginning with “E”, followed by an
abbreviated, descriptive name.

Exception properties
Exception Alphabetically

In Exception
HelpContext
Message

Exception properties
Exception By object

HelpContext
Message

Exception::HelpContext
Exception
HelpContext contains the help-context ID number for context-sensitive online help associated
with the exception.
__property int HelpContext;
Description
HelpContext provides storage for the help context ID number associated with the exception
object. The context ID number determines the contents of the help screen that appears when a
user presses F1 in response to an exception error message.
Note
Not all Exception constructors provide a value for HelpContext. To provide a help context for
custom exceptions, use only the constructors listed below in the See also list.

Exception::Message
Exception
Message contains the text string to display in the exception dialog box when the exception is
raised.
__property System::AnsiString Message;
Description
Message stores the error-message string to display when the exception is raised. All Exception
constructors expect a string parameter to store in Message. Message text can be hard-coded as
a parameter to an Exception constructor, created as dynamic parameter, or loaded from a
resource file as a static or dynamically formatted parameter.

Exception methods
Exception Alphabetically

In Exception
~Exception
Exception

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

Exception methods
Exception By object

~Exception
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
Exception
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

Exception::~Exception
Exception
~Exception frees the memory associated with the Exception object. Do not call ~Exception
directly. Instead, use the delete keyword on the object, which causes ~Exception to be invoked
automatically.
__fastcall virtual ~Exception(void);

Exception::Exception
Exception See also
Exception instantiates an instance of an exception with a simple message string.
__fastcall Exception(const System::AnsiString Msg);
__fastcall Exception(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall Exception(int Ident);
__fastcall Exception(int Ident, const System::TVarRec *Args, const int
Args_Size);

__fastcall Exception(const System::AnsiString Msg, int AHelpContext);
__fastcall Exception(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall Exception(int Ident, int AHelpContext);
__fastcall Exception(int Ident, const System::TVarRec *Args, const int
Args_Size, int AHelpContext)

Description
Call Exception to construct an exception with a simple message string.
Msg is the string containing the runtime error message to display in the exception dialog box.
Msg can be a hard-coded string, or can be a function call that returns a string.
Args is an array of constants containing values to format according to format specifiers in Msg,
and insert into Msg.
Args_Size is the size of Args.
AHelpContext is an integer that specifies the context-sensitive help ID for the exception.
Ident is the unique ID of the resource as specified in the RES file. If Ident is not a valid resource
ID, Exception creates an empty message string for the exception.
Call CreateRes to construct an exception with a simple message string loaded from an
application’s resources. Resources are bound into the application executable at compile time,
but at design time they exist in a separate RES file.

Hierarchy

TObject

Exception example
Exception

EZeroDivide
Hierarchy Properties Methods See also
EZeroDivide is the exception class for floating-point divide-by-zero errors.
Header
vcl/sysutils.hpp
Description
EZeroDivide exception is raised when an application attempts to divide a floating-point value by
zero.
Note
Integer divide-by-zero errors raise the EDivByZero exception.

EZeroDivide properties
EZeroDivide Alphabetically

Derived from Exception
HelpContext
Message

EZeroDivide properties
EZeroDivide By object

HelpContext
Message

EZeroDivide methods
EZeroDivide Alphabetically

In EZeroDivide
~EZeroDivide
EZeroDivide

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EZeroDivide methods
EZeroDivide By object

~EZeroDivide
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EZeroDivide
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

EZeroDivide::~EZeroDivide
EZeroDivide
~EZeroDivide frees the memory associated with the EZeroDivide object. Do not call ~
EZeroDivide directly. Instead, use the delete keyword on the object, which causes ~
EZeroDivide to be invoked automatically.
__fastcall virtual ~EZeroDivide(void);

EZeroDivide::EZeroDivide
EZeroDivide
EZeroDivide creates a new EZeroDivide object.
__fastcall EZeroDivide(const System::AnsiString Msg);
__fastcall EZeroDivide(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size);

__fastcall EZeroDivide(int Ident);
__fastcall EZeroDivide(int Ident, const System::TVarRec *Args, const
int Args_Size);

__fastcall EZeroDivide(const System::AnsiString Msg, int AHelpContext)
;

__fastcall EZeroDivide(const System::AnsiString Msg, const System::
TVarRec *Args, const int Args_Size, int AHelpContext);

__fastcall EZeroDivide(int Ident, int AHelpContext);
__fastcall EZeroDivide(int Ident, const System::TVarRec *Args, const
int Args_Size, int AHelpContext)

Description
Call EZeroDivide to construct an exception with a simple message string.
For descriptions of the parameters, refer to the Exception topic.

Hierarchy

TObject

Exception
EMathError

EZeroDivide example
EZeroDivide

TField
Hierarchy Properties Methods Events See also
The TField component is the common ancestor of all the field components in a dataset.
Header
vcl/db.hpp
Description
TField is an abstract object that encapsulates the fundamental behavior common to all field
components. It introduces the properties, events, and methods that are used to:
• Change the value of a field in a dataset.
• Convert the value of a field from one data type to another.
• Validate data as the user enters data for a field.
• Define how the data in the field appears as it is displayed or edited.
• Calculate the value of a field from code written in the OnCalcFields event of the dataset.
• Look up the field’s value in another dataset.
Do not create instances of TField. TField descendants are created automatically each time a
dataset is activated. These descendants can be dynamic (the default) or persistent. Dynamic
field components mirror the actual columns in an underlying physical table at the time a dataset
is opened. Persistent field components are created at design time using the Fields editor to
specify fields in the dataset, their properties, and their ordering.
Creating persistent field components guarantees that each time an application runs, it uses and
displays the same columns, in the same order, every time, even if the physical structure of the
underlying database changes. If a column on which a persistent field component is based is
deleted or changed, then Borland C++Builder generates an exception rather than opening the
table against a nonexistent column or mismatched data.
A field in a dataset is always one of the following TField descendants:
• TStringField
• TIntegerField
• TSmallintField
• TWordField
• TFloatField
• TAutoIncField
• TCurrencyField
• TBCDField
• TBooleanField
• TDateTimeField
• TDateField
• TTimeField
• TBlobField
• TBytesField
• TVarBytesField
• TMemoField
• TGraphicField

TField properties
TField Alphabetically Legend

In TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask
EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Value
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TField properties
TField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditMaskPtr
EditMask
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Value
Visible

TField::Alignment
TField See also
Alignment determines how the field’s data is displayed within a data-aware control.
__property Classes::TAlignment Alignment;
Description
Use Alignment to specify the position of the field’s data within data-aware controls. These are
the possible values:
Value Meaning

taLeftJustify Align data to the left side of the control
taCenter Center data horizontally in the control
taRightJustify Align data to the right side of the control

TField::AsBoolean
TField See also
TField raises an exception whenever an attempt is made to get or set the AsBoolean property.
__property bool AsBoolean;
Description
AsBoolean provides a property to read the value of the field’s data into a boolean, or to assign a boolean
value to the contents of the field. TField does not support boolean values, and raises an exception
whenever an attempt is made to get or set the AsBoolean property.
Descendents of TField that represent boolean fields or that support conversions between the
field’s Value property and a boolean value, override AsBoolean to read and write the value of
the field as a boolean value.

TField::AsCurrency
TField See also
TField raises an exception whenever an attempt is made to get or set the AsCurrency property.
__property System::Currency AsCurrency;
Description
AsCurrency provides a property to read the value of the field’s data into an object or variable of type
Currency, or to assign a Currency value to the contents of the field. TField does not support Currency
values, and raises an exception whenever an attempt is made to get or set the AsCurrency property.
Descendents of TField that represent currency fields or that support conversions between the
field’s Value property and a Currency value, override AsCurrency to read and write the value of
the field as a Currency value.

TField::AsDateTime
TField See also
TField raises an exception whenever an attempt is made to get or set the AsDateTime property.
__property System::TDateTime AsDateTime;
Description
AsDateTime provides a property to read the value of the field’s data into an object or variable of type
TDateTime, or to assign a TDateTime value to the contents of the field. TField does not support
TDateTime values, and raises an exception whenever an attempt is made to get or set the AsDateTime
property.
Descendents of TField that represent datetime (timestamp) fields or that support conversions
between the field’s Value property and a TDateTime value, override AsDateTime to read and
write the value of the field as a TDateTime value.

TField::AsFloat
TField See also
TField raises an exception whenever an attempt is made to get or set the AsFloat property.
__property double AsFloat;
Description
AsFloat provides a property to read the value of the field’s data into a Double, or to assign a
Double value to the contents of the field. TField does not support floating point values, and
raises an exception whenever an attempt is made to get or set the AsFloat property.
Descendents of TField that represent floating point numeric fields or that support conversions
between the field’s Value property and a Double value, override AsFloat to read and write the
value of the field as a Double value.

TField::AsInteger
TField See also
TField raises an exception whenever an attempt is made to get or set the AsInteger property.
__property long AsInteger;
Description
AsInteger provides a property to read the value of the field’s data into an integer, or to assign an integer
value to the contents of the field. TField does not support integer values, and raises an exception
whenever an attempt is made to get or set the AsInteger property.
Descendents of TField that represent integer fields or that support conversions between the
field’s Value property and an integer value, override AsInteger to read and write the value of the
field as an integer value.

TField::AsString
TField See also
AsString is the abbreviated class name of the field component.
__property System::AnsiString AsString;
Description
Reading the AsString property returns the abbreviated class name of the field component
enclosed in parentheses. The abbreviated class name is built by stripping the leading ‘T’ from
the class name and removing the trailing word ‘FIELD’, except in the case of TField, where
that would leave an empty string. For TField, the abbreviated class name is ‘FIELD’. Trying to
set the AsString property raises an exception.
Descendents of TField that represent string fields or that support conversions between the field’s Value
property and a string, override AsString to read and write the value of the field as a different, more
meaningful, string.

TField::AsVariant
TField See also
AsVariant is the Value of the field expressed as type Variant.
__property System::Variant AsVariant;
Description
AsVariant provides a property to read the value of the field’s data into a Variant, or to assign a Variant
value to the contents of the field. TField does not support Variant values, and raises an exception
whenever an attempt is made to read the AsVariant property. TField raises an exception whenever an
attempt is made to set the AsVariant property, unless the Variant is of type varNull, in which case TField
calls the Clear method.
Descendents of TField implement the AsVariant method to get or set the value of the field as a
Variant.

TField::AttributeSet
TField See also
AttributeSet is the name of the attribute set in the data dictionary to apply to a field component.
__property System::AnsiString AttributeSet;
Description
An attribute set defines the display and format properties of a field component displayed in a
data-aware control at design time.
Attribute sets are stored in the data dictionary by name so that at design time developers can
create and apply the same set of attributes to different field components in one or more
datasets. When an attribute set is assigned to a field component at design time and that field
component is owned by a TQuery or TStoredProc dataset component, AttributeSet contains the
name of the assigned attribute set.

TField::BDECalcField
TField See also
BDECalcField indicates whether or not the field is a BDE calculated field based on a query that
returns a live data set.
__property bool BDECalcField;
Description
Check the value of the BDECalcField property to determine if a field component’s value is
calculated by the Borland Database Engine based on a query that returns a live result set. If
BDECalcField is true, the field value is calculated by the BDE. Calculated fields are not stored or
retrieved from the physical table underlying a dataset. They exist only in the application.
For example, the following SQL statement includes a BDE calculated field (ONHAND * COST):
SELECT PARTNO, DESCRIPTION, ONHAND, COST, (ONHAND * COST) FROM PARTS
If the TQuery object that uses this SQL statement has its RequestLive property set to true, the
TQuery will include a TField for the calculated field which has the BDECalcField property set to
true.
Do not confuse BDECalcField with the Calculated property. The value of a BDE calculated field
is based on a query that returns a live data set, while a calculated field’s value is calculated
within the OnCalcField event handler of the dataset.
Note
When BDECalcField is true, the field can be edited, but the changes are discarded. To prevent
editing, set the ReadOnly property to true.

TField::Calculated
TField See also
Calculated determines whether the value of the field is calculated by the OnCalcFields event
handler of a dataset.
__property bool Calculated;
Description
Use Calculated to determine if the field is a calculated field. When Calculated is true and the
OnCalcFields event occurs, the code in the OnCalcFields event handler executes. The default
value is false.
The value of a Calculated field is not stored in or retrieved from the physical tables underlying a
dataset. Instead, Calculated fields are calculated for each record in the table by the dataset's
OnCalcFields event handler, which typically uses expressions involving values from other fields
in the record to generate a value for each calculated field.
For example, a table might have non-calculated fields for Quantity and UnitPrice, and a
calculated field for ExtendedPrice, which would be calculated by multiplying the values of the
Quantity and UnitPrice fields.
Note
Do not change the setting of Calculated in application code. Calculated is automatically set to
true by the Fields editor at design time if a field’s value is specified as calculated.

TField::CanModify
TField See also
CanModify specifies if a field can be modified.
__property bool CanModify;
Description
Check CanModify to determine if a field’s data can be edited. CanModify is true only if the
ReadOnly property is false, and the dataset for this field component allows write access to the
corresponding database field.

TField::DataSet
TField See also
DataSet identifies the dataset to which a field component belongs.
__property TDataSet* DataSet;
Description
Check the value of the DataSet property to determine the dataset to which the field component
belongs. Applications should not directly assign the DataSet property of a field. It is assigned
automatically when the field is created from a field definition component.

TField::DataSize
TField See also
DataSize is the amount of memory that is needed to store a field component’s value.
__property unsigned short DataSize;
Description
Check DataSize to determine the number of bytes required to store a field component’s value.
Use DataSize when reading the field value into a buffer to ensure that the buffer is sufficiently
large. The value of DataSize returned by TField depends on the DataType of the field
component, and sometimes on the value of the Size property:
DataType Value of DataSize

ftBoolean 2
ftSmallInt 2
ftWord 2
ftAutoInc 4
ftDate 4
ftInteger 4
ftTime 4
ftCurrency 8
ftDateTime 8
ftFloat 8
ftBCD 34
ftString Size + 1 (but not more than 8192 characters)
ftVarBytes Size + 2
ftBytes Size
ftBlob 0
ftDBaseOle 0
ftFmtMemo 0
ftGraphic 0
ftMemo 0
ftParadoxOle 0
ftTypedBinary 0
ftUnknown 0
Note
A value of zero for the DataSize property indicates that the maximum amount of memory needed
to store the field’s value is undetermined.

TField::DataType
TField See also
DataType identifies the data type of the field component.
__property TFieldType DataType;
Description
Read the DataType property to learn the type of the data the field contains. The DataType
property is equal to one of the following values:
Value Description

ftUnkown Unknown or undetermined
ftString Character or string field
ftSmallint 16-bit integer field
ftInteger 32-bit integer field
ftWord 16-bit unsigned integer field
ftBoolean Boolean field
ftFloat Floating-point numeric field
ftCurrency Money field
ftBCD Binary-coded Decimal field
ftDate Date field
ftTime Time field
ftDateTime Date and time field
ftBytes Fixed number of bytes (binary storage)
ftVarBytes Variable number of bytes (binary storage)
ftAutoInc Auto-incrementing 32-bit integer counter field
ftBlob Binary Large OBject field
ftMemo Text memo field
ftGraphic Bitmap field
ftFmtMemo Formatted text memo field
ftParadoxOle Paradox OLE field
ftDBaseOle dBASE OLE field
ftTypedBinary Typed binary field

TField::DisplayLabel
TField See also
DisplayLabel contains the text for a field component to display in the column heading of a data
grid.
__property System::AnsiString DisplayLabel;
Description
Set DisplayLabel to assign column headings to a data grid. The column headings of the data
grid use the DisplayName property. Setting DisplayLabel changes DisplayName from FieldName
to the string specified as DisplayLabel.

TField::DisplayName
TField See also
DisplayName returns the name of the field for display purposes.
__property System::AnsiString DisplayName;
Description
Use DisplayName when displaying a string that represents the field to the user. For example,
when raising an exception concerning the field, format an error string that includes the
DisplayName to refer to the field.
If DisplayLabel is defined, DisplayName is the same as DisplayLabel. Otherwise, DisplayName
is the same as the FieldName property.

TField::DisplayText
TField See also
DisplayText is the string representation of a field’s value to display in a data-aware control.
__property System::AnsiString DisplayText;
Description
DisplayText is a read-only string representation of a field’s value to display in a data-aware
control. If an OnGetText event handler is assigned, DisplayText is the value returned by the
OnGetText event handler when the DisplayText parameter is true. Otherwise, DisplayText is the
value of the AsString property.
DisplayText is the string representation of the field’s Value property when it is not being edited.
When the field is being edited, use the Text property.

TField::DisplayWidth
TField See also
DisplayWidth specifies the number of characters that should be used to display a field’s value
by a cooperating data-aware control.
__property int DisplayWidth;
Description
Set DisplayWidth to control how many characters are used to calculate the column width for the
field when it is displayed by a TDBLookupListBox object or a descendant if TCustomDBGrid.
The actual width of columns is determined by the average character width. If the data-aware
control that displays the field is not using a fixed pitch font, DisplayWidth may indicate more or
fewer characters than will fit in the column for any given string.
Note
The DisplayWidth property has no effect if there is an explicit Columns value for the field in a
TDBGrid object.

TField::EditMask
TField See also Example
EditMask contains the mask that is used to restrict the data that can be entered into a data field.
__property System::AnsiString EditMask;
Description
Use EditMask to restrict the characters the user can enter to valid characters and formats. If the
user attempts to enter a character that is not valid, the character is not accepted. Validation is
performed on a character-by-character basis. Use an OnValidate event to validate the entire
input, just before it is posted to the database.
A mask consists of three fields with semicolons separating the fields. The first part of the mask is
the mask itself. The second part is the character that determines whether the literal characters of
a mask are included as part of the data. The third part of the mask is the character used to
represent unentered characters in the mask.
These are the special characters used in the first field of the mask:
Character Meaning in mask

! If a ! character appears in the mask, optional characters are represented
in the EditText as leading blanks. If a ! character is not present, optional
characters are represented in the EditText as trailing blanks.

> If a > character appears in the mask, all characters that follow are in
uppercase until the end of the mask or until a < character is encountered.

< If a < character appears in the mask, all characters that follow are in
lowercase until the end of the mask or until a > character is encountered.

<> If these two characters appear together in a mask, no case checking is
done and the data is formatted with the case the user uses to enter the
data.

\ The character that follows a \ character is a literal character. Use this
character when you want to allow any of the mask special characters as a
literal in the data.

L The L character requires an alphabetic character only in this position. For
the US, this is A-Z, a-z.

l The l character permits only an alphabetic character in this position, but
doesn't require it.

A The A character requires an alphanumeric character only in this position.
For the US, this is A-Z, a-z, 0-9.

a The a character permits an alphanumeric character in this position, but
doesn't require it.

C The C character requires an arbitrary character in this position.
c The c character permits an arbitrary character in this position, but doesn't

require it.
0 The 0 character requires a numeric character only in this position.
9 The 9 character permits a numeric character in this position, but doesn't

require it.
The # character permits a numeric character or a plus or minus sign in

this position, but doesn't require it.
: The : character is used to separate hours, minutes, and seconds in times.

If the character that separates hours, minutes, and seconds is different in
the regional settings of the Control Panel utility on your computer system,
that character is used instead of :.

/ The / character is used to separate months, days, and years in dates. If
the character that separates months, days, and years is different in the
regional settings of the Control Panel utility on your computer system, that
character is used instead of /.

; The ; character is used to separate the three fields of the mask.
_ the _ character automatically inserts spaces into the text. When the user

enters characters in the field, the cursor skips the _ character.
Any character that does not appear in the preceding table can appear in the first part of the
mask as a literal character. Literal characters must be matched exactly when entering data for

the field. They are inserted automatically, and the cursor skips over them during editing. The
special mask characters can also appear as literal characters if preceded by a backslash
character (\).
The second field of the mask is a single character that indicates whether literal characters from
the mask should be included as part of the Value property of the field. For example, the mask for
a telephone number with area code could be the following string:(000)_000-0000;0;*
The 0 in the second field indicates that the Value property for the field would consist of the 10
digits that were entered, rather than the 14 characters that make up the telephone number as it
appears to the user.
A 0 in the second field indicates that literals should not be included, any other character
indicates that they should be included. The character to indicate whether literals should be
included can be changed in the EditMask property editor, or programmatically by changing the
MaskNoSave typed constant.
The third field of the mask is the character that appears in the edit control for blanks (characters
that have not been entered). By default, this is the same as the character that stands for literal
spaces. The two characters appear the same in an edit window. However, when a user enters
the data for the field, the cursor selects each blank character in turn, and skips over the space
character.
Setting EditMask to an empty string removes the mask.

TField::EditMaskPtr
TField

EditMaskPtr is identical to EditMask except that it is read-only.
__property System::AnsiString EditMask

TField::FieldKind
TField See also
FieldKind indicates whether a field represents a column in a dataset, a calculated field, or a
lookup field.
__property TFieldKind FieldKind;
Description
Use FieldKindto determine if a field is a data field, a calculated field, or a lookup field. The value
of FieldKind can be changed programmatically, but in practice FieldKind is automatically set at
design time when creating Field components with the Fields editor.
The FieldKind property can take one of the following values:
Value Description

fkData Field represents a physical field in a database table
fkCalculated Field is calculated
fkLookup Field is a lookup field
Note
Fields calculated by the Borland Database Engine to display the results of a query that returns a
live dataset have a FieldKind of fkData, not fkCalculated.

TField::FieldName
TField See also
FieldName is the name of the physical column in the underlying dataset to which a field
component is bound.
__property System::AnsiString FieldName;
Description
FieldName is used by the TFieldDef object when creating a field component, to specify which
field in underlying dataset the field component represents. FieldName is used when displaying
references to the field to users, unless a DisplayLabel has been set. For calculated fields, supply
a FieldName when defining the field. For non-calculated fields, an EDatabaseError exception
occurs if a FieldName is not a column name in the physical table.

TField::FieldNo
TField See also
FieldNo is the ordinal of the field component’s actual column in the physical table underlying a
dataset.
__property int FieldNo;
Description
Read FieldNo to learn a field component’s ordinal position in the table underlying the dataset,
where 1 is the first field. Use the FieldNo property to specify the field only in programs that make
direct calls to the Borland Database Engine.
Note
Don’t confuse FieldNo, which is the field component’s ordinal position in the physical database
table, with Index, the field components position in the dataset’s Fields property.

TField::Index
TField See also
Index is the field component’s index number into the Fields property of the dataset.
__property int Index;
Description
Use the Index property to:
• Find the position of the field in the dataset.
• Change the order of a field's position in the dataset by changing the value of Index. Changing

the Index value affects the order in which fields are displayed in data grids, but not the
position of the fields in the physical database tables.

Note
The field order can also be changed by dragging and dropping fields in the Fields editor at
design time.

TField::IsIndexField
TField See also
IsIndexField specifies whether a field is an index field.
__property bool IsIndexField;
Description
Use the IsIndexField to determine if a field is an index field. If IsIndex is true, a field is one of the
fields that makes up the index on the underlying database table. If IsIndexField is false, the field
is not an index field. A field component must be an index field to serve as one of the field
components for the LookupKeyFields in a lookup table.

TField::IsNull
TField See also
IsNull determines if the field has a value assigned to it.
__property bool IsNull;
Description
Use IsNull to determine if the field contains a value. If IsNull is true, the field doesn’t have a
value. If IsNull is false, the field has a value.

TField::KeyFields
TField See also
KeyFields identifies the field or fields in the dataset that must be matched in the lookup dataset
when doing a lookup.
__property System::AnsiString KeyFields;
Description
Set KeyFields only on lookup fields (fields where FieldKind is fkLookup and Lookup is true).
KeyFields specifies the field or fields to match when a lookup occurs. To use more than one
field, separate each field name with a semicolon. The specified fields must be of the same types
as the corresponding fields in LookupKeyFields, or the lookup fails.
The values of the KeyFields in the DataSet are matched with the values of the LookupKeyFields
in the LookupDataSet to determine a particular record of the lookup table. The value of the
LookupResultField on that record becomes the Value property for the field component.

TField::Lookup
TField See also
Lookup determines whether the field is specified as a lookup field.
__property bool Lookup;
Description
Use Lookup to determine if a field is a lookup field.
If Lookup is false, the field is not a lookup field. If Lookup is true, the field is a lookup field and
the FieldKind is ftLookup.
If the field is a lookup field, the KeyFields property indicates which fields in the dataset must
match the LookupKeyFields in the LookupDataSet, to identify a record in the LookupDataSet.
The value of the LookupResultField for that record becomes the Value of the field component.

TField::LookupDataSet
TField See also
LookupDataSet identifies the dataset used to look up field values.
__property TDataSet* LookupDataSet;
Description
Use LookupDataSet to specify the dataset to use for looking up field values in a field with a
FieldKind of fkLookup.
When a field component is a lookup field, the Value of the field component is the value of the
LookupResultField in the LookupDataSet. The record in the LookupDataSet that contains the
correct value is found by matching the LookupKeyFields in the LookupDataSet with the current
values of the KeyFields in the DataSet.

TField::LookupKeyFields
TField See also
LookupKeyFields identifies the field or fields in the lookup dataset to match when doing a
lookup.
__property System::AnsiString LookupKeyFields;
Description
Only use LookupKeyFields on field components with a FieldKind of fkLookup. LookupKeyFields
are the fields in the index of the LookupDataSet whose values must match the KeyFields in the
field component’s DataSet.
To specify more than one field, separate each field name with a semicolon. The fields specified
in LookupKeyFields must be of the same types as the corresponding fields in KeyFields, or the
lookup can't work.
Matching the values of the LookupKeyFields in the LookupDataSet with the values of the
KeyFields in the DataSet determines a specific record in the LookupDataSet. The Value of the
field component is the value of the LookupResultField in the indicated record.

TField::LookupResultField
TField See also
LookupResultField identifies the field from the lookup dataset whose value becomes the Value
property of the field component.
__property System::AnsiString LookupResultField;
Description
Use LookupResultField to specify a single field in the LookupDataSet whose value becomes the
value of the field component. The field component must have a FieldKind of fkLookup, and the
DataType of the field component must be the same as the data type of the LookupResultField.
When a field component is a lookup field, the Value of the field component is the value of the
LookupResultField in the LookupDataSet. The record in the LookupDataSet that contains the
correct value is found by matching the LookupKeyFields in the LookupDataSet with the current
values of the KeyFields in the DataSet.

TField::NewValue
TField See also
NewValue represents the current value of the field component including pending cached
updates.
__property System::Variant NewValue;
Description
Use NewValue to examine or change the current value to a field when in the process of applying
cached updates. If the current field value is causing a problem, such as a key violation in an
OnUpdateError event handler when applying the cached update, assign a new value of
NewValue to correct the problem.
NewValue is the same as Value, except when applying cached updates. Setting NewValue in an
OnUpdateError event handler or in an OnUpdateRecord event handler will cause NewValue to
differ from Value until the cached updates have finished being posted to the underlying database
table.

TField::OldValue
TField See also
OldValue represents the original value of the field (as a Variant) before any pending cached
updates changed it.
__property System::Variant OldValue;
Description
Read the OldValue property to examine or retrieve the original value of the field before any
cached updates have been applied. For example this code replaces current pending changes
with a field’s original value:
Once cached updates are applied successfully, the old field value can not be retrieved.

TField::ReadOnly
TField See also
ReadOnly determines whether the field can be modified.
__property bool ReadOnly;
Description
Set ReadOnly to true to prevent a field from being modified. In a data grid, tabbing from field to
field skips over ReadOnly fields.
To learn whether a field can be modified, use the CanModify property instead. CanModify
reflects not only the value of the ReadOnly property, but also any restrictions imposed by the
underlying dataset.

TField::Required
TField See also
Required specifies whether a nonblank value for a field is required.
__property bool Required;
Description
Use Required to find out if a field requires a value or if the field can be blank.
If a field is created with the Fields editor, then this property is set based on the underlying table.
Applications that set Required to true for fields that must have values (for example, a password
or part number), but for which the underlying table does not require the field, must write an
OnValidate event handler to enforce the property.
When the Required property reflects a property of the underlying database table, trying to post a
NULL value will cause an exception to be raised. Applications that set the Required property to
true when the underlying table does not require the field, should raise an exception on NULL
values in the OnValidate event handler in order to achieve the same result.

TField::Size
TField See also
Size indicates the size used in the definition of the physical database field for data types that
support different sizes.
__property unsigned short Size;
Description
The interpretation of Size depends on the data type. Size is the size associated with the field by
the Borland DataBase Engine. The meaning of Size for different data types is given in the
following table:
DataType Meaning of Size

ftBoolean Size is not used; its value is always 0.
ftSmallInt Size is not used; its value is always 0.
ftWord Size is not used; its value is always 0.
ftAutoInc Size is not used; its value is always 0.
ftDate Size is not used; its value is always 0.
ftInteger Size is not used; its value is always 0.
ftTime Size is not used; its value is always 0.
ftCurrency Size is not used; its value is always 0.
ftDateTime Size is not used; its value is always 0.
ftFloat Size is not used; its value is always 0.
ftBCD Size is the number of digits after the decimal place.
ftString Size is the maximum number of characters in the string.
ftVarBytes Size is the maximum number of bytes of data, not counting the first two

bytes which indicate the actual number of bytes of data that were used.
ftBytes Size is the maximum number of bytes of data.
ftBlob Size is the number of bytes from the BLOB that are stored in the record

buffer.
ftDBaseOle Size is the number of bytes from the DBase OLE BLOB that are stored in

the record buffer.
ftFmtMemo Size is the number of bytes from the memo that are stored in the record

buffer.
ftGraphic Size is the number of bytes from the image that are stored in the record

buffer.
ftMemo Size is the number of characters from the memo that are stored in the

record buffer.
ftParadoxOle Size is the number of bytes from the Paradox OLE BLOB that are stored

in the record buffer.
ftTypedBinary Size is the number of bytes from the BLOB that are stored in the record

buffer.
ftUnknown Size is not used; its value is always 0.

TField::Text
TField Example
Text contains the string to display in a data-aware control when the field is in edit mode.
__property System::AnsiString Text;
Description
Data-aware controls rely on the Text property to provide the editing format for each field. If an
OnGetText event handler is assigned, Text is the value returned by the OnGetText event
handler when the DisplayText parameter is false. Otherwise, Text is the value of the AsString
property.
Note
Text can differ from the DisplayText property if the field should have a different string
representation when the value is being edited. To implement two different string representations
of a field’s value, use the OnGetText event handler.
Note
OnGetText event, DisplayText property, Value property, AsString property

TField::Value
TField See also
Value contains the actual data in a field component.
__property System::Variant Value;
Description
Use Value to read data directly from and write data directly to a field component at runtime. For
example, use the Value property to affect the contents of a field that is not Visible.
Except when posting cached updates, Value is the same as the NewValue property.

TField::Visible
TField See also Example
Visible determines whether the field appears in a data grid.
__property bool Visible;
Description
To hide a field in a data grid, set Visible to false. If Visible is true, the field appears in the grid.
Note
The Visible property has no effect if the grid has an explicit Columns value for the field.

TField events
TField Alphabetically Legend

In TField
OnChange
OnGetText
OnSetText
OnValidate

TField events
TField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TField::OnChange
TField See also
The OnChange event occurs immediately after the data in the field has been written to the
record buffer.
typedef void __fastcall (__closure *TFieldNotifyEvent)(TField* Sender)
;

__property TFieldNotifyEvent OnChange;
Description
Write an OnChange event handler to respond to any changes in the field’s data. OnChange
allows a response once the data has been successfully posted to the underlying database table.
When writing the value of a field to the current record buffer, the following steps occur:
1 The OnValidate event handler is called to validate the data.
2 If the OnValidate event handler accepts the current Value, the data is written to the record

buffer.
3 If writing the data does not raise an exception, the OnChange event handler is called to allow

a response to the change.

TField::OnGetText
TField See also
The OnGetText event occurs whenever the DisplayText or Text properties of the field are
referenced.
typedef void __fastcall (__closure *TFieldGetTextEvent)(TField* Sender,
System::AnsiString &Text, bool DisplayText);

__property TFieldGetTextEvent OnGetText;
Description
Write an OnGetText handler to perform custom processing for the DisplayText and Text
properties. Use OnGetText to format the Value of the field differently when it must be edited from
the format used when simply displaying the value, or use OnGetText to display something other
than the field’s value when it is displayed.
The Sender parameter is self, the field component. The Text parameter receives the formatted
text that is used by the DisplayText or Text property. The DisplayText parameter indicates
whether the text will be used for display purposes only, or whether the string will be used for
editing purposes.
If there is no OnGetText handler, the value of the DisplayText and Text properties is simply the
value of the AsString property.

TField::OnSetText
TField See also
The OnSetText occurs whenever the Text property is assigned a value.
typedef void __fastcall (__closure *TFieldSetTextEvent)(TField* Sender,
const System::AnsiString Text)
;

__property TFieldSetTextEvent OnSetText;
Description
Write an OnSetText event handler to specify processing that occurs whenever Text receives a
new value. If there is an OnGetText event handler that formats the Value of the field in some
special way for editing purposes, OnSetText should reverse the process when parsing the edited
string.
If there is no OnSetText handler, the Text property will be set by setting the AsString property.

TField::OnValidate
TField See also
The OnValidate event occurs just before the data is written to the record buffer.
typedef void __fastcall (__closure *TFieldNotifyEvent)(TField* Sender)
;

__property TFieldNotifyEvent OnValidate;
Description
Write an OnValidate event handler to validate changes made to the data in the field, just before
the data is written to the current record buffer. The EditMask property allows validation of the
data on a character by character basis while it is being entered by the user. OnValidate allows
an application to validate the data as a whole.
When the value of a field component is assigned programmatically, validation by the EditMask is
bypassed, since there is no data-aware control to enforce adherence to the mask. OnValidate
allows an application to validate such data before it is posted to the database table.
To reject the current value of the field from the OnValidate event handler, raise an exception.
When writing the value of a field to the current record buffer, the following steps occur:
1 The OnValidate event handler is called to validate the data.
2 If the OnValidate event handler does not raise an exception, the data is written to the current

record buffer.
3 If writing the data does not raise an exception, the OnChange event handler is called to allow

a response to the change.

TField methods
TField Alphabetically

In TField
~TField
Assign
AssignValue
Clear
FocusControl
GetData
IsValidChar
SetData
SetFieldType
TField

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TField methods
TField By object

~TField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TField

TField::~TField
TField See also
~TField frees the memory associated with the TField object. Do not call ~TField directly. Instead,
use the delete keyword on the object, which causes ~TField to be invoked automatically.
__fastcall virtual ~TField(void);
Description
~TField closes the dataset, deletes the instance of TField from the dataset, and calls
TComponent::~TComponent.
~TField is called automatically, and applications never need to call it explicitly for a TField
component.

TField::Assign
TField See also
Assign assigns the Value property of one field to another or assigns another object to the field
component.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
Use Assign to copy the Value property from one field to another. The fields must have
compatible data types.
When Source is another field object, Assign calls the AssignValue method, using the Source
field’s Value property. Calling Assign with the Source parameter set to NULL assigns a blank
value to the field component. Calling Assign with any other object type calls the inherited
method, which allows assignment from objects that implement a TField object in their AssignTo
method.

TField::AssignValue
TField See also
AssignValue sets the field to Value using one of the AsInteger, AsBoolean, AsString or AsFloat
properties, depending on the type of Value.
void __fastcall AssignValue(const System::TVarRec &Value);
Description
Use AssignValue to assign a value to a field using the As... conversion properties. The property
used depends on the type of the Value parameter:
Value As... property used

vtInteger AsInteger
vtBoolean AsBoolean
vtChar AsString
vtExtended AsFloat
vtString AsString
vtPChar AsString
vtAnsiString AsString
vtCurrency AsCurrency
vtVariant AsVariant
If Value is not one of the types in the table, but is of type TObject or a TObject descendant,
AssignValue uses the Assign method to assign the value to the field.

TField::Clear
TField See also
Clear sets the value of the field to NULL.
virtual void __fastcall Clear(void);
Description
Call the Clear method to give the field a blank value.

TField::FocusControl
TField See also
FocusControl enables a field component to force a form’s focus to the first data-aware
component associated with the field component.
void __fastcall FocusControl(void);
Description
Call FocusControl to switch the focus of the form to a data-aware control associated with the
field. Because it’s possible that the field’s value can change even if its associated data-aware
control doesn’t have the focus, calling FocusControl can aid in drawing attention to the new
value when it fails to be validated.

TField::GetData
TField See also
GetData returns the unformatted data from the field.
bool __fastcall GetData(void * Buffer);
Description
Call GetData to return the unformatted, untranslated, and uninterpreted data in a field to a buffer.
Unlike the DisplayText, Text, or Asxxx properties, GetData performs no translation or
interpretation of the data. Buffer must have sufficient space allocated for the data. Use the
DataSize property to determine the space required. If the data is NULL, GetData returns false
and no data is transferred to Buffer. Otherwise, GetData returns true.
Note
GetData cannot be used to read data from BLOB fields.

TField::IsValidChar
TField See also
IsValidChar determines if a particular character entered in the field is valid for the field.
virtual bool __fastcall IsValidChar(char InputChar);
Description
The IsValidChar method for TField always returns true, indicating that the character is valid for the field.
Derived classes may override IsValidChar to restrict input to characters that are supported by the
DataType. For example, integer fields override IsValidChar to restrict input to digits and the + and -
characters.

TField::SetData
TField See also
SetData assigns unformatted data to the field.
void __fastcall SetData(void * Buffer);
Description
Use SetData to assign data to a field in the format that is used by the underlying database table.
Ultimately, any method of setting the data for the field component calls SetData, once the data
has been parsed into the physical format expected by the database table.
SetData calls the OnValidate event handler before writing the data to the current record buffer. If
the data is successfully written, SetData calls the OnChange event handler.
Note
SetData should not be used by descendents of TField that implement BLOB field types.

TField::SetFieldType
TField See also
SetFieldType provides the interface for a method that can set the DataType for the field.
virtual void __fastcall SetFieldType(TFieldType Value);
Description
SetFieldType does nothing other than provide an interface for derived classes to override a
method that sets the DataType for the field component. SetFieldType is useful for derived classes
that can support more than one underlying data type. For example, a TBlobField may support
ftBlob, ftFmtMemo, ftParadoxOle, ftDBaseOle, or ftTypedBinary.

TField::TField
TField See also
TField is the constructor for a field component.
__fastcall virtual TField(Classes::TComponent* AOwner);
Description
The TField method constructs and initializes a new TField instance and inserts the newly-
constructed control into its owner, as specified by the AOwner parameter, by calling that owner's
InsertComponent method. After calling the inherited constructor, TField sets the Visible property
to true.
Do not call TField for a TField component, as it is an abstract base class which should not be
directly instantiated. The TField method of descendant classes is usually called indirectly by using
the Fields editor to create a persistent field component.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent

TField example
TField

TFileListBox
Hierarchy Properties Methods Events See also
TFileListBox is a specialized list box that lists all the files in the current directory.
Header
vcl/filectrl.hpp
Description
To display files in a different directory, change the value of the Directory property.
You can have icons next to the file names to help identify the type of file. For example, an
executable file displays a different icon than a word processing document. To make the icons
appear, set ShowGlyphs to true.
You decide which file types you want to appear in the list box using the Mask property, which
displays only the files that match the Mask string. For example, you can choose to display only
executable files and source code files.
You can also decide which files display in the file list box by their file attributes. For example, you
can choose to display hidden and system files as well as regular files, or you can choose to see
read-only files only. Use the FileType property to select the file types according to their file
attributes.
You can have the file selected in the file list box appear as the text of an edit box if you specify a
value for the FileEdit property.
Component Writers’ notes
For component writers wanting to create a customized list box objects, use TCustomListBox as a
base class for you own list box object.
Related objects
Specialized list boxes have the basic functionality of TListBox, but can also be linked to file,
directory, drive or database information. Use these list boxes if you want to easily access and list
this type of information.
A combo box is a list box with an edit control and an optional drop down style for the list. Use a
combo box when you want to allow users to type their selection into an edit box or to save space
on a form by having the list drop down.
For lists of items that require a matrix or expandable tree-like structure use outlines, list views or
tree views. These controls allow you to group items under column headings or in expandable
and contractible rows.

TFileListBox properties
TFileListBox Alphabetically Legend

In TFileListBox
Directory
Drive

FileEdit
FileName
FileType
Mask
ShowGlyphs

Derived from TCustomListBox
Canvas

ExtendedSelect
IntegralHeight
ItemHeight
ItemIndex
Items
MultiSelect

SelCount
Selected
TopIndex

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent

ComponentCount
ComponentIndex

Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TFileListBox properties
TFileListBox By object Legend

Align
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
Directory
DragCursor
DragMode
Drive
Enabled
ExtendedSelect
FileEdit
FileName
FileType
Font

Handle
Height
HelpContext
Hint
IntegralHeight
ItemHeight
ItemIndex
Items
Left
Mask
MultiSelect
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu

SelCount
Selected
ShowGlyphs
ShowHint

Showing
TabOrder
TabStop
Tag

TopIndex
Top

Visible
Width

TFileListBox::Directory
TFileListBox See also
Determines the current directory for the file list box and directory list box components.
__property System::AnsiString Directory;

The file list box displays the files in the directory specified in the Directory property. The directory
list box displays the value of the Directory property as the current directory in the list box.
Examine the example to see how a directory list box and a file list box can work together through
their Directory properties.
Example
If you have a file list box and a directory list box on a form, this code changes the current
directory in the directory list box and displays the files in that directory in the file list box when the
user changes directories using the directory list box:

TFileListBox::Drive
TFileListBox See also
Determines which drive the list box displayed the files on.
__property char Drive;

When the value of Drive changes, the Directory value also changes to the current directory on
the specified drive.
Example
The following example assumes that a drive combo box, a file list box, and a directory list box
are on a form. This code changes the drive displayed in the drive combo box, displays the
current directory of the selected drive in the directory list box, and displays the files in the current
directory of the selected drive in the file list box when the user selects a drive in the drive combo
box:

TFileListBox::FileEdit
TFileListBox See also
Provides a simple way to display a file selected in a file list box as the text of an edit box, as is
commonly done in Open and Save dialog boxes.
__property Stdctrls::TEdit* FileEdit;

If no file is selected in the file list box, the text of the edit box is the current value of the file list
box’s Mask property.
Specify the edit box you want the mask or selected file to appear in as the value of the FileEdit
property.

TFileListBox::FileName
TFileListBox See also
The FileName property contains the name of the selected file in the list box, including the path
name.
__property System::AnsiString FileName;

TFileListBox::FileType
TFileListBox See also
Determines which files are displayed in the file list box based on the attributes of the files.
__property TFileType FileType;

Because FileType is of type TFileType, which is a set of file attributes, FileType can contain
multiple values. For example, if the value of FileType is a set containing the values ftReadOnly
and ftHidden, only files that have the read-only and hidden attributes are displayed in the list
box. These are the values that can occur in the FileType property:
Value Meaning

ftReadOnly When ftReadOnly is true, the list box can display files with the read-only
attribute.

ftHidden When ftHidden is true, the list box can display files with the hidden
attribute.

ftSystem When ftSystem is true, the list box can display files with the system
attribute.

ftVolumeID When ftVolumeID is true, the list box can display the volume name.
ftDirectory When ftDirectory is true, the list box can display directories.
ftArchive When ftArchive is true, the list box can display files with archive attribute.
ftNormal When ftNormal is true, the list box can display files with no attributes.
If you use the Object Inspector to change the value of FileType, click the FileType property to
see the attribute values. Then you can set each value to true or false, which builds the FileType
set.
Example
This example uses a file list box on a form. When the application runs, only read-only files,
directories, volume IDs, and files with no attributes appear in the list box.

TFileListBox::Mask
TFileListBox See also
Determines which files are displayed in the file list box.
__property System::AnsiString Mask;

A file mask or file filter is a filename that usually includes wildcard characters (*.CPP, for
example). Only files that match the mask are displayed in list box. The file mask *.* displays all
files, which is the default value.
You can specify multiple file masks. Separate the file mask specifications with semicolons. For
example, *.CPP; *.EXE.

TFileListBox::ShowGlyphs
TFileListBox
Determines whether glyphs (bitmaps) appear next to the file names listed in the file list box.
__property bool ShowGlyphs;

If ShowGlyphs is true, the glyphs appear; if ShowGlyphs is false, the glyphs don’t appear. The
default value is false.
Example
If the files in the list box don’t have the glyphs next to them, this line of code redisplays the files
with the glyphs included:

TFileListBox events
TFileListBox Alphabetically Legend

In TFileListBox
OnChange

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TFileListBox events
TFileListBox By object Legend

OnChange
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TFileListBox::OnChange
TFileListBox
Specifies which event handler should execute when the contents of a component or object
changes.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnChange;

For components, OnChange occurs when the main value or values of the component are
modified. For example, OnChange occurs when the Text property of an edit box is modified.

TFileListBox methods
TFileListBox Alphabetically

In TFileListBox
~TFileListBox
ApplyFilePath
TFileListBox
Update

Derived from TCustomListBox
Clear
ItemAtPos
ItemRect

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying

FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TFileListBox methods
TFileListBox By object

~TFileListBox
ApplyFilePath
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
ItemAtPos
ItemRect
MethodAddress

MethodName
NewInstance
PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TFileListBox
UpdateControlState
Update

TFileListBox::~TFileListBox
TFileListBox
~TFileListBox frees the memory associated with the TFileListBox object. Do not call ~
TFileListBox directly. Instead, use the delete keyword on the object, which causes ~
TFileListBox to be invoked automatically.
__fastcall virtual ~TFileListBox(void);

TFileListBox::ApplyFilePath
TFileListBox See also
ApplyFileEditText is intended to be used in a dialog box that approximates the utility and
behavior of an Open dialog box.
virtual void __fastcall ApplyFilePath(const System::AnsiString
EditText);

Such a dialog box would contain a file list box (TFileListBox), a directory list box
(TDirectoryListBox), a drive combo box (TDriveComboBox), a filter combo box
(TFilterComboBox), a label, and an edit box where the user can type a filename including a full
directory path. When the user then chooses the OK button, you would like all the controls to
update with the information the user entered in the edit box. For example, you would want the
directory list box to change to the directory specified in the path the user typed, and you want the
drive combo box to change to the correct drive if the path included a different drive letter.
If the file list box, directory list box, drive combo box, filter combo box, label, and edit box are
connected using the FileEdit, FileList, DirLabel, and DirList properties, your application can call
ApplyFilePath to update the controls with the text the user entered in the edit box.
The user can enter any of these strings in the edit box: a filename, with or without a path, a drive
only, a drive and directory only, relative paths, or a file mask using wildcard characters. In all
cases, the ApplyFilePath method updates the controls as you would expect. For example, if the
user includes a directory name, the directory list box makes that directory the current one.
The EditText parameter is the text within the edit box.
Example
This example uses a file list box, a directory list box, a filter combo box, a drive combo box, a
label, an edit box, and a button on a form. When the user runs the application and enters a path
or filename in the edit box, all the controls update:

TFileListBox::TFileListBox
TFileListBox
TFileListBox creates a new TFileListBox object.
__fastcall virtual TFileListBox(Classes::TComponent* AOwner);

TFileListBox::Update
TFileListBox Example
Updates and refreshes the directory list for the file list box control.
void __fastcall Update(void);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomListBox

TFileListBox example
TFileListBox

TFiler
Hierarchy Properties Methods See also
TFiler is the abstract base class for reader and writer objects that are used for streaming
components and their properties in forms and inherited forms.
Header
vcl/classes.hpp
Description
TFiler is an object that works inherently with stream and component objects. It defines the
internal mechanics of the streaming system in Borland C++Builder for reading or writing data
associated with components to a stream object. TReader and TWriter implement, for their own
purposes, what the filer defines.
A filer type is used as a parameter to component methods requiring either a read or writer object,
depending upon whether the data is read from or written to a stream. Every filer has an
associated stream object that is passed as a parameter to its constructor. It is these associated
stream objects that are usually responsible for creating filer descendent objects.
TFiler properties provide support for managing the streaming of owned components. Filer
objects are used to read and write the properties of component objects to and from a stream as
data. Filer objects provide buffering of data to speed read and write operations.
TFiler introduces abstract methods that are customized by its descendent reader and writer
objects. These include methods for defining properties that enable an object to store hidden or
complex data as if they were actual properties of the object. These methods inherently interact
with those of the component and stream objects.
Note
Most of the filer properties and methods have public visibility for convenience within the Borland
C++Builder streaming system. The majority of them are never called directly by the user in an
application.

TFiler properties
TFiler Alphabetically

In TFiler
Ancestor
IgnoreChildren
Root

TFiler properties
TFiler By object

Ancestor
IgnoreChildren
Root

TFiler::Ancestor
TFiler See also
Ancestor is used when writing components in inherited forms to determine whether to write the
properties of the inherited components.
__property TPersistent* Ancestor;
Description
Do not call Ancestor directly. It is used internally by the methods of writer objects to write
components in inherited forms.
Since the writer object only needs to write the values of properties that differ from those
inherited, it tracks each inherited component in Ancestor and compares properties before writing.
If Ancestor is NULL, there is no corresponding inherited component, and the writer object writes
the component out to the stream completely.
Ancestor is always NULL, except during calls to WriteDescendent and WriteDescendentRes,
since these methods are called for descendent objects that have an Ancestor object.
In general the Ancestor of a component will be NULL except when writing forms created with
Visual Form Inheritance. Borland C++Builder uses WriteDescendentRes to write such forms to
the stream.
When writing or overriding a DefineProperties method, be aware that Ancestor might be set, and
it might be necessary to write or not write properties, as appropriate. Normally, DefineProperty
read procedures are oblivious to the Ancestor.

TFiler::IgnoreChildren
TFiler See also
IgnoreChildren enables a writer object to save a component without saving the components it
owns.
__property bool IgnoreChildren;
Description
Users rarely call IgnoreChildren directly. It is used internally to specify whether or not to write
owned components when streaming the component. A few components will change Root while
streaming, but this is rare.
If IgnoreChildren is true, the writer writes a component without writing any child components it
owns. If IgnoreChildren is false, the writer object writes all owned objects to the stream.

TFiler::Root
TFiler See also
Root indicates to the filer object which object is the root, or ultimate owner, of the objects read or
written by the filer.
__property TComponent* Root;
Description
Do not call Root directly. It is used internally to find the root object when streaming owned
components. Root represents the ultimate owner of all the components being streamed during
the current streaming process.
The ReadRootComponent and WriteRootComponent methods set Root before reading or writing
their components and owned components.

TFiler methods
TFiler Alphabetically

In TFiler
~TFiler
DefineBinaryProperty
DefineProperty
FlushBuffer
TFiler

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TFiler methods
TFiler By object

~TFiler
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DefineBinaryProperty
DefineProperty
Dispatch
FieldAddress
FlushBuffer
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TFiler

TFiler::~TFiler
TFiler See also
~TFiler disposes of a filer object.
__fastcall virtual ~TFiler(void);
Description
Do not call ~TFiler directly in an application. Instead, an application should call Free. Free
verifies that the list box object has not already been freed before it calls Destroy.
The ~TFiler method for filer objects frees memory associated with the buffer. Memory
deallocation for the object instance is handled automatically when ~TFiler is called. TFiler’s ~
TFiler method is called by its descendent objects in their respective destructors.

TFiler::DefineBinaryProperty
TFiler See also
TFiler introduces DefineBinaryProperty as an abstract method.
virtual void __fastcall DefineBinaryProperty(const System::AnsiString
Name, TStreamProc ReadData, TStreamProc WriteData, bool HasData);

Description
Each descendant filer object declares a DefineBinaryProperty method that defines the binary
data that the descendent object reads or writes as if the data were a property.

TFiler::DefineProperty
TFiler See also
TFiler introduces DefineProperty as an abstract method.
virtual void __fastcall DefineProperty(const System::AnsiString Name,
TReaderProc ReadData, TWriterProc WriteData, bool HasData);

Description
Each descendant filer object declares a DefineProperty method that defines the data that the
descendent object will read or write as if the data were a property.

TFiler::FlushBuffer
TFiler
TFiler introduces FlushBuffer as an abstract method.
virtual void __fastcall FlushBuffer(void);
Description
Each descendant filer object defines a FlushBuffer method to provide practical implementations
for synchronizing the filer object’s buffer with the associated stream.

TFiler::TFiler
TFiler See also
TFiler instantiates a filer object.
__fastcall TFiler(TStream* Stream, int BufSize);
Description
Call TFiler to instantiate a filer descendent object at runtime, if necessary. However, TFiler is
automatically called by methods and routines that require a filer object. Filers are created most
often in the methods of stream objects.
TFiler allocates memory for a filer object, and associates it with the stream passed in the Stream
parameter, with a buffer of size BufSize.

Hierarchy

TObject

TFiler example
TFiler

TFileStream
Hierarchy Properties Methods
The TFileStream object is a stream object that enables applications to read from and write to a
file on disk.
Header
vcl/classes.hpp
Description
Use TFileStream to access the information in disk files. TFileStream will open a named file and
provide methods to read from or write to it. If an application already has a handle to the file,
opened in the appropriate mode, use THandleStream instead.

TFileStream properties
TFileStream Alphabetically Legend

Derived from THandleStream
Handle

Derived from TStream
Position

Size

TFileStream properties
TFileStream By object Legend

Handle
Position

Size

TFileStream methods
TFileStream Alphabetically

In TFileStream
~TFileStream
TFileStream

Derived from THandleStream
Read
Seek
Write

Derived from TStream
CopyFrom
ReadBuffer
ReadComponent
ReadComponentRes
ReadResHeader
WriteBuffer
WriteComponent
WriteComponentRes
WriteDescendent
WriteDescendentRes

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TFileStream methods
TFileStream By object

~TFileStream
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CopyFrom
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
ReadBuffer
ReadComponentRes
ReadComponent
ReadResHeader
Read
Seek
TFileStream
WriteBuffer
WriteComponentRes
WriteComponent
WriteDescendentRes
WriteDescendent
Write

TFileStream::~TFileStream
TFileStream See also
~TFileStream destroys an instance of TFileStream.
__fastcall virtual ~TFileStream(void);
Do not call ~TFileStream directly in an application. Instead, call Free. Free verifies that the
TFileStream object is not already freed and only then calls Destroy.
~TFileStream closes the Handle for the file stream before freeing the object.

TFileStream::TFileStream
TFileStream See also
TFileStream creates an instance of TFileStream.
__fastcall TFileStream(const System::AnsiString FileName, unsigned
short Mode);

Use TFileStream to instantiate a file stream for reading from or writing to the named file. Specify
the way the file should be opened when creating the file stream.
The Mode parameter indicates how the file is to be opened. The Mode parameter consists of an
open mode and a share mode ORed together. The open mode must be one of the following
values:
Value Meaning

fmCreate Create a file with the given name. If a file with the given name exists,
open the file in write mode.

fmOpenRead Open the file for reading only.
fmOpenWrite Open the file for writing only. Writing to the file completely replaces the

current contents.
fmOpenReadWrite Open the file to modify the current contents rather than replace them.
The share mode must be one of the following values::
Value Meaning

fmShareCompat Sharing is compatible with the way FCBs are opened.
fmShareExclusive Other applications can not open the file for any reason.
fmShareDenyWrite Other applications can open the file for reading but not for writing.
fmShareDenyRead Other applications can open the file for writing but not for reading.
fmShareDenyNone No attempt is made to prevent other applications from reading from or

writing to the file.
If the file can not be opened, TFileStream will raise an exception.

Accessibility
Read-only

Hierarchy

TObject

TStream
THandleStream

TFileStream example
TFileStream

TFindDialog
Hierarchy Properties Methods Events See also
TFindDialog generates a Find dialog that allows users to search for text in a file.
Header
vcl/dialogs.hpp
Description
The TFindDialog component displays a modeless Windows dialog box that lets the user search
for a specified text string. The dialog does not appear at runtime until it is activated by a call to
the Execute method.

TFindDialog properties
TFindDialog Alphabetically Legend

In TFindDialog
FindText

Handle
Left
Options
Position
Top

Derived from TCommonDialog
Ctl3D
HelpContext

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TFindDialog properties
TFindDialog By object Legend

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

Ctl3D
DesignInfo
FindText

Handle
HelpContext
Left
Name
Options

Owner
Position

Tag
Top

TFindDialog::FindText
TFindDialog
Contains the search string.
__property System::AnsiString FindText;
Description
FindText contains the text string that the user wants to search for. When the user clicks the Find
Next button, the text in the dialog’s edit box is automatically assigned to FindText. To make a
default text string appear in the edit box when the dialog opens, assign a value to FindText in the
Object Inspector or in program code.

TFindDialog::Handle
TFindDialog Example
The window handle of the Find dialog.
__property HWND Handle;
Description
Handle provides access to the window handle of the Find dialog.

TFindDialog::Left
TFindDialog See also Example
Determines the X coordinate (horizontal position) of the Find dialog’s upper left corner.
__property int Left;
Description
Left holds the same value as the first integer in Position.

TFindDialog::Options
TFindDialog See also
Determines the appearance and behavior of the Find dialog.
__property TFindOptions Options;
Description
The possible values of Options are
Value Meaning

frDisableMatchCase Disables (grays) the Match Case check box.
frDisableUpDown Disables (grays) the Up and Down buttons, used to determine the

direction of the search.
frDisableWholeWord Disables (grays) the Match Whole Word check box.
frDown Selects the Down button by default when the dialog opens. If the frDown

flags is off, Up is selected when the dialog opens. (By default, frDown is
on.)

frFindNext This flag is turned on when the user clicks the Find Next button and
turned off when the dialog closes.

frHideMatchCase Removes the Match Case check box from the dialog.
frHideWholeWord Removes the Match Whole Word check box from the dialog.
frHideUpDown Removes the Up and Down buttons from the dialog.
frMatchCase Selects the Match Case check box by default when the dialog opens.
frReplace Applies to TReplaceDialog only. This flag is set by the system to indicate

that the application should replace the current occurrence (and only the
current occurrence) of the FindText string with the ReplaceText string.

frReplaceAll Applies to TReplaceDialog only. This flag is set by the system to indicate
that the application should replace all occurrences of the FindText string
with the ReplaceText string.

frShowHelp Displays a Help button in the dialog.
frWholeWord Selects the Match Whole Word check box by default when the dialog

opens.
By default, all options except frDown are off.

TFindDialog::Position
TFindDialog See also Example
Determines the position of the Find dialog on the screen.
__property POINT Position;
Description
Position gives the pixel coordinates of the dialog’s upper left corner.

TFindDialog::Top
TFindDialog See also Example
Determines the Y coordinate (vertical position) of the Find dialog’s upper left corner.
__property int Top;
Description
Top holds the same value as the second integer in Position.

TFindDialog events
TFindDialog Alphabetically Legend

In TFindDialog
OnFind

TFindDialog events
TFindDialog By object Legend

OnFind

TFindDialog::OnFind
TFindDialog See also
OnFind occurs when the user clicks the Find Next button.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnFind;
Description
Write an OnFind event handler that searches for the text specified in FindText, using the Options
flags to determine how the search is conducted. To search a TMemo object, call the Search
method.

TFindDialog methods
TFindDialog Alphabetically

In TFindDialog
~TFindDialog
CloseDialog
Execute
TFindDialog

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TFindDialog methods
TFindDialog By object

~TFindDialog
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CloseDialog
DefaultHandler
DestroyComponents
Destroying
Dispatch
Execute
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
TFindDialog

TFindDialog::~TFindDialog
TFindDialog See also
~TFindDialog frees the memory associated with the TFindDialog object. Do not call ~
TFindDialog directly. Instead, use the delete keyword on the object, which causes ~TFindDialog
to be invoked automatically.
__fastcall virtual ~TFindDialog(void);

TFindDialog::CloseDialog
TFindDialog
Closes the Find dialog box.
void __fastcall CloseDialog(void);
Description
CloseDialog closes the dialog box and frees its window handle, but leaves most properties of the
TFindDialog (including FindText) unchanged.

TFindDialog::Execute
TFindDialog
Displays the Find dialog.
bool __fastcall Execute(void);
Description
Execute opens the Find dialog, returning true when a window handle is successfully allocated. If
the dialog is already open when Execute is called, Execute brings the dialog to the top, activates
its parent form, and returns true.

TFindDialog::TFindDialog
TFindDialog See also
Creates and initializes a TFindDialog instance.
__fastcall virtual TFindDialog(Classes::TComponent* AOwner);
Description
The TFindDialog method generates a TFindDialog instance, but the new dialog does not appear
on the form at runtime until the Execute method is called.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TCommonDialog

TFindDialog example
TFindDialog

TFieldDataLink
Hierarchy Properties Methods Events See also
TFieldDataLink is a helper object that helps a data-aware window control manage its link to a
TField object and respond to data events.
Header
vcl/dbtables.hpp
Description
Use TFieldDataLink as a member in any data-aware object that needs to link to a TField object
and respond to data events or track database information. The data-aware object must be a
descendant of TWinControl.
The constructor of the data-aware object should call the constructor of the TFieldDataLink
member, and initialize any relevant event-handlers. The data-aware object can then link to a
TField object by using the FieldName property of the TFieldDataLink and can link to a dataset by
using the DataSource property of the TFieldDataLink.

TFieldDataLink properties
TFieldDataLink Alphabetically Legend

In TFieldDataLink
CanModify

Control
Editing
Field

FieldName
Derived from TDataLink

Active
ActiveRecord
BufferCount

DataSet
DataSource
DataSourceFixed
ReadOnly

RecordCount

TFieldDataLink properties
TFieldDataLink By object Legend

ActiveRecord
Active

BufferCount
CanModify

Control
DataSet

DataSourceFixed
DataSource

Editing
FieldName

Field
ReadOnly

RecordCount

TFieldDataLink::CanModify
TFieldDataLink See also
CanModify indicates whether the Control can modify a field in the database table managed by
TFieldDataLink.
__property bool CanModify;
Description
Read CanModify to find out whether the Control that owns this TFieldDataLink is able to alter the
data in the database that this field represents. CanModify may be false because the control is
read-only, or because the underlying field does not permit updates.

TFieldDataLink::Control
TFieldDataLink See also
Control is the data-aware descendant of TWinControl that uses this TFieldDataLink to manage
responses to data events and the link to a TField object.
__property Controls::TWinControl* Control;
Description
This property should only be set by descendents of TWinControl that use a TFieldDataLink to
manage the link to a TField object. These data-aware window controls can set the Control
property of their TFieldDataLink member to self in their own constructors, after calling the
TFieldDataLink constructor. The Control property can then be used to access methods of the
window control when processing data events.

TFieldDataLink::Editing
TFieldDataLink See also
Editing indicates whether the dataset that contains the field associated with this TFieldDataLink
is in edit mode.
__property bool Editing;
Description
Use Editing to determine whether the value of the field associated with this TDataLink can
currently be edited. If Editing is false, calling the Edit method may drive the dataset into edit
mode. This may not be successful, however, if the field cannot be edited. For example, if the
CanModify property is false, Editing will always be false.

TFieldDataLink::Field
TFieldDataLink See also
Field is the TField Object that represents the field in the underlying database table managed by
this TFieldDataLink.
__property Db::TField* Field;
Description
Read Field to gain access to the field object to which the Control of this TFieldDataLink is bound.
Note
Before using Field to alter the value of a field’s contents, applications should check the
CanModify property. The Field object will not be aware of all constraints to edits for this
TFieldDataLink.

TFieldDataLink::FieldName
TFieldDataLink See also
FieldName is the name of the field to which the Control of this TFieldDataLink is bound.
__property System::AnsiString FieldName;
Description
Use FieldName to implement the FieldName property of the data-aware control that owns the
TFieldDataLink. Setting FieldName causes the TFieldDataLink, and hence the control, to bind to
the field in the dataset with that name.

TFieldDataLink events
TFieldDataLink Alphabetically

In TFieldDataLink
OnActiveChange
OnDataChange
OnEditingChange
OnUpdateData

TFieldDataLink events
TFieldDataLink By object

OnActiveChange
OnDataChange
OnEditingChange
OnUpdateData

TFieldDataLink::OnActiveChange
TFieldDataLink See also
OnActiveChange occurs when the Active property of the TFieldDataLink changes.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnActiveChange;
Description
Write an OnActiveChange event handler to take specific action immediately after the dataset
transitions into or out of an active state. OnActiveChange is particularly useful for updating
objects to reflect changes that occurred while the dataset was not active, as the object can not
respond to events while its TFieldDataLink is not Active.

TFieldDataLink::OnDataChange
TFieldDataLink See also
OnDataChange occurs when the contents of the dataset change.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnDataChange;
Description
Write an OnDataChange event handler to take specific action when there is a change to the
contents of the field. OnDataChange allows the control object to respond when the dataset
sends out notifications that the data has changed.

TFieldDataLink::OnEditingChange
TFieldDataLink See also
EditingChanged occurs after the DataSource transitions into or out of an editing state.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnEditingChange;
Description
Write an OnEditingChange event handler to take specific action when the DataSource transitions
into or out of an editing state. This event can be used to create visual indications of the editing
state in the control that uses this TFieldDataLink.

TFieldDataLink::OnUpdateData
TFieldDataLink See also
OnUpdateData occurs when it is time to post any pending changes to the dataset.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnUpdateData;
Description
Write an OnUpdateData event handler to write the data in the representation of the field to the
database record. Posting the data from within OnUpdateData does not trigger a call to
OnDataChange.

TFieldDataLink methods
TFieldDataLink Alphabetically Legend

In TFieldDataLink
~TFieldDataLink

ActiveChanged
Edit
EditingChanged
FocusControl
LayoutChanged
Modified
RecordChanged
Reset
TFieldDataLink
UpdateData

Derived from TDataLink
UpdateRecord

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TFieldDataLink methods
TFieldDataLink By object Legend

~TFieldDataLink
ActiveChanged
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EditingChanged
Edit
FieldAddress
FocusControl
FreeInstance

Free
InheritsFrom
InitInstance
InstanceSize

LayoutChanged
MethodAddress
MethodName
Modified
NewInstance
RecordChanged
Reset
TFieldDataLink
UpdateData
UpdateRecord

TFieldDataLink::~TFieldDataLink
TFieldDataLink
~TFieldDataLink frees the memory associated with the TFieldDataLink object. Do not call ~
TFieldDataLink directly. Instead, use the delete keyword on the object, which causes ~
TFieldDataLink to be invoked automatically.
__fastcall virtual ~TFieldDataLink(void);

TFieldDataLink::ActiveChanged
TFieldDataLink See also
ActiveChanged calls the OnActiveChanged event handler if it is assigned.
virtual void __fastcall ActiveChanged(void);
Description
Changes to the Active property trigger the ActiveChanged method. If an OnActiveChanged event
handler is assigned, ActiveChanged calls this event handler. If ActiveChanged is triggered by a
transition into an active state, then before calling the event handler, ActiveChanged makes sure
that the Field for this TFieldDataLink is still valid.

TFieldDataLink::Edit
TFieldDataLink See also
Edit attempts to drive the DataSource into an editing state if it is not already in one.
bool __fastcall Edit(void);
Description
Use Edit to try to ensure that the contents of the field can be modified. A return value of true
indicates that the field was already in an editing state, or that the DataSource was successfully
changed to allow editing. A return value of false indicates that the DataSource could not be
changed to allow editing. For example, if the CanModify property is false, Edit fails, and returns
false.

TFieldDataLink::EditingChanged
TFieldDataLink See also
EditingChanged enforces the CanModify property when the field binding changes.
virtual void __fastcall EditingChanged(void);
Description
Changing the field binding can change the validity of the CanModify property, since individual
field components can disallow edits. If TFieldDataLink is in an editing state when the Field
property is changed, EditingChanged checks the CanModify property. If CanModify is false, it
changes back out of the editing state.
Note
This differs significantly from the inherited EditingChanged method of TDataLink. The
functionality of the inherited method is replaced in TFieldDataLink by the OnEditingChange
event handler.

TFieldDataLink::FocusControl
TFieldDataLink See also
FocusControl sets the input focus to Control.
virtual void __fastcall FocusControl(Db::TFieldRef Field);
Description
Call FocusControl to give the Control associated with this TFieldDataLink object the input focus.
FocusControl checks whether the Control can receive input focus, and if so, calls its SetFocus
method to move focus to the Control.

TFieldDataLink::LayoutChanged
TFieldDataLink See also
LayoutChanged makes sure that the Field property is still valid after changes in the layout of a
container of the Control for this TFieldDataLink.
virtual void __fastcall LayoutChanged(void);
Description
LayoutChanged is called after changes in the layout of one of the containers of the Control for
this TFieldDataLink that might change the validity of its field binding. For example, if the Control
is embedded within a TCustomDBGrid, and one of the columns is deleted, the Field property for
the Control might become invalid.

TFieldDataLink::Modified
TFieldDataLink See also Example
Modified keeps track of changes made to the data for this field that are not yet written to the
record in the dataset.
void __fastcall Modified(void);
Description
Call Modified when the Control for this TFieldDataLink begins processing edits.

TFieldDataLink::RecordChanged
TFieldDataLink See also
RecordChanged calls the OnDataChange event handler when the contents of the current record
in the dataset change.
virtual void __fastcall RecordChanged(Db::TField* Field);
Description
Applications can not call this protected method. It is triggered automatically when the contents of
the current record change. RecordChanged calls the OnDataChange event handler if there is
one.

TFieldDataLink::Reset
TFieldDataLink See also
Reset calls the OnDataChange event handler to allow it to cancel pending changes to the field
before they are posted.
void __fastcall Reset(void);
Description
The Control that owns a TFieldDataLink calls its Reset method to process a UI action that
cancels edits to the field. Reset calls the OnDataChange event handler without writing any
pending changes to the record in the dataset.

TFieldDataLink::TFieldDataLink
TFieldDataLink
TFieldDataLink creates a new TFieldDataLink object.
__fastcall TFieldDataLink(void);

TFieldDataLink::UpdateData
TFieldDataLink See also
UpdateData calls the OnUpdateData event handler so that the data-aware control can write any
pending edits to the record in the dataset.
virtual void __fastcall UpdateData(void);
Description
UpdateData overrides the default UpdateData method to call the OnUpdateData event handler
that has been assigned.

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TDataLink

TFieldDataLink example
TFieldDataLink

TFieldDef
Hierarchy Properties Methods See also
The TFieldDef object is a field definition that corresponds to a physical field of a record in a table
underlying a dataset.
Header
vcl/db.hpp
Description
A field definition is automatically created for each field in a dataset. A field definition has a
corresponding TField object, but not all TField objects have a corresponding field definition
object. For example, calculated fields do not have field definition objects.
There are two primary reasons for working with TFieldDef objects:
• To obtain information about field types in a table without opening the table.
• To create a new table from scratch.
Each field definition is held in the Items property of a TFieldDefs object, which contains all the
field definitions for a dataset.
Use the properties and methods of TFieldDef determine the characteristics of the physical field it
corresponds to in dataset.
The TFieldDef object is a direct descendent of TObject, and therefore has all methods that apply
to all objects.

TFieldDef properties
TFieldDef Alphabetically Legend

In TFieldDef
BDECalcField
DataType
FieldClass
FieldNo
Name
Required
Size

TFieldDef properties
TFieldDef By object Legend

BDECalcField
DataType
FieldClass
FieldNo
Name
Required
Size

TFieldDef::BDECalcField
TFieldDef See also
BDECalcField determines if the field is a field whose value is calculated by the Borland
Database Engine.
__property bool BDECalcField;
Description
Read BDECalcField to find out if the field is a BDE calculated field. BDE calculated fields are
calculated by the Borland Database Engine in a live query view. If the field is a BDE calculated
field, BDECalcField returns true; otherwise it returns false.
For example, in the following SQL statement, the dataset includes a field for the calculated value
ONHAND * COST.
When the TQuery object has its RequestLive property set to true, the field definition for that
calculated value will have BDECalcField set to true.
When BDECalcField is true, the field value can be edited, but the changes are discarded. To
prevent editing, set ReadOnly for the field to true.
BDECalcField is a read-only property.

TFieldDef::DataType
TFieldDef See also
DataType determines the type of a physical field.
__property TFieldType DataType;
Description
Use DataType to find out what type of data the field contains. These are the possible values:
Value Description

ftUnkown Unknown or undetermined
ftString Character or string field
ftSmallint 16-bit integer field
ftInteger 32-bit integer field
ftWord 16-bit unsigned integer field
ftBoolean Boolean field
ftFloat Floating-point numeric field
ftCurrency Money field
ftBCD Binary-coded decimal field
ftDate Date field
ftTime Time field
ftDateTime Date and time field
ftBytes Fixed number of bytes (binary storage)
ftVarBytes Variable number of bytes (binary storage)
ftAutoInc Auto-incrementing 32-bit integer counter field
ftBlob Binary Large OBject field
ftMemo Text memo field
ftGraphic Bitmap field
ftFmtMemo Formatted text memo field
ftParadoxOle Paradox OLE field
ftDBaseOle dBASE OLE field
ftTypedBinary Typed binary field
DataType is a read-only property.

TFieldDef::FieldClass
TFieldDef See also
FieldClass determines the class of the field object that corresponds to this field definition object.
__property System::TMetaClass* FieldClass;
Description
Use FieldClass to find out the class of field object this field definition object corresponds to. The
FieldClass is determined by the DataType of the field. For example, if the DataType is ftString,
the FieldClass is TStringField.
The field object created from the field definition by the CreateField method is an instance of the
FieldClass.
FieldClass is a read-only property.

TFieldDef::FieldNo
TFieldDef See also
FieldNo identifies the physical field number used by the Borland Database Engine to reference
the field.
__property int FieldNo;
Description
Use FieldNo to find out where the physical field the field definition references is in the set of
fields in the table. For example, if the value of FieldNo is 2, then the field is the second field in
the table.
FieldNo is a read-only property.

TFieldDef::Name
TFieldDef See also Example
Name is the name of the physical field within the underlying table.
__property System::AnsiString Name;
Description
Use the Name to determine the name of the physical field in the table.
Name is a read-only property.

TFieldDef::Required
TFieldDef See also
Required reports whether a value for a physical field in an underlying table is required.
__property bool Required;
Description
Use Required to find out if a field in a table must have a value. If Required is true, the field must
have a value. If Required is false, the field can be left blank.
Required is a read-only property.

TFieldDef::Size
TFieldDef See also
Size reports the size associated with the field in the physical database table.
__property unsigned short Size;
Description
Use Size to determine the size associated with the corresponding physical field.
Size is meaningful only for a field definition object with one of the following TFieldType values:
ftString, ftBCD, ftBytes, ftVarBytes, ftBlob, ftMemo or ftGraphic. For string and byte fields, Size is
the number of bytes reserved in the table for the field. For a BCD field, Size is the number of
digits following the decimal point. For a BLOB, memo, or graphic field, Size is the number of
bytes from the field’s value that are stored in the actual database table.
Size is a read-only property.

TFieldDef methods
TFieldDef Alphabetically

In TFieldDef
~TFieldDef
CreateField
TFieldDef

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TFieldDef methods
TFieldDef By object

~TFieldDef
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CreateField
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TFieldDef

TFieldDef::~TFieldDef
TFieldDef See also
~TFieldDef frees the memory associated with the TFieldDef object. Do not call ~TFieldDef
directly. Instead, use the delete keyword on the object, which causes ~TFieldDef to be invoked
automatically.
__fastcall virtual ~TFieldDef(void);

TFieldDef::CreateField
TFieldDef See also
CreateField creates a TField component of the appropriate type that matches the specifications
of the TFieldDef object.
TField* __fastcall CreateField(Classes::TComponent* Owner);
Description
A dataset object calls CreateField to create the field components from the field definitions
objects. Applications need never call CreateField directly.

TFieldDef::TFieldDef
TFieldDef See also
The TFieldDef method creates an instance of TFieldDef.
__fastcall TFieldDef(TFieldDefs* Owner, const System::AnsiString Name,
TFieldType DataType, unsigned short Size, bool Required, int FieldNo)
;

Description
Call TFieldDef to create a field definition when you are creating a new table programmatically.
If the Owner parameter passed to TFieldDef is not NULL, the specified TFieldDefs object
becomes the owner of this field definition. The values passed in the Name, DataType, Size,
Required, and FieldNo parameters are assigned to the respective properties of the same name.

Accessibility
Read-only

Hierarchy

TObject

TFieldDef example
TFieldDef

TFieldDefs
Hierarchy Properties Methods See also
A TFieldDefs object holds the field definition (TFieldDef) objects that represent the physical fields
underlying a dataset.
Header
vcl/db.hpp
Description
TFieldDefs is used by a data set to manage the field definitions it uses to create field objects that
correspond to fields in the database table. TTable objects also use TFieldDefs when creating a
new database table.
Use the properties and methods of TFieldDefs to:
• Access a specific field definition.
• Add or delete field definitions from the list.
• Find out how many fields are defined.
• Copy a set of field definitions to another table.

TFieldDefs properties
TFieldDefs Alphabetically Legend

In TFieldDefs
Count
Items

TFieldDefs properties
TFieldDefs By object Legend

Count
Items

TFieldDefs::Count
TFieldDefs See also
Count specifies the total number of TFieldDef objects owned by this TFieldDefs object.
__property int Count;
Description
Use the Count property to determine how many field definitions contained in this TFieldDefs
object. For example, use Count to iterate through all the field definitions in the Items array.
Count is a read-only property. The value of Count is changed indirectly when adding or deleting
field definitions.

TFieldDefs::Items
TFieldDefs See also
Items is an array of pointers to the field definitions that describe each physical field in the
dataset.
__property TFieldDef* Items[int Index];
Description
Use Items to access a particular field definition. Specify the field definition to access with the
Index parameter. Index is an integer identifying the field definition’s position in the list of field
definitions, in the range 0 to Count - 1.
Items is a read-only property. The value of Items is changed indirectly when adding or deleting
field definitions.

TFieldDefs methods
TFieldDefs Alphabetically

In TFieldDefs
~TFieldDefs
Add
AddFieldDesc
Assign
Clear
Find
IndexOf
TFieldDefs
Update

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TFieldDefs methods
TFieldDefs By object

~TFieldDefs
AddFieldDesc
Add
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
Dispatch
FieldAddress
Find
FreeInstance
Free
IndexOf
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TFieldDefs
Update

TFieldDefs::~TFieldDefs
TFieldDefs See also
~TFieldDefs frees the memory associated with the TFieldDefs object. Do not call ~TFieldDefs
directly. Instead, use the delete keyword on the object, which causes ~TFieldDefs to be invoked
automatically.
__fastcall virtual ~TFieldDefs(void);
Description
~TFieldDefs removes all the field definition objects from the Items property array and frees Items
before calling the destructor of its parent object.

TFieldDefs::Add
TFieldDefs See also
Add creates a new field definition object and adds it to the Items property of this TFieldDefs
object.
void __fastcall Add(const System::AnsiString Name, TFieldType DataType,
unsigned short Size, bool Required);

Description
Use Add only when creating a new table, as the Items property array is filled automatically when
a dataset is opened.
Add uses the values passed in the Name, DataType, Size, and Required parameters and
assigns them to the respective properties of the new field definition object.
If field definition with same name already exists, an EDatabaseError exception is raised.

TFieldDefs::AddFieldDesc
TFieldDefs See also
AddFieldDesc creates a new field definition object and adds it to the Items property array for this
TFieldDefs object.
void __fastcall AddFieldDesc(const Bde::FLDDesc &FieldDesc, bool
Required, unsigned short FieldNo);

Description
Applications should not need to use this method. It is used by the dataset to fill the Items
property array when the database table is opened.
To change the Items array in response to changes in the dataset, use the Update method
instead.
AddFieldDesc uses the information provided by the Borland Database Engine for the FieldDesc
parameter.

TFieldDefs::Assign
TFieldDefs See also
Assign copies a set of field definition objects to the Items property array from another TFieldDefs
object.
void __fastcall Assign(TFieldDefs* FieldDefs);
Description
Use Assign to copy one TFieldDefs object to another. The field definitions are copied to the
Items property array. Specify the TFieldDefs object as the value of the FieldDefs parameter.
If Items previously had pointers to field definitions, these pointers are freed before Items is
refilled.

TFieldDefs::Clear
TFieldDefs See also
Clear frees all of the entries in the Items property.
void __fastcall Clear(void);
Description
Call Clear to remove all the field definition objects from this TFieldDefs object.

TFieldDefs::Find
TFieldDefs See also
Find locates a field definition in the Items array from the name of the field.
TFieldDef* __fastcall Find(const System::AnsiString Name);
Description
Call Find to obtain information about a particular field definition. Specify the name of the field as
the value of the Name parameter.

TFieldDefs::IndexOf
TFieldDefs See also
IndexOf finds the index number of a field definition in the Items array from the name of the field.
int __fastcall IndexOf(const System::AnsiString Name);
Description
Use the IndexOf method to locate the position of a field definition in the Items property array.
IndexOf returns a value from zero (the first position) to Count - 1. Specify the name of the field
as the value of the Name parameter.

TFieldDefs::TFieldDefs
TFieldDefs See also
TFieldDefs creates an instance of TFieldDefs.
__fastcall TFieldDefs(TDataSet* DataSet);
Description
Applications should not need to call TFieldDefs directly. TFieldDefs is created automatically by a
dataset to specify the fields in the database.
After calling the constructor of its parent object, TFieldDefs creates the Items property array.

TFieldDefs::Update
TFieldDefs See also Example
Update refreshes the field definitions in the Items property array to reflect the current state of the
physical fields underlying the dataset.
void __fastcall Update(void);
Description
Call Update to refresh the field definitions when the structure of the underlying dataset may have
changed. Update updates the field definitions without opening the dataset.

Accessibility
Read-only

Hierarchy

TObject

TFieldDefs example
TFieldDefs

TFloatField
Hierarchy Properties Methods Events See also
A TFloatField object represents a field that contains floating-point values in a dataset.
Header
vcl/dbtables.hpp
Description
Floating-point fields can hold values in the range from (positive or negative) 5.0 * 10e-324 to 1.7
* 10e308 with an accuracy of 15 digits.
TFloatField introduces new properties to
• Convert between floating-point values and other data types.
• To limit the range or precision of valid values that the field will permit.
• To format the value for display purposes.
As a descendent of TNumericField, TFloatField includes many properties, methods, and events
that are useful for managing the value and properties of a numeric field in a database.
TFloatField is the direct ancestor of the TCurrencyField component.

TFloatField properties
TFloatField Alphabetically Legend

In TFloatField
Currency
MaxValue
MinValue
Precision
Value

Derived from TNumericField
DisplayFormat
EditFormat

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TFloatField properties
TFloatField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

Currency
DataSet

DataSize
DataType

DesignInfo
DisplayFormat
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditFormat

EditMaskPtr
EditMask
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
MaxValue
MinValue
Name
NewValue

OldValue
Owner

Precision
ReadOnly
Required
Size
Tag
Text
Value
Visible

TFloatField::Currency
TFloatField See also
Currency determines whether the value in the field should be formatted as a currency value.
__property bool Currency;
Description
Use the Currency property to specify the formatting of the field for viewing and editing in a data-
aware control.
The field is formatted for display using the DisplayFormat property if it is assigned. If
DisplayFormat is not assigned, Currency determines how the field is formatted for display. If
Currency is true, the value is formatted for display using the FloatToText function with the
ffCurrency formatting code. If Currency is false, the value is formatted with the ffGeneral format.
The field is formatted for editing purposes using the EditFormat (or DisplayFormat) property if it
is assigned. If neither EditFormat nor DisplayFormat is assigned, Currency determines how the
field is formatted for editing. If Currency is true, the value is formatted for editing using the
FloatToText function with the ffFixed formatting code. If Currency is false, the value is formatted
with the ffGeneral format.

TFloatField::MaxValue
TFloatField See also
MaxValue limits the maximum value in the floating-point field.
__property double MaxValue;
Description
Use MaxValue to get or set the maximum value that can be entered into the field. If a value
greater than MaxValue is entered, an EDatabaseError exception is raised.

TFloatField::MinValue
TFloatField See also
MinValue limits the minimum value in the floating-point field.
__property double MinValue;
Description
Use MinValue to get or set the minimum value that can be entered into the field. If a value
smaller than MinValue is entered, an EDatabaseError exception is raised.

TFloatField::Precision
TFloatField See also
Precision determines the precision used in formatting the value in a floating-point field.
__property int Precision;
Description
Use Precision set the number of digits beyond the decimal point the value should be formatted
to before rounding begins. Precision affects the format of the floating-point value when it is
displayed as a text string, not the actual floating-point value that is stored in the field.
The default value of Precision is 15 decimal places.

TFloatField::Value
TFloatField See also
Value is the actual data in the floating-point field.
__property double Value;
Description
Use Value to read data directly from and write data directly to a floating-point component at
runtime. Using the Value property is the same as using the AsFloat property. Use Value when
you know the field component is a floating-point field. Use AsFloat when working with a generic
field component.

TFloatField events
TFloatField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TFloatField events
TFloatField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TFloatField methods
TFloatField Alphabetically

In TFloatField
~TFloatField
IsValidChar
TFloatField

Derived from TField
Assign
AssignValue
Clear
FocusControl
GetData
SetData
SetFieldType

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TFloatField methods
TFloatField By object

~TFloatField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TFloatField

TFloatField::~TFloatField
TFloatField
~TFloatField frees the memory associated with the TFloatField object. Do not call ~TFloatField
directly. Instead, use the delete keyword on the object, which causes ~TFloatField to be invoked
automatically.
__fastcall virtual ~TFloatField(void);

TFloatField::IsValidChar
TFloatField See also
IsValidChar determines if the specified character is valid in a floating-point field.
virtual bool __fastcall IsValidChar(char Ch);
Description
Call IsValidChar to determine if a character specified as the value of the InputChar is a valid
character in a floating-point field.
Valid characters for a floating-point field are +, -, E, e, 0 to 9, and whatever character is specified
as the decimal separator. If InputChar is one of these characters, IsValidChar returns true. For
all other characters, IsValidChar returns false.
IsValidChar is used by data-aware controls to determine if a particular character entered in the
field is valid for the field.

TFloatField::TFloatField
TFloatField See also
TFloatField creates an instance of TFloatField.
__fastcall virtual TFloatField(Classes::TComponent* AOwner);
Description
Call TFloatField to create and initialize an instance of TFloatField. After calling the constructor of
its parent object, TFloatField sets the DataType to ftFloat, and the Precision to 15.
It is seldom necessary to call TFloatField directly because a floating-point field component is
instantiated automatically for all floating-point fields in a dataset.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField
TNumericField

TFloatField example
TFloatField

TFilterComboBox
Hierarchy Properties Methods Events
TFilterComboBox is a specialized combo box that is used to present the user with a choice of file
filters. Specify the filters you want to appear in the filter combo box with the Filter property. The
filter the user selects is the value of the Mask property.
Header
vcl/filectrl.hpp
Most commonly, a filter combo box is used with a file list box (TFileListBox). Your application can
have the file filter the user selects in the filter combo box determine which files appear in the file
list box. If you place this line of code in an OnChange event handler of the filter combo box, any
change in the filter combo box is reflected in the file list box:
FileListBox1->Mask = FilterComboBox1->Filter;
Another way to accomplish the same task is to set the FileList property of the filter combo box to
the file list box you want affected with a change of filters.

TFilterComboBox properties
TFilterComboBox Alphabetically Legend

In TFilterComboBox
FileList
Filter

Mask
Derived from TCustomComboBox

Canvas
DroppedDown
ItemIndex
Items
SelLength
SelStart
SelText

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth

Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name

Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Text
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TFilterComboBox properties
TFilterComboBox By object Legend

Align
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
DroppedDown
Enabled
FileList
Filter
Font

Handle
Height
HelpContext
Hint
ItemIndex
Items
Left

Mask
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu

SelLength
SelStart
SelText

ShowHint
Showing

TabOrder
TabStop
Tag
Text
Top
Visible
Width

TFilterComboBox::FileList
TFilterComboBox
Provides a simple way to connect a filter combo box with a file list box.
__property TFileListBox* FileList;

Once the two controls are connected and a new filter is selected using a filter combo box, the file
list box displays the files that match the selected filter. Specify the file list box you want to display
the files matching the selected filter as the value of the FileList property.

TFilterComboBox::Filter
TFilterComboBox
Determines the file masks displayed in the filter combo box.
__property System::AnsiString Filter;

A file mask or file filter is a file name that usually includes wildcard characters (*.CPP, for
example). When your application runs, the file filter the user selects in the filter combo box
becomes the value of the Mask property. To specify a file filter, assign a filter string as the value
of Filter. To create the string, follow these steps:
1 Type some meaningful text to indicate the type of file.
2 Type a | character (this is the “pipe” or “or” character).
3 Type the file filter.
Don't put in any spaces around the | character in the string.
Here's an example:
OpenDialog1->Filter = ‘Text files|*.TXT’
If you entered this string, the string “Text files” appears in the filter combo box.
You can specify multiple file filters so that a list of filters appears in the filter combo box from
which the user can select. To specify multiple file filters,
1 Type a file filter as shown previously.
2 Type another file filter in the same way, but separate the second file filter from the first
with the | character.
3 Continue adding as many file filters as you like, separating them with the | character.
You can string multiple wildcard file filters together if you separate them with semicolons.

TFilterComboBox::Mask
TFilterComboBox
Returns the string selected as the filter in the filter combo box.
__property System::AnsiString Mask;

TFilterComboBox events
TFilterComboBox Alphabetically Legend

In TFilterComboBox
OnChange

Derived from TCustomComboBox
OnDropDown

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnStartDrag

TFilterComboBox events
TFilterComboBox By object Legend

OnChange
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnDropDown
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnStartDrag

TFilterComboBox::OnChange
TFilterComboBox
Occurs when the content of the combo box changes.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnChange;
Use OnChange to perform special processing when the content of the combo box changes.

TFilterComboBox methods
TFilterComboBox Alphabetically

In TFilterComboBox
TFilterComboBox

Derived from TCustomComboBox
Clear
SelectAll

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent

HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TFilterComboBox methods
TFilterComboBox By object

Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SelectAll
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TFilterComboBox
UpdateControlState
Update

~TFilterComboBox
~TFilterComboBox frees the memory associated with the TFilterComboBox object. Do not call ~
TFilterComboBox directly. Instead, use the delete keyword on the object, which causes ~
TFilterComboBox to be invoked automatically.
__fastcall virtual ~TFilterComboBox(void);

TFilterComboBox::TFilterComboBox
TFilterComboBox
TFilterComboBox creates a new TFilterComboBox object.
__fastcall virtual TFilterComboBox(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomComboBox

TFilterComboBox example
TFilterComboBox

TFolderBitmap
Hierarchy Properties Methods Events See also
TFolderBitmap is used for bitmaps that display opened, closed, and current folders in directory
list boxes.
Header
vcl/filectrl.hpp
Description
TFolderBitmap is used for the bitmap folder images that represent directories in directory list
boxes.

TFolderBitmap properties
TFolderBitmap Alphabetically Legend

Derived from TBitmap
Canvas
Empty

Handle
Height
IgnorePalette
Monochrome
Palette

TransparentColor
Width

Derived from TGraphic
Modified

TFolderBitmap properties
TFolderBitmap By object Legend

Canvas
Empty

Handle
Height
IgnorePalette
Modified
Monochrome
Palette

TransparentColor
Width

TFolderBitmap events
TFolderBitmap Alphabetically

Derived from TGraphic
OnChange

TFolderBitmap events
TFolderBitmap By object

OnChange

TFolderBitmap methods
TFolderBitmap Alphabetically

In TFolderBitmap
~TFolderBitmap
TFolderBitmap

Derived from TBitmap
Assign
Dormant
FreeImage
LoadFromClipboardFormat
LoadFromResourceID
LoadFromResourceName
LoadFromStream
ReleaseHandle
ReleasePalette
SaveToClipboardFormat
SaveToStream

Derived from TGraphic
LoadFromFile
SaveToFile

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TFolderBitmap methods
TFolderBitmap By object

~TFolderBitmap
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
Dormant
FieldAddress
FreeImage
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
LoadFromClipboardFormat
LoadFromFile
LoadFromResourceID
LoadFromResourceName
LoadFromStream
MethodAddress
MethodName
NewInstance
ReleaseHandle
ReleasePalette
SaveToClipboardFormat
SaveToFile
SaveToStream
TFolderBitmap

TFolderBitmap::~TFolderBitmap
TFolderBitmap
~TFolderBitmap frees the memory associated with the TFolderBitmap object. Do not call ~
TFolderBitmap directly. Instead, use the delete keyword on the object, which causes ~
TFolderBitmap to be invoked automatically.
__fastcall virtual ~TFolderBitmap(void);

TFolderBitmap::TFolderBitmap
TFolderBitmap
TFolderBitmap instantiates a folder bitmap.
__fastcall TFolderBitmap(void);
Description
Call TFolderBitmap to instantiate a folder bitmap at runtime.
TFolderBitmap allocates memory for a folder bitmap and calls the constructor of its parent
object. The it sets the height and width of the folder bitmap.

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TGraphic
TBitmap

TFolderBitmap example
TFolderBitmap

TFont
Hierarchy Properties Methods Events
A TFont object defines the appearance of text. TFont encapsulates a Windows HFONT.
Header
vcl/graphics.hpp
A TFont object defines a set of characters by specifying their height, font family (typeface) name,
and so on. The height is specified by the Height property. The typeface is specified by the Name
property. The size in points is specified by the Size property. The color is specified by the Color
property. The attributes of the font (bold, italic, and so on) are specified by the Style property.
When a font is modified, an OnChange event occurs.
In addition to these properties, methods, and events, this object also has the methods that apply
to all objects. A TFont object is an indirect descendent of TPersistent.

TFont properties
TFont Alphabetically Legend

In TFont
Color
Handle
Height
Name
Pitch
PixelsPerInch
Size
Style

TFont properties
TFont By object Legend

Color
Handle
Height
Name
Pitch
PixelsPerInch
Size
Style

TFont::Color
TFont
Determines the color of the text.
__property TColor Color;

These are the possible color values::
Value Meaning

clBlack Black
clMaroon Maroon
clGreen Green
clOlive Olive green
clNavy Navy blue
clPurple Purple
clTeal Teal
clGray Gray
clSilver Silver
clRed Red
clLime Lime green
clBlue Blue
clFuchsia Fuchsia
clAqua Aqua
clWhite White
clBackground Current color of your Windows background
clActiveCaption Current color of the title bar of the active window
clInactiveCaption Current color of the title bar of inactive windows
clMenu Current background color of menus
clWindow Current background color of windows
clWindowFrame Current color of window frames
clMenuText Current color of text on menus
clWindowText Current color of text in windows
clCaptionText Current color of the text on the title bar of the active window
clActiveBorder Current border color of the active window
clInactiveBorder Current border color of inactive windows
clAppWorkSpace Current color of the application workspace
clHighlight Current background color of selected text
clHightlightText Current color of selected text
clBtnFace Current color of a button face
clBtnShadow Current color of a shadow cast by a button
clGrayText Current color of text that is dimmed
clBtnText Current color of text on a button
clInactiveCaptionText Current color of the text on the title bar of an inactive window
clBtnHighlight Current color of the highlighting on a button
cl3DDkShadow Windows 95 only: Dark shadow for three-dimensional display elements
cl3DLight Windows 95 only: Light color for three-dimensional display elements (for

edges facing the light source)
clInfoText Windows 95 only: Text color for tooltip controls
clInfoBk Windows 95 only: Background color for tooltip controls
The second half of the colors listed here are Windows system colors. The color that appears
depends on the color scheme users are using for Windows. Users can change these colors
using the Control Panel. The actual color that appears will vary from system to system. For
example, the color fuchsia may appear more blue on one system than another.

TFont::Handle
TFont Example
Provides access to the Windows GDI font object handle.
__property HFONT Handle;

If you need to use a Windows API function that requires the handle of a font object, you could
pass the handle from the Handle property of a TFont object.

TFont::Height
TFont Example
Determines the height of the font.
__property int Height;

The height of the font, which is the size of the font minus the internal leading that appears at the
top of the font. Whenever you specify a font height in pixels, use the Height property. If you are
concerned with the size of the font in points--use the Size property instead of Height. Users
usually specify font size in points within an application, while programmers are usually
concerned with the actual size of the font in pixels--which includes the internal leading--when
displaying a font on the screen.
Borland C++Builder determines the value of the Height property using this formula:
Font->Height = -Font->Size * 72 / Font->PixelsPerInch
Therefore, whenever you enter a positive value for the Height property, the font's Size property
value changes to a negative number. Conversely, if you enter a positive value for the Size
property, the font's Height property changes to a negative number. Positive Height includes the
internal leading and negative excludes it.

TFont::Name
TFont Example
Identifies the typeface of the font.
__property TFontName Name;

TFont::Pitch
TFont
Specifies the pitch or width of the characters of a font.
__property TFontPitch Pitch;

The Pitch property specifies the pitch or width of the characters of a font. Characters with
variable pitch can have varying widths. For example, the following characters are in a variable
pitch font. Note that the width of ten 'i' characters is less than the width of ten 'M' characters.
iiiiiiiiii
MMMMMMMMMM
The following characters are in a fixed-pitch font. Note that ten 'i' characters are the same width
as ten 'M' characters:
Here are the possible values for Pitch:
Value Meaning

fpDefault The font pitch is set to the default value, which depends on the font
specified in the Name property.

fpFixed The font pitch is set to fixed. All characters in the font have the same
width.

fpVariable The font pitch is set to variable. The characters in the font have different
widths.

TFont::PixelsPerInch
TFont
Used by Borland C++Builder to ensure that when a font is copied from the form's canvas to the
printer, the font is the same size in points.
__property int PixelsPerInch;

For example, if the font is 8 points on the screen, Borland C++Builder makes sure the font is 8
points when it is printed. The PixelsPerInch property affects printer fonts only and should not be
modified.
If you want to modify the size of a font, use the Size or Height properties.

TFont::Size
TFont
Specifies the size of the font in points.
__property int Size;

Size the height of the font plus the font's excluding internal leading. If you are concerned with the
height of the font on the screen--the number of pixels the font needs--use the Height property
instead. If you want to specify a font's height using points, use the Size property.
Borland C++Builder calculates Size using this formula:
Font->Size = -Font->Height * Font->PixelsPerInch / 72
Therefore, whenever you enter a point size in the Size property, you'll notice the Height property
changes to a negative value. Conversely, if you enter a positive Height value, the Size property
value changes to a negative value.

TFont::Style
TFont
Determines whether the font is normal, italic, underlined, bold, and so on.
__property TFontStyles Style;

These are the possible values of Style:
Value Meaning

fsBold The font is boldfaced.
fsItalic The font is italicized.
fsUnderline The font is underlined.
fsStrikeout The font is displayed with a horizontal line through it.
The Style property is a set, so it can contain multiple values. For example, a font could be both
boldfaced and italicized.

TFont events
TFont Alphabetically

Derived from TGraphicsObject
OnChange

TFont events
TFont By object

OnChange

TFont methods
TFont Alphabetically

In TFont
~TFont
Assign
TFont

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TFont methods
TFont By object

~TFont
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TFont

TFont::~TFont
TFont
~TFont frees the memory associated with the TFont object. Do not call ~TFont directly. Instead,
use the delete keyword on the object, which causes ~TFont to be invoked automatically.
__fastcall virtual ~TFont(void);

TFont::Assign
TFont

virtual void __fastcall Assign(Classes::TPersistent* Source);

TFont::TFont
TFont
TFont creates a new TFont object
__fastcall TFont(void);

Scope
Published

Hierarchy

TObject

TPersistent
TGraphicsObject

TFont example
TFont

TFontDialog
Hierarchy Properties Methods Events
TFontDialog generates a font-selection dialog.
Header
vcl/dialogs.hpp
Description
TFontDialog displays a Windows dialog box for selecting fonts. The dialog does not appear at
runtime until it is activated by a call to the Execute method. When the user selects a font and
clicks OK, the dialog closes and the selected font is stored in the Font property.

TFontDialog properties
TFontDialog Alphabetically Legend

In TFontDialog
Device
Font
MaxFontSize
MinFontSize
Options

Derived from TCommonDialog
Ctl3D

Handle
HelpContext

StaticRect
Template

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TFontDialog properties
TFontDialog By object Legend

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

Ctl3D
DesignInfo
Device
Font

Handle
HelpContext
MaxFontSize
MinFontSize
Name
Options

Owner
StaticRect

Tag
Template

TFontDialog::Device
TFontDialog
Selects the device from which to retrieve the list of available fonts.
__property TFontDialogDevice Device;
Description
These are the possible values of Device:
Value Meaning

fdScreen Retrieve from the screen.
fdPrinter Retrieve from the printer.
fdBoth Retrieve from both the screen and the printer.

TFontDialog::Font
TFontDialog See also
Returns the selected font.
__property Graphics::TFont* Font;
Description
When the user selects a font in the dialog box and clicks OK, the selected font becomes the
value of the Font property. To make a default font appear in the dialog when it opens, assign a
value to Font in the Object Inspector or in program code.

TFontDialog::MaxFontSize
TFontDialog See also
Determines the largest font size available in the Font dialog.
__property int MaxFontSize;
Description
Assign a value to MaxFontSize to limit the font sizes available in the dialog.
Note
MaxFontSize is inoperative unless the fdLimitSize flag is set in Options.

TFontDialog::MinFontSize
TFontDialog See also
Determines the smallest font size available in the Font dialog.
__property int MinFontSize;
Description
Assign a value to MinFontSize to limit the font sizes available in the dialog.
Note
MinFontSize is inoperative unless the fdLimitSize flag is set in Options.

TFontDialog::Options
TFontDialog See also
Determines the appearance and behavior of the Font dialog.
__property TFontDialogOptions Options;
Description
Use the Options property to customize the appearance and functionality of the dialog. The
possible values of Options are:
Value Meaning

fdAnsiOnly Displays only fonts that use the Windows character set. Symbol fonts are
not listed in the dialog.

fdApplyButton Displays an Apply button in the dialog, whether or not there is an OnApply
event handler.

fdEffects Displays the Effects check boxes (Strikeout and Underline) and the Color
list box in the dialog.

fdFixedPitchOnly Displays only monospaced fonts in the dialog. Proportionally spaced fonts
are not listed.

fdForceFontExist Allows the user to enter only fonts that are displayed in the dialog (that is,
listed in the Font combo box). If the user tries to enter another font name,
an error message appears.

fdLimitSize Enables the MaxFontSize and MinFontSize properties, limiting the range
of font sizes that appear in the dialog if these properties have values.

fdNoFaceSel Causes the dialog to open without a preselected font name in the Font
combo box.

fdNoOEMFonts Removes OEM fonts from the dialog’s combo box. Lists only non-OEM
fonts.

fdScalableOnly Displays only scalable fonts in the dialog. Non-scalable fonts are removed
from the list.

fdNoSimulations Removes GDI fonts from the dialog’s combo box. Lists only non-GDI
fonts.

fdNoSizeSel Causes the dialog to open without a preselected size in the Size combo
box.

fdNoStyleSel Causes the dialog to open without a preselected style in the Font Style
combo box.

fdNoVectorFonts Removes vector fonts from the dialog’s combo box. Lists only non-
vector fonts.

fdShowHelp Displays a Help button in the dialog.
fdTrueTypeOnly Displays only TrueType fonts in the dialog. Other fonts are not listed.
fdWysiwyg Displays only fonts that are available to both the printer and the screen.

Other fonts are not listed in the dialog.
By default, all options except fdEffects are off.

TFontDialog events
TFontDialog Alphabetically Legend

In TFontDialog
OnApply

TFontDialog events
TFontDialog By object Legend

OnApply

TFontDialog::OnApply
TFontDialog See also
OnApply occurs when the user clicks the Apply button.
__property TFDApplyEvent OnApply;
Description
The Apply button appears in the dialog if an event handler is assigned to OnApply or if the
fdApplyButton flag is set in Options. Use an OnApply event handler to apply the selected font
without closing the Font dialog box.

TFontDialog methods
TFontDialog Alphabetically

In TFontDialog
~TFontDialog
Execute
TFontDialog

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TFontDialog methods
TFontDialog By object

~TFontDialog
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
Dispatch
Execute
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
TFontDialog

TFontDialog::~TFontDialog
TFontDialog See also
~TFontDialog frees the memory associated with the TFontDialog object. Do not call ~
TFontDialog directly. Instead, use the delete keyword on the object, which causes ~TFontDialog
to be invoked automatically.
__fastcall virtual ~TFontDialog(void);

TFontDialog::Execute
TFontDialog
Displays the Font dialog.
bool __fastcall Execute(void);
Description
Execute opens the Font dialog, returning true when the user selects a font and clicks OK.

TFontDialog::TFontDialog
TFontDialog
Creates and initializes a TFontDialog instance.
__fastcall virtual TFontDialog(Classes::TComponent* AOwner);
Description
The TFontDialog method generates a TFontDialog instance, but the new dialog does not appear
on the form at runtime until the Execute method is called.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TCommonDialog

TFontDialog example
TFontDialog

TForm
Hierarchy Properties Methods Events See also
TForm is the component for a standard application window (form).
Header
vcl/forms.hpp
Description
Use TForm to create a form, such as a main window, dialog box, or MDI child. The form can
contain other objects, such as TButton, TCheckBox, and TComboBox objects.
Examples of forms include TLoginDialog and TPasswordDialog objects.

TForm properties
TForm Alphabetically Legend

In TForm
Active

ActiveControl
ActiveMDIChild

ActiveOleControl
BorderIcons
BorderStyle

Canvas
ClientHandle

ClientHeight
ClientWidth
Designer
DropTarget
FormStyle
Icon
IgnoreFontProperty
KeyPreview

MDIChildCount
MDIChildren

Menu
ModalResult
ObjectMenuItem
OleFormObject
PixelsPerInch
Position
PrintScale
Scaled
TileMode
Visible
WindowMenu
WindowState

Derived from TScrollingWinControl
AutoScroll
HorzScrollBar
VertScrollBar

Derived from TWinControl
Brush
ClientOrigin
ControlCount
Controls

Ctl3D
Handle

HelpContext
ImeMode
ImeName

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect

Caption
ClientRect

Color
ControlState
ControlStyle
Cursor
Enabled
Font

Height
Hint
Left
Name
PopupMenu
ShowHint
Top
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TForm properties
TForm By object Legend

ActiveControl
ActiveMDIChild

ActiveOleControl
Active

Align
AutoScroll
BorderIcons
BorderStyle
BoundsRect

Brush
Canvas

Caption
ClientHandle

ClientHeight
ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
Designer
DesignInfo
DropTarget
Enabled
Font
FormStyle

Handle
Height
HelpContext
Hint
HorzScrollBar
Icon
IgnoreFontProperty
ImeMode
ImeName
KeyPreview
Left

MDIChildCount
MDIChildren

Menu
ModalResult
Name
ObjectMenuItem
OleFormObject

Owner
PixelsPerInch
PopupMenu
Position
PrintScale
Scaled
ShowHint

Showing

TabOrder
TabStop
Tag
TileMode
Top
VertScrollBar
Visible
Width
WindowMenu
WindowState

TForm::Active
TForm See also
Active is a Boolean value that specifies whether the form has focus.
__property bool Active;
Description
Use Active to determine whether the form has focus.
If Active is true, the form has focus; if Active is false, the form does not have focus.

TForm::ActiveControl
TForm See also
ActiveControl is the control that has focus on the form.
__property Controls::TWinControl* ActiveControl;
Description
Use ActiveControl to get or set the control that has focus on the form.
If the form does not have focus, ActiveControl is the control on the form that will receive focus
when the form receives focus.
Note
When focus shifts to another control, ActiveControl is updated before the OnExit event occurs.
Only one control can have focus at a given time in an application.

TForm::ActiveMDIChild
TForm See also
ActiveMDIChild is the MDI child that has focus.
__property TForm* ActiveMDIChild;
Description
Use ActiveMDIChild to get the MDI child that has focus.
If the form is not an MDI parent (that is, if the FormStyle property of the form is not fsMDIForm),
ActiveMDIChild returns NULL.

TForm::ActiveOleControl
TForm See also
ActiveOLEControl is an OLE control on the form that reacts to changes in focus.
__property Controls::TWinControl* ActiveOleControl;
Description
Use ActiveOLEControl to get or set an OLE control on the form that reacts to changes in focus.
If ActiveOLEControl is not NULL, the user interface for the specified OLE control is deactivated
when it is not focused. Also, when the form receives or loses focus, the document window for
the specified OLE control is activated or deactivated respectively.

TForm::BorderIcons
TForm
BorderIcons is a set of values that specify which icons appear on the title bar of the form.
__property TBorderIcons BorderIcons;
Description
Use BorderIcons to get or set the icons that appear on the title bar of the form. BorderIcons can
consist of any of the following TBorderIcons values:
Value Meaning

biSystemMenu The form has a Control menu (also known as a System menu)
biMinimize The form has a Minimize button
biMaximize The form has a Maximize button
biHelp The form shows help in pop-up windows, rather than in a main Help

window. If biMinimize and biMaximize are excluded, a question mark
appears in the form's title bar; otherwise, no question mark appears.

TForm::BorderStyle
TForm Example
BorderStyle is a set of values that specify the appearance and behavior of the form border.
__property TFormBorderStyle BorderStyle;
Description
Use BorderStyle to get or set the appearance and behavior of the form border. BorderStyle can
consist of any of the following TFormBorderStyle values:
Value Meaning

bsDialog Not resizeable; standard dialog box border
bsSingle Not resizeable; single-line border
bsNone Not resizeable; no visible border line
bsSizeable Standard resizeable border
bsToolWindow like bsSingle but with a smaller caption
bsSizeToolWin like bsSizeable with a smaller caption
Note
Changing the border style of an MDI child form to bsDialog or bsNone has no effect.

TForm::Canvas
TForm See also
Canvas is the drawing area of the application.
__property Graphics::TCanvas* Canvas;
Description
Use TCanvas to get the drawing area of the application. Canvas is often used in the OnPaint
event handler.

TForm::ClientHandle
TForm
ClientHandle is the handle (HWND) for the form’s internal MDI client window.
__property HWND ClientHandle;
Description
Use ClientHandle to get the handle for the form’s internal MDI client window.
ClientHandle is meaningful only if the form is an MDI parent (that is, if the form’s FormStyle
property is set to fsMDIForm).

TForm::ClientHeight
TForm See also Example
ClientHeight is the height (in pixels) of the form’s client area.
__property ClientHeight;
Description
Use ClientHeight to get or set the height (in pixels) of the form’s client area. The client area is
the usable area inside the form's border.

ClientRect
ClientRect is the form’s client area.
Description
Use ClientHeight to get or set the form’s client area. The client area is the usable area inside
the form's border.
ClientRect is equivalent to Rect(0,0,ClientWidth, ClientHeight).

TForm::ClientWidth
TForm See also Example
ClientWidth is an integer that represents the width (in pixels) of the form’s client area.
__property ClientWidth;
Description
Use ClientWidth to get or set the width (in pixels) of the form’s client area. The client area is the
usable area inside the form's border.

TForm::Designer
TForm See also
Designer is the designer for the form.
__property TDesigner* Designer;
Description
Use Designer to get or set the designer for the form.

TForm::DropTarget
TForm
DropTarget is a Boolean value that specifies whether the form is the target of a drag-and-drop
operation.
__property bool DropTarget;
Description
Use DropTarget to get or set whether the form is the target of a drag-and-drop operation.

TForm::FormStyle
TForm
FormStyle is a set of values that represent the form’s style.
__property TFormStyle FormStyle;
Description
Use FormStyle to get or set the form’s style. FormStyle can consist of any combination of the
following TFormStyle values:
Value Meaning

fsNormal The form is neither an MDI parent window nor an MDI child window.
fsMDIChild The form is an MDI child window.
fsMDIForm The form is an MDI parent window.
fsStayOnTop This form remains on top of other forms in the project, except any others

that also have FormStyle set to fsStayOnTop.
Note
It is not advisable to change FormStyle at runtime.
If the form is the main form of an MDI application, its FormStyle property must be set to
fsMDIForm.

TForm::Icon
TForm
Icon is the form’s icon.
__property Graphics::TIcon* Icon;
Description
Use Icon to get or set the form’s icon. The form’s icon is displayed when the form is
minimized.
Note
If Icon is not set, the form uses the application's icon.

TForm::IgnoreFontProperty
TForm See also
IgnoreFontProperty specifies whether or not text on the form is displayed in the font specified by
the TControl::Font property.
__property bool IgnoreFontProperty;

TForm::KeyPreview
TForm See also
KeyPreview is a Boolean value that specifies whether keyboard events should occur on the form
before they occur on the active control.
__property bool KeyPreview;
Description
If KeyPreview is true, keyboard events occur on the form before they occur on the active control.
(The active control is specified by the ActiveControl property.)
Navigation keys (Tab, BackTab, the arrow keys, and so on) are unaffected by KeyPreview
because they do not fire keyboard events.
If KeyPreview is false, keyboard events occur on the active control.
KeyPreview is false by default.

TForm::MDIChildCount
TForm
MDIChildCount is the number of open MDI child forms.
__property int MDIChildCount;
Description
Use MDIChildCount to get the number of open MDI child forms.
MDIChildCount is meaningful only if the form is an MDI parent (that is, if the form’s FormStyle
property is set to fsMDIForm).

TForm::MDIChildren
TForm
MDIChildren is an array of MDI child forms.
__property TForm* MDIChildren[int I];
Description
Use MDIChildren to access a child form.
I is the index of the child form to access. The index corresponds to the child form’s z-order,
starting at zero. For example, to access the first child form in the z-order, set I to 0.
MDIChildren is meaningful only if the form is an MDI parent (that is, if the form’s FormStyle
property is set to fsMDIForm).

TForm::Menu
TForm See also
Menu is the form’s main menu.
__property Menus::TMainMenu* Menu;
Description
Use Menu to get or set the form’s main menu.
Menu is set to the first TMainMenu component added to the form at design-time.

TForm::ModalResult
TForm See also Example
ModalResult is a value that, when non-zero, closes the form when it is displayed modally.
__property TModalResult ModalResult;
Description
Use ModalResult to close the form when it is displayed modally.
By default, ModalResult is 0. Set ModalResult to any nonzero value to close the form. The value
assigned to ModalResult becomes the return value of the ShowModal function call used to
display the form.
ModalResult can be one of the following TModalResult values:
Constant Value

mrNone 0
mrOk idOK
mrCancel idCancel
mrAbort idAbort
mrRetry idRetry
mrIgnore idIgnore
mrYes idYes
mrNo idNo
mrAll mrNo + 1

TForm::ObjectMenuItem
TForm
ObjectMenuItem is an OLE object menu item that reacts to selections of OLE objects.
__property Menus::TMenuItem* ObjectMenuItem;
Description
Use ObjectMenuItem to get or set a menu item that becomes enabled or disabled when an OLE
object on the form is selected or unselected respectively.
The OLE object menu item can be used for standard OLE commands, such as Activate or
Convert. (The implementations of these commands are provided by the OLE server.)

TForm::OleFormObject
TForm
OleFormObject is a TOleFormObject object that
__property TOleFormObject* OleFormObject;
Description
Use OleFormObject to

TForm::PixelsPerInch
TForm See also
PixelsPerInch is a value that represents the proportion of the font on the system on which the
form was designed.
__property int PixelsPerInch;
Description
Use PixelsPerInch at runtime to change how the form is scaled to the current screen resolution.
If PixelsPerInch is changed from its default value, the form will not have the same proportion on
every screen resolution.
At design-time, PixelsPerInch is set automatically when the form is saved. Changes to
PixelsPerInch in the Object Inspector are seen at runtime only.
The form’s Scaled property must be true for PixelsPerInch to have any effect.

TForm::Position
TForm Example
Position is a value that represents the size and placement of the form.
__property TPosition Position;
Description
Use Position to get or set the size and placement of the form. Position can have one of the
following TPosition values:
Value Meaning

poDesigned The form appears positioned on the screen and with the same height and
width as it had at design time.

poDefault The form appears in a position on the screen and with a height and width
determined by Windows. Each time you run the application, the form
moves slightly down and to the right. The right side of the form is always
near the far right side of the screen, and the bottom of the form is always
near the bottom of the screen, regardless of the screen's resolution.

poDefaultPosOnly The form displays with the size you created it at design time, but
Windows chooses its position on the screen. Each time you run the
application, the form moves slightly down and to the right. When the form
can no longer move down and to the right and keep the same size while
remaining entirely visible on the screen, the form displays at the top-left
corner of the screen.

poDefaultSizeOnly The form appears in the position you left it at design time, but Windows
chooses its size. The right side of the form is always near the far right
side of the screen, and the bottom of the form is always near the bottom
of the screen, regardless of the screen's resolution.

poScreenCenter The form remains the size you left it at design time, but is positioned in
the center of the screen.

TForm::PrintScale
TForm
PrintScale is a value that represents the proportions of a printed form.
__property TPrintScale PrintScale;
Description
Use PrintScale to get or set the proportions of the printed form. PrintScale can have one of the
following TPrintScale values:
Value Meaning

poNone No special scaling occurs; therefore, the printed form and how the form
appears onscreen may appear squashed or stretched.

poProportional The form is printed so that the printed image is approximately the same
visible size as on the screen (WYSIWYG). The form image is scaled so
that the printed image is approximately the same visible size as on the
screen.

poPrintToFit The form is printed using the same screen proportions, but in a size that
just fits the printed page.

TForm::Scaled
TForm See also
Scaled is a Boolean value that specifies whether the form is sized according to the value of the
PixelsPerInch property.
__property bool Scaled;
Description
If Scaled is true, and the value of PixelsPerInch differs from the current system settings, the form
is scaled to a new size. If Scaled is false, no scaling occurs.

TForm::TileMode
TForm See also
TileMode is a value that represents how an MDI child form is arranged when the Tile method is
called.
__property TTileMode TileMode;
Description
TileMode can have one of the following TTileMode values:
Value Meaning

tbHorizontal Each form stretches across the width of the parent form
tbVertical Each form stretches along the height of the parent form
TileMode is meaningful only if the form is an MDI child (that is, if the form’s FormStyle property
is set to fsMDIChild).

TForm::Visible
TForm See also Example
Visible is a Boolean value that indicates whether the form is visible.
__property Visible;
Description
Use Visible to get or set whether the form is visible.
If Visible is true, the form is visible -- unless it is completely obscured by other forms. If Visible is
false, the form is not visible.
You can set Visible to true and bring the form to the surface of other forms by calling the Show
or ShowModal method.

TForm::WindowMenu
TForm
WindowMenu is the Window menu for an MDI parent form.
__property Menus::TMenuItem* WindowMenu;
Description
Use WindowMenu to get or set the Window menu for an MDI parent form. The Window menu is
a standard menu in MDI applications. It contains commands that let the user manage the
windows in the application. Menu items usually include Cascade, Arrange Icons, Tile, and so on.
The Window menu also lists (at the bottom) the child windows that are currently open in the
application. When the user selects one of these windows from the menu, the window becomes
the active window in the application.
Although this menu is commonly called the Window menu, it can have any name that
corresponds to an existing menu item on the menu bar. The names of open child forms are
merged onto the menu automatically at runtime.
WindowMenu is meaningful only if the form is an MDI parent (that is, if the form’s FormStyle
property is set to fsMDIForm).

TForm::WindowState
TForm See also
WindowState is a value that represents how the form appears on the screen.
__property TWindowState WindowState;
Description
Use WindowMenu to get or set whether the form appears on the screen in its minimized,
maximized, or normal state.
WindowState can have one of the following TWindowState values:
Value Meaning

wsNormal The form appears in its normal state (that is, its non-minimized, non-
maximized state).

wsMinimized The form appears in its minimized state.
wsMaximized The form appears in its maximized state.

TForm events
TForm Alphabetically Legend

In TForm
OnActivate
OnClose
OnCloseQuery
OnCreate
OnDeactivate
OnDestroy
OnHide
OnPaint
OnResize
OnShow

Derived from TWinControl
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnMouseDown
OnMouseMove
OnMouseUp

TForm events
TForm By object Legend

OnActivate
OnClick
OnCloseQuery
OnClose
OnCreate
OnDblClick
OnDeactivate
OnDestroy
OnDragDrop
OnDragOver
OnHide
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnPaint
OnResize
OnShow

TForm::OnActivate
TForm
OnActivate occurs when the form receives focus.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnActivate;
Description
Use OnActivate to perform special processing when the form receives focus.

OnClick
OnClick occurs when the form is clicked.
__property OnClick;
Description
Use OnClick to perform special processing when the form is clicked.

TForm::OnClose
TForm
OnClose occurs when the form closes.
enum TCloseAction { caNone, caHide, caFree, caMinimize };
typedef void __fastcall (__closure *TCloseEvent)(System::TObject*
Sender, TCloseAction &Action);

__property TCloseEvent OnClose;
Description
Use OnClose to perform special processing when the form closes.

TForm::OnCloseQuery
TForm
OnCloseQuery occurs during the OnClose event.
typedef void __fastcall (__closure *TCloseQueryEvent)(System::TObject*
Sender, bool &CanClose);

__property TCloseQueryEvent OnCloseQuery;
Description
Use OnCloseQuery to specify the conditions under which the form can close.

TForm::OnCreate
TForm
OnCreate occurs when the form is created.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnCreate;
Description
Use OnCreate to perform special processing when the form receives focus.

OnDblClick
OnDblClick occurs when the form is double-clicked.
__property OnDblClick;
Description
Use OnDblClick to perform special processing when the form is double-clicked.

TForm::OnDeactivate
TForm
OnDeactivate occurs when the form loses focus.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnDeactivate;
Description
Use OnDeactivate to perform special processing when the form loses focus.

TForm::OnDestroy
TForm
OnDestroy occurs when the form is destroyed.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnDestroy;
Description
Use OnDestroy to perform special processing when the form is destroyed.

OnDragDrop
OnDragDrop occurs when the form is the target of a drag-and-drop operation.
__property OnDragDrop;
Description
Use OnDragDrop to perform special processing when the form is the target of a drag-and-drop
operation.

OnDragOver
OnDragOver occurs when the form is beneath a drag operation.
__property OnDragOver;
Description
Use OnDragOver to perform special processing when the form is beneath a drag operation.

TForm::OnHide
TForm
OnHide occurs when the form is hidden (that is, when the form’s Visible property is set to false)
.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnHide;
Description
Use OnHide to perform special processing when the form is hidden (that is, when the form’s
Visible property is set to false).

OnKeyDown
OnKeyDown occurs when a key is held down while the form has focus.
__property OnKeyDown;
Description
Use OnKeyDown to perform special processing when a key is held down while the form has
focus.

OnKeyPress
OnKeyPress occurs when a key is pressed while the form has focus.
__property OnKeyPress;
Description
Use OnKeyPress to perform special processing when a key is pressed while the form has focus.

OnKeyUp
OnKeyUp occurs when a key is released (after being pressed or held down) while the form has
focus.
__property OnKeyUp;
Description
Use OnKeyPress to perform special processing when a key is released (after being pressed or
held down) while the form has focus.

OnMouseDown
OnMouseDown occurs when a mouse key is pressed while the form has focus.
__property OnMouseDown;
Description
Use OnMouseDown to perform special processing when a mouse key is pressed while the form
has focus.

OnMouseMove
OnMouseMove occurs when the mouse moves while the form has focus.
__property OnMouseMove;
Description
Use OnMouseDown to perform special processing when the mouse moves while the form has
focus.

OnMouseUp
OnMouseUp occurs when a mouse button is released while the form has focus.
__property OnMouseUp;
Description
Use OnMouseUp to perform special processing when a mouse button is released while the form
has focus.

TForm::OnPaint
TForm
OnPaint occurs when the form is redrawn.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnPaint;
Description
Use OnPaint to perform special processing when the form is redrawn.

TForm::OnResize
TForm
OnResize occurs when the form is resized.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnResize;
Description
Use OnResize to perform special processing when the form is resized.

TForm::OnShow
TForm
OnShow occurs when the form is shown (that is, when the form’s Visible property is set to true)
.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnShow;
Description
Use OnShow to perform special processing when the form is shown (that is, when the form’s
Visible property is set to true).

TForm methods
TForm Alphabetically

In TForm
~TForm
ArrangeIcons
Cascade
Close
CloseQuery
DefocusControl
FocusControl
GetFormImage
Hide
Next
Previous
Print
Release
SendCancelMode
SetFocus
SetFocusedControl
Show
ShowModal
TForm
Tile

Derived from TScrollingWinControl
ScrollInView

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop

Dragging
EndDrag
GetTextBuf
GetTextLen
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TForm methods
TForm By object

~TForm
ArrangeIcons
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
Cascade
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
CloseQuery
Close
ContainsControl
ControlAtPos
DefaultHandler
DefocusControl
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
FocusControl
Focused
FreeInstance
FreeNotification
Free
GetFormImage
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl

InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
Next
PaintTo
Perform
Previous
Print
Realign
Refresh
Release
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
ScrollInView
SendCancelMode
SendToBack
SetBounds
SetFocusedControl
SetFocus
SetTextBuf
ShowModal
Show
TForm
Tile
UpdateControlState
Update

TForm::~TForm
TForm
~TForm frees the memory associated with the TForm object. Do not call ~TForm directly.
Instead, use the delete keyword on the object, which causes ~TForm to be invoked
automatically.
__fastcall virtual ~TForm(void);
Description
~TForm performs the following tasks:
• Frees the objects associated with the Canvas, Icon, and Menu properties.
• Calls the OnDestroy event handler for the object associated with the OleFormObject property

(if the property is not NULL).
• Frees memory associated with private objects.
• Calls the TScrollingWinControl::~TScrollingWinControl method.

TForm::ArrangeIcons
TForm
ArrangeIcons arranges the icons of minimized MDI child forms.
void __fastcall ArrangeIcons(void);
Description
Use ArrangeIcons to arrange the icons of minimized MDI child forms so they are evenly spaced
and don't overlap.
ArrangeIcons works only if the form is an MDI parent form (that is, if the form’s FormStyle
property is fsMDIForm).

TForm::Cascade
TForm
Cascade arranges MDI child forms so they overlap.
void __fastcall Cascade(void);
Description
Use Cascade to arrange MDI child forms so they overlap.
Cascade works only if the form is an MDI parent form (that is, if the form’s FormStyle property
is fsMDIForm).

TForm::Close
TForm See also
Close closes a form.
void __fastcall Close(void);
Description
Use Close to close a form.
Close calls the CloseQuery method to determine if the form can close. If CloseQuery returns
false, the close operation is aborted. Otherwise, the OnClose event occurs.
Note
When the main form of the application is closed, the application terminates.

TForm::CloseQuery
TForm See also
CloseQuery returns a Boolean value specifying whether the form can close.
bool __fastcall CloseQuery(void);
Description
Use CloseQuery to determine whether the form can close. If the form can close, CloseQuery
returns true; otherwise, CloseQuery returns false.
For an MDI parent form, CloseQuery calls the CloseQuery method on the form’s MDI children
to determine the return value.

TForm::DefocusControl
TForm See also
DefocusControl removes focus from a control on the form.
void __fastcall DefocusControl(Controls::TWinControl* Control, bool
Removing);

Description
Use DefocusControl to remove focus from a control on the form.
Control is the control from which to remove focus. If Control is the form’s active control, the
form’s ActiveControl property is set to NULL.
Removing is a Boolean value specifying whether to set focus to the control’s parent.

TForm::FocusControl
TForm See also
FocusControl sets focus to a control on the form.
void __fastcall FocusControl(Controls::TWinControl* Control);
Description
Use FocusControl to set focus to a control on the form.
Control is a TWinControl object encapsulating the control upon which to set focus.

TForm::GetFormImage
TForm See also
GetFormImage is a bitmap of the form as it appears when printed.
Graphics::TBitmap* __fastcall GetFormImage(void);

TForm::Hide
TForm See also Example
Hide hides the form.
void __fastcall Hide(void);
Description
Hide sets the Visible property to false.

TForm::Next
TForm
Next sets focus to the next MDI child form.
void __fastcall Next(void);
Description
Use Next to set focus the next MDI child form.
Next works only if the form is an MDI parent form (that is, if the form’s FormStyle property is
fsMDIForm).

TForm::Previous
TForm
Previous sets focus to the previous MDI child form.
void __fastcall Previous(void);
Description
Use Previous to set focus the previous MDI child form.
Previous works only if the form is an MDI parent form (that is, if the form’s FormStyle property
is fsMDIForm).

TForm::Print
TForm See also
Print prints the form.
void __fastcall Print(void);

TForm::Release
TForm
Release destroys the form and frees its associated memory.
void __fastcall Release(void);
Description
Use Release to destroy the form and free its associated memory.
Release is much like the Free method except that Release does not destroy the form until all
event handlers of the form and event handlers of components on the form have finished
executing.

TForm::SendCancelMode
TForm
SendCancelMode cancels modes on the form.
void __fastcall SendCancelMode(Controls::TControl* Sender);
Description
Use SendCancelMode to release the mouse capture and cancel scroll bar input and menu
processing on the form.

TForm::SetFocus
TForm See also Example
SetFocus sets focus to the form.
virtual void __fastcall SetFocus(void);
Description
Use SetFocus to set focus to the form.

SetFocus calls the SetFocus method of the active control, if one exists.
To determine whether the form has focus, use the Active property.

TForm::SetFocusedControl
TForm See also
SetFocusedControl sets focus to a control on the form.
bool __fastcall SetFocusedControl(Controls::TWinControl* Control);
Description
Use SetFocusedControl to set focus to a control on the form.

TForm::Show
TForm See also Example
Show shows the form.
void __fastcall Show(void);
Description
Use Show to set the form’s Visible property to true and to bring the form to the front of other
forms on the screen.

TForm::ShowModal
TForm See also
ShowModal shows a form as a modal form.
int __fastcall ShowModal(void);
Description
Use ShowModal to show a form as a modal form, which means the user must put the form away
before the application can continue to run.
To close a modal form, set its ModalResult property to a nonzero value.
ShowModal returns the ModalResult property of the form.

TForm::TForm
TForm See also
TForm creates and initializes a new TForm object.
__fastcall virtual TForm(Classes::TComponent* AOwner);

-Or-
__fastcall TForm(Classes::TComponent* AOwner, int Dummy);
Description
Use TForm to create and initialize a new TForm object or an object derived from TForm.
AOwner is the owner of the TForm object.
TForm performs the following tasks:
• Calls the TScrollingWinControl::TScrollingWinControl method, passing it AOwner.
• Sets the Left, Top, Width, and Height properties to 0, 0, 320, and 240, respectively.
• Sets the WindowState property to wsNormal, the Visible property to false, and the Ctrl3d

property to true, the BorderIcons property to [biSystemMenu, biMinimize, biMaximize], and the
BorderStyle property to bsSizeable.

• Allocates memory for the Icon and Canvas properties.
• Sets the Icon.OnChange event to IconChanged.
• Sets the TControl::ControlStyle property to [csAcceptsControls, csCaptureMouse,

csClickEvents, csSetCaption, csDoubleClicks].
• Sets the Canvas::Control property to Self.
• Sets the PixelsPerInch property to the value of the Screen::PixelsPerInch property and the

PrintScale property to poProportional.
• Calls the Screen::AddForm method, passing it Self.

TForm::Tile
TForm See also
Tile arranges MDI child forms so that they are all the same size.
void __fastcall Tile(void);
Description
Use Tile to arrange MDI child forms so that they are all the same size. Tiled forms completely fill
up the client area of the parent form. How the forms arrange themselves depends upon the
values of their TileMode properties.
Tile works only if the form is an MDI parent form (that is, if the form’s FormStyle property is
fsMDIForm).

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TScrollingWinControl

TForm example
TForm

TGraphicField
Hierarchy Properties Methods Events See also
The TGraphicField component represents a graphics field in a dataset.
Header
vcl/dbtables.hpp
Description
Graphics fields are a form of binary large object (BLOB) field where the data includes a BLOB
header describing the encoding of the graphical value. TGraphicField differs from its immediate
ancestor TBlobField only in having a DataType of ftGraphic. As a descendent of TBlobField,
TGraphicField includes many properties, methods, and events that are useful for managing the
value and properties of a BLOB field in a database.

TGraphicField properties
TGraphicField Alphabetically Legend

Derived from TBlobField
BlobType
Value

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TGraphicField properties
TGraphicField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
BlobType
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditMaskPtr

EditMask
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Value
Visible

TGraphicField events
TGraphicField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TGraphicField events
TGraphicField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TGraphicField methods
TGraphicField Alphabetically

In TGraphicField
~TGraphicField
TGraphicField

Derived from TBlobField
Assign
Clear
LoadFromFile
LoadFromStream
SaveToFile
SaveToStream
SetFieldType
SetText

Derived from TField
AssignValue
FocusControl
GetData
IsValidChar
SetData

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TGraphicField methods
TGraphicField By object

~TGraphicField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
LoadFromFile
LoadFromStream
MethodAddress
MethodName
NewInstance
RemoveComponent
SaveToFile
SaveToStream
SetData
SetFieldType
SetText
TGraphicField

TGraphicField::~TGraphicField
TGraphicField
~TGraphicField frees the memory associated with the TGraphicField object. Do not call ~
TGraphicField directly. Instead, use the delete keyword on the object, which causes ~
TGraphicField to be invoked automatically.
__fastcall virtual ~TGraphicField(void);

TGraphicField::TGraphicField
TGraphicField See also
TGraphicField is the constructor for a graphic field component.
__fastcall virtual TGraphicField(Classes::TComponent* AOwner);
Description
The TGraphicField method creates and initializes an instance of TGraphicField. After calling the
constructor of its parent object, TGraphicField sets the DataType to ftGraphic.
You seldom need to call TGraphicField because a graphic field component is instantiated
automatically for all graphic fields in a dataset.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField
TBlobField

TGraphicField example
TGraphicField

TGraphic
Hierarchy Properties Methods Events See also
TGraphic is the abstract base class type for Borland C++Builder graphic objects such as icons,
bitmaps and metafiles that can store and display visual images.
Header
vcl/graphics.hpp
When the type of graphic (bitmap, icon, or metafile) is known, store the graphic in its specific
type object (TBitmap, TIcon, or TMetafile, respectively). Otherwise, use a TPicture object which
can hold any type of TGraphic.

TGraphic properties
TGraphic Alphabetically Legend

In TGraphic
Empty

Height
Modified
Width

TGraphic properties
TGraphic By object Legend

Empty
Height
Modified
Width

TGraphic::Empty
TGraphic
Empty specifies whether the graphics object contains a graphic.
__property bool Empty;
Description
Each descendent graphic object defines its own ‘Get’ method to access the Empty property.

TGraphic::Height
TGraphic Example
Height specifies the vertical size of the graphic in pixels.
__property int Height;
Description
Each descendent graphic object defines its own ‘Get’ and ‘Set’ methods to access the
Height property.

TGraphic::Modified
TGraphic Example
Modified specifies if the graphics object has been changed or edited.
__property bool Modified;
Description
If Modified is true, the graphics object has changed. If Modified is false, the graphics object is in
the same state as when the object was loaded.
The Modified property indicates only if bitmap objects have been modified. Modified is not true if
the graphics object contains an icon or metafile graphic, even if they have been modified.
If the graphics object was modified, save the changes to a file with the SaveToFile method. The
next time the application runs, it can load the graphic from the file with the LoadFromFile
method.

TGraphic::Width
TGraphic Example
Width determines the maximum width of the graphics object in pixels.
__property int Width;
Description
Each descendent graphic object defines its own ‘Get’ and ‘Set’ methods to access the
Width property.

TGraphic events
TGraphic Alphabetically

In TGraphic
OnChange

TGraphic events
TGraphic By object

OnChange

TGraphic::OnChange
TGraphic
OnChange occurs when a bitmap is modified.
__property Classes::TNotifyEvent OnChange;

TGraphic methods
TGraphic Alphabetically

In TGraphic
~TGraphic
LoadFromClipboardFormat
LoadFromFile
LoadFromStream
SaveToClipboardFormat
SaveToFile
SaveToStream
TGraphic

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TGraphic methods
TGraphic By object

~TGraphic
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
LoadFromClipboardFormat
LoadFromFile
LoadFromStream
MethodAddress
MethodName
NewInstance
SaveToClipboardFormat
SaveToFile
SaveToStream
TGraphic

TGraphic::~TGraphic
TGraphic
~TGraphic frees the memory associated with the TGraphic object. Do not call ~TGraphic
directly. Instead, use the delete keyword on the object, which causes ~TGraphic to be invoked
automatically.
__fastcall virtual ~TGraphic(void);

TGraphic::LoadFromClipboardFormat
TGraphic See also
TGraphic introduces LoadFromClipboardFormat as an abstract method.
virtual void __fastcall LoadFromClipboardFormat(unsigned short AFormat,
int AData, HPALETTE APalette);

Description
Each descendent graphic object defines a LoadFromClipboardFormat method that replaces the
current graphic image with the graphic indicated by AData, which it loads from the Clipboard.
The format for the new graphic object must be registered with the Clipboard in the
RegisterClipboardFormat method, or an exception is raised.

TGraphic::LoadFromFile
TGraphic
LoadFromFile loads a graphic object stored in a file.
virtual void __fastcall LoadFromFile(const System::AnsiString Filename)
;

Description
LoadFromFile reads the file specified in FileName and loads the data into the graphics object.

TGraphic::LoadFromStream
TGraphic
TGraphic introduces LoadFromStream as an abstract method.
virtual void __fastcall LoadFromStream(Classes::TStream* Stream);
Description
Each descendent graphic object defines a LoadFromStream method that loads a graphics object
from Stream.

TGraphic::SaveToClipboardFormat
TGraphic
TGraphic introduces SaveToClipboardFormat as an abstract method.
virtual void __fastcall SaveToClipboardFormat(unsigned short &AFormat,
int &AData, HPALETTE &APalette);

Description
Each descendent graphic object defines a SaveToClipboardFormat method that replaces the
current graphic image with the graphic indicated by AData, which it saves to the Clipboard.
The format for the new graphic object must be registered with the Clipboard in the
RegisterClipboardFormat method, or an exception is raised.

TGraphic::SaveToFile
TGraphic
SaveToFile saves a graphics object to a file.
virtual void __fastcall SaveToFile(const System::AnsiString Filename);
Description
SaveToFile specifies the file to save as the value of FileName.

TGraphic::SaveToStream
TGraphic
TGraphic introduces SaveToStream as an abstract method.
virtual void __fastcall SaveToStream(Classes::TStream* Stream);
Description
Each descendent graphic object defines a SaveToStream method that saves a the object to a
Stream.

TGraphic::TGraphic
TGraphic
TGraphic creates a new TGraphic object.
__fastcall virtual TGraphic(void);

Accessibility
Read-only

Hierarchy

TObject

TPersistent

TGraphic example
TGraphic

TGraphicsObject
Hierarchy Methods Events See also
TGraphicsObject is the abstract base class for objects which encapsulate a Windows graphics
object: TBrush, TFont, and TPen.
Header
vcl/graphics.hpp
Description
Create descendants of TGraphicsObject when drawing an image to a canvas (TCanvas). Each
TGraphicsObject object describes a Windows graphics object that is selected into the device
context of the canvas.
TGraphicsObject introduces a mechanism for responding to changes in the properties of the
graphics object.

TGraphicsObject events
TGraphicsObject Alphabetically

In TGraphicsObject
OnChange

TGraphicsObject events
TGraphicsObject By object

OnChange

TGraphicsObject::OnChange
TGraphicsObject See also
OnChange occurs immediately after the Windows graphics object changes.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnChange;
Description
Write an OnChange event handler to take specific action when the graphics object changes. The
properties of the graphics object will reflect the new settings when OnChange occurs.

TGraphicsObject methods
TGraphicsObject Alphabetically Legend

In TGraphicsObject
~TGraphicsObject

Changed
TGraphicsObject

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TGraphicsObject methods
TGraphicsObject By object Legend

~TGraphicsObject
Assign

Changed
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize

MethodAddress
MethodName
NewInstance
TGraphicsObject

TGraphicsObject::~TGraphicsObject
TGraphicsObject
~TGraphicsObject frees the memory associated with the TGraphicsObject object. Do not call ~
TGraphicsObject directly. Instead, use the delete keyword on the object, which causes ~
TGraphicsObject to be invoked automatically.
__fastcall virtual ~TGraphicsObject(void)

TGraphicsObject::Changed
TGraphicsObject See also
Changed generates an OnChange event when the properties of the graphics object change.
virtual void __fastcall Changed(void);
Description
Descendants of TGraphicsObject call Changed after making changes to the properties
encapsulated by the TGraphicsObject object.

TGraphicsObject::TGraphicsObject
TGraphicsObject
TGraphicsObject creates a new TGraphicsObject object.
__fastcall TGraphicsObject(void);

Scope
Protected

Hierarchy

TObject

TPersistent

TGraphicsObject example
TGraphicsObject

TGridDataLink
Hierarchy Properties Methods See also
TGridDataLink is a helper object that helps manage the link to the data source and maintain the
field mapping for a TCustomDBGrid object.
Header
vcl/dbgrids.hpp
Description
TGridDataLink is tailored to work with a TCustomDBGrid. It should only be used by the
TCustomDBGrid class.

TGridDataLink properties
TGridDataLink Alphabetically Legend

In TGridDataLink
DefaultFields
FieldCount
Fields

SparseMap
Derived from TDataLink

Active
ActiveRecord
BufferCount

DataSet
DataSource
DataSourceFixed

Editing
ReadOnly

RecordCount

TGridDataLink properties
TGridDataLink By object Legend

ActiveRecord
Active

BufferCount
DataSet

DataSourceFixed
DataSource

DefaultFields
Editing
FieldCount
Fields

ReadOnly
RecordCount

SparseMap

TGridDataLink::DefaultFields
TGridDataLink See also
DefaultFields indicates whether the dataset’s underlying field components are generated
dynamically when the dataset is opened.
__property bool DefaultFields;
Description
Read DefaultFields to determine whether or not a dataset uses dynamically generated field
components or persistent field components. If DefaultFields is true, the dataset uses dynamically
allocated field components. If DefaultFields is false, the dataset uses persistent field components
or the custom field mapping contains unmapped fields.
If DefaultFields is false, the TCustomDBGrid may not show all the fields that are present in the
underlying database table.

TGridDataLink::FieldCount
TGridDataLink See also
FieldCount indicates the number of entries in the field map.
__property int FieldCount;
Description
Read FieldCount to determine the number of entries in the field map. Used with the Fields
property, this is useful for applications that need to iterate over all of the mapped fields.
In design mode, FieldCount is the same as the number of columns in the TCustomDBGrid. In
run mode, FieldCount can be greater than the number of columns. The field map can contain
undefined fields, which do not appear as columns at runtime.

TGridDataLink::Fields
TGridDataLink See also
Fields provides access to all the field components contained in the field map.
__property Db::TField* Fields[int I];
Description
Use Fields to access field components by index number. Fields is a zero-based array. If the
SparseMap property is true, the field map may contain undefined fields. For these entries, Fields
returns NULL.
If an application needs to access all the field components for each column of the
TCustomDBGrid in order, Fields can be used with the FieldCount property:
for(int i=0; i < FieldCount-1; i++)

if(Fields[i] != NULL) {
// Fields[i] is the field component for the next column at runtime
}

TGridDataLink::SparseMap
TGridDataLink See also
SparseMap indicates that the TCustomDBGrid has customized the field map and that it may
contain undefined fields.
__property bool SparseMap;
Description
Read SparseMap to determine whether the field map is not a simple reflection of the underlying
dataset. The TCustomDBGrid sets SparseMap when it builds the field map. SparseMap is false
if the TCustomDBGrid builds a default field map directly from the dataset. Any changes to the
field components associated with each column cause TCustomDBGrid to change SparseMap to
true. When SparseMap is true, the field map may contain undefined fields if the column
attributes indicate an invalid field name or an unassigned field component.

TGridDataLink methods
TGridDataLink Alphabetically Legend

In TGridDataLink
~TGridDataLink

ActiveChanged
AddMapping
ClearMapping
DataSetChanged
DataSetScrolled
EditingChanged
FocusControl
GetMappedIndex
LayoutChanged
Modified
RecordChanged
Reset
TGridDataLink
UpdateData

Derived from TDataLink
Edit
UpdateRecord

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TGridDataLink methods
TGridDataLink By object Legend

~TGridDataLink
ActiveChanged
AddMapping
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClearMapping
DataSetChanged
DataSetScrolled
DefaultHandler
Dispatch
EditingChanged

Edit
FieldAddress

FocusControl
FreeInstance
Free
GetMappedIndex
InheritsFrom
InitInstance
InstanceSize
LayoutChanged
MethodAddress
MethodName
Modified
NewInstance
RecordChanged
Reset

TGridDataLink
UpdateData
UpdateRecord

TGridDataLink::~TGridDataLink
TGridDataLink See also
~TGridDataLink frees the memory associated with the TGridDataLink object. Do not call ~
TGridDataLink directly. Instead, use the delete keyword on the object, which causes ~
TGridDataLink to be invoked automatically.
__fastcall virtual ~TGridDataLink(void);
Description
~TGridDataLink frees up the memory used by the field map before calling the destructor of its
parent object.

TGridDataLink::ActiveChanged
TGridDataLink See also
ActiveChanged informs the TCustomDBGrid of changes in the Active property.
virtual void __fastcall ActiveChanged(void);
Description
Applications can not call the ActiveChanged procedure directly. Changes in the Active property
trigger this procedure, which in turn calls the LinkActive method of the TCustomDBGrid object
that owns this TGridDataLink.

TGridDataLink::AddMapping
TGridDataLink See also
AddMapping adds a field component to the end of the field map.
bool __fastcall AddMapping(const System::AnsiString FieldName);
Description
Applications should not call AddMapping directly, because this would cause the field map to
become out of sync with the columns in TCustomDBGrid. TCustomDBGrid calls AddMapping
iteratively to build a field map that corresponds to its columns.

TGridDataLink::ClearMapping
TGridDataLink See also
ClearMapping empties the field map and frees any associated memory.
void __fastcall ClearMapping(void);
Description
Applications should not call ClearMapping directly, because this would cause the field map to
become out of sync with the columns of the TCustomDBGrid. The TCustomDBGrid calls
ClearMapping first, every time it regenerates the field map.

TGridDataLink::DataSetChanged
TGridDataLink See also
DataSetChanged informs TCustomDBGrid of changes to the dataset.
virtual void __fastcall DataSetChanged(void);
Description
Applications can not call DataSetChanged directly. Changes to the contents of the dataset
trigger this method automatically. DataSetChanged allows the TCustomDBGrid to keep track of
when the contents of the dataset change.

TGridDataLink::DataSetScrolled
TGridDataLink See also
DataSetScrolled informs the TCustomDBGrid when the dataset has finished scrolling.
virtual void __fastcall DataSetScrolled(int Distance);
Description
Applications can not call the DataSetScrolled procedure directly. This procedure is called
automatically after the dataset for the TCustomDBGrid scrolls. TGridDataLink informs the
TCustomDBGrid that a scroll of the dataset has just occurred by calling its Scroll method.

TGridDataLink::EditingChanged
TGridDataLink See also
EditingChanged informs the TCustomDBGrid of changes in the editing state of the dataset.
virtual void __fastcall EditingChanged(void);
Description
Applications can not call the EditingChanged procedure directly. Changes in the Editing property
trigger this procedure. EditingChanged allows the TCustomDBGrid to provide visual feedback to
the user about the editing state of the dataset.

TGridDataLink::FocusControl
TGridDataLink See also
FocusControl brings up the editor and gives focus to a field control in the TCustomDBGrid
object.
virtual void __fastcall FocusControl(Db::TFieldRef Field);
Description
Call the FocusControl procedure to bring up the editor for the representation of Field in the
TCustomDBGrid.::FocusControl selects Field in the TCustomDBGrid, and then tells the
TCustomDBGrid object to bring up the editor.

TGridDataLink::GetMappedIndex
TGridDataLink See also
GetMappedIndex provides the index of a field component in the dataset that corresponds to an
index within the field map.
int __fastcall GetMappedIndex(int ColIndex);
Use GetMappedIndex on an index into the field map to get an index into the dataset for the
same field component. Both the field map and the dataset are zero-based arrays. If an entry in
the field map is an undefined field, GetMappedIndex returns -1.

TGridDataLink::LayoutChanged
TGridDataLink See also
LayoutChanged informs the TCustomDBGrid after the layout of the TCustomDBGrid has
changed in a way that affects the representation of the dataset.
virtual void __fastcall LayoutChanged(void);
Description
Applications can not call the LayoutChanged method directly. The TCustomDBGrid that owns
the TGridDataLink calls this method automatically when layout changes affect the representation
of the dataset. LayoutChanged allows the TCustomDBGrid to regenerate its layout by calling its
LayoutChanged method.

TGridDataLink::Modified
TGridDataLink See also Example
Modified tracks changes to the data which have not been written to the current record in the
database.
void __fastcall Modified(void);
Description
Applications should not call Modified directly. Modified is called automatically whenever the
TCustomDBGrid starts editing one of its fields. Modified allows the TGridDataLink to keep track
of whether there are any edits that have not been posted.

TGridDataLink::RecordChanged
TGridDataLink See also
RecordChanged informs the TCustomDBGrid of changes in the current record or field of the
DataSource.
virtual void __fastcall RecordChanged(Db::TField* Field);
Description
Applications can not call RecordChanged directly. It is called automatically when the contents of
the current record change. The Field parameter indicates which field in the current record has
changed. If Field is NULL, the entire record has changed.
RecordChanged informs TCustomDBGrid of these changes so that it can update the display of
the affected column or columns.

TGridDataLink::Reset
TGridDataLink See also
Reset cancels any pending edits to the dataset that have not been written to the current record
in the database.
void __fastcall Reset(void);
Description
Reset is triggered by user actions that cancel any pending edits to the dataset.

TGridDataLink::TGridDataLink
TGridDataLink See also
TGridDataLink creates an instance of TGridDataLink.
__fastcall TGridDataLink(TCustomDBGrid* AGrid);
Description
Applications should not call the TGridDataLink method directly. The TCustomDBGrid object that
owns the TGridDataLink object calls TGridDataLink from its constructor.

TGridDataLink::UpdateData
TGridDataLink See also
UpdateData allows the TCustomDBGrid to post changes to the dataset.
virtual void __fastcall UpdateData(void);
Description
Applications can not call the UpdateData procedure directly. It is called automatically when
pending changes need to be posted to the dataset. UpdateData tells the TCustomDBGrid to
write any unposted changes to the current field to the underlying Field component.

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TDataLink

TGridDataLink example
TGridDataLink

TGroupBox
Hierarchy Properties Methods Events See also
TGroupBox creates a Windows group box.
Header
vcl/stdctrls.hpp
Description
The TGroupBox component represents a standard Windows group box, used to group related
controls on a form. When another control component is placed within a group box, the group box
becomes the parent of that component.

TGroupBox properties
TGroupBox Alphabetically Legend

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
Caption
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TGroupBox properties
TGroupBox By object Legend

Align
BoundsRect

Brush
Caption
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
Enabled
Font

Handle
Height
HelpContext
Hint
Left
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Visible
Width

TGroupBox events
TGroupBox Alphabetically Legend

Derived from TWinControl
OnEnter
OnExit

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TGroupBox events
TGroupBox By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TGroupBox methods
TGroupBox Alphabetically

In TGroupBox
~TGroupBox
TGroupBox

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TGroupBox methods
TGroupBox By object

~TGroupBox
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform
Realign

Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TGroupBox
UpdateControlState
Update

TGroupBox::~TGroupBox
TGroupBox
~TGroupBox frees the memory associated with the TGroupBox object. Do not call ~TGroupBox
directly. Instead, use the delete keyword on the object, which causes ~TGroupBox to be invoked
automatically.
__fastcall virtual ~TGroupBox(void);

TGroupBox::TGroupBox
TGroupBox
TGroupBox creates a new TGroupBox object.
__fastcall virtual TGroupBox(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl
TCustomGroupBox

TGroupBox example
TGroupBox

TGraphicControl
Hierarchy Properties Methods See also
The TGraphicControl component is an abstract non-windowed control used to derive non-
windowed custom controls.
Header
vcl/controls.hpp
Description
The primary purpose of most graphic controls is to display text or graphics. Borland C++Builder
controls that descend from TGraphicControl include TBevel, TImage, TPaintBox, TShape,
TSpeedButton, and TCustomLabel, from which TDBText and TLabel are derived.
In addition to everything inherited from the abstract TControl component, TGraphicControl
provides a Canvas property that provides ready access to the control's drawing surface and a
virtual Paint method called in response to WM_PAINT messages received by a parent control.
Graphic controls cannot receive the input focus, nor can they contain other controls. Because a
graphic control doesn’t need a Windows handle, it’s demand on system resources is lessened
and painting a graphic control is quicker than painting a windowed control.
To a control that can receive input focus or contain other controls, but which needs a Canvas
property and a Paint method, derive a class from TCustomControl.

TGraphicControl properties
TGraphicControl Alphabetically Legend

In TGraphicControl
Canvas

Derived from TControl
Align
BoundsRect
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ControlState
ControlStyle
Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TGraphicControl properties
TGraphicControl By object Legend

Align
BoundsRect

Canvas
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

ControlState
ControlStyle
Cursor
DesignInfo
Enabled
Height
Hint
Left
Name

Owner
Parent
ShowHint
Tag
Top
Visible
Width

TGraphicControl::Canvas
TGraphicControl See also
The Canvas property is a TCanvas object that presents a drawing surface for the graphic control
to draw on.
__property Graphics::TCanvas* Canvas;
Description
Use the properties of the TCanvas object to draw or paint on the surface of the control. Canvas
encapsulates a Windows device context, providing all the tools and methods needed for drawing
and painting.
Because TGraphicControl does not have a window handle, when Canvas needs a window
handle in order to obtain a handle to a device context, it uses the window of the control’s
Parent.
Canvas is a protected property that can be redeclared as public in descendants of
TGraphicControl.

TGraphicControl methods
TGraphicControl Alphabetically Legend

In TGraphicControl
~TGraphicControl

Paint
TGraphicControl

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Invalidate
Perform
Refresh
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
Update

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize

MethodAddress
MethodName
NewInstance

TGraphicControl methods
TGraphicControl By object Legend

~TGraphicControl
Assign
BeginDrag
BringToFront
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
DefaultHandler
DestroyComponents
Destroying
Dispatch
DragDrop
Dragging
EndDrag
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
GetTextBuf
GetTextLen
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance

Paint
Perform
Refresh
RemoveComponent
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
TGraphicControl
Update

TGraphicControl::~TGraphicControl
TGraphicControl See also
~TGraphicControl frees the memory associated with the TGraphicControl object. Do not call ~
TGraphicControl directly. Instead, use the delete keyword on the object, which causes ~
TGraphicControl to be invoked automatically.
__fastcall virtual ~TGraphicControl(void);

TGraphicControl::Paint
TGraphicControl See also
The Paint method of TGraphicControl provides an interface for a method that renders the image
of the graphic control.
virtual void __fastcall Paint(void);
Description
A graphic control receives WM_PAINT messages from its Parent, when the Parent wants the
graphic control to paint itself. Graphic controls respond to WM_PAINT messages by initializing
the control's canvas and calling the Paint method. Override the Paint method to specify how the
image of the control should be drawn.
The Paint method does nothing more than provide an interface to be overridden by derived
objects so that they can draw an image of themselves. All graphic controls that can be
instantiated must override Paint to draw the image of the control.

TGraphicControl::TGraphicControl
TGraphicControl See also
The TGraphicControl method is the constructor for TGraphicControl.
__fastcall virtual TGraphicControl(Classes::TComponent* AOwner);
Description
The TGraphicControl method constructs and initializes a new graphic control and inserts the
newly-constructed control into its owner, as specified by the AOwner parameter, by calling that
owner's InsertComponent method.
TGraphicControl creates the TCanvas object for the Canvas property after calling the inherited
constructor.
Nearly every kind of control overrides TGraphicControl to initialize its unique properties. When
overriding the TGraphicControl method, always call the inherited constructor first, then proceed
with the component's initialization.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl

TGraphicControl example
TGraphicControl

THandleStream
Hierarchy Properties Methods See also
The THandleStream object is a stream object that enables applications to read from and write to
communications resources identified by a Windows handle.
Header
vcl/classes.hpp
Description
Use THandleStream to access files, sockets, named pipes, mailslots, or other communications
resources that provide a Windows handle when opened. For example, the FileOpen function
provides a Windows handle for a file on disk. THandleStream allows applications to use a
uniform stream interface when performing I/O using a Windows handle.
To avoid the overhead of managing file handles, use TFileStream to work with disk files.

THandleStream properties
THandleStream Alphabetically Legend

In THandleStream
Handle

Derived from TStream
Position

Size

THandleStream properties
THandleStream By object Legend

Handle
Position

Size

THandleStream::Handle
THandleStream See also Example
Handle specifies the handle for the communications resource the stream reads from and writes
to.
__property int Handle;
Description
Read Handle to get the handle for Windows API calls or file management functions. To read
from or write to the resource, use the methods of the THandleStream object.

Handle is a read-only property. The handle property cannot be changed to allow the handle
stream to switch from reading to writing or vice versa. For example, to change from a file handle
that is opened in read-only mode to one that is opened in write mode:
1 Free the stream object.
2 Call FileClose to close the file.
3 Re-open the file in write mode, and use the handle to create a new instance of a handle

stream. Alternately, open a TFileStream object for the file, specifying a write mode for the
stream.

Note
Do not call the FileClose function on the Handle until after the THandleStream object has been
destroyed.

THandleStream methods
THandleStream Alphabetically

In THandleStream
~THandleStream
Read
Seek
THandleStream
Write

Derived from TStream
CopyFrom
ReadBuffer
ReadComponent
ReadComponentRes
ReadResHeader
WriteBuffer
WriteComponent
WriteComponentRes
WriteDescendent
WriteDescendentRes

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

THandleStream methods
THandleStream By object

~THandleStream
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CopyFrom
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
ReadBuffer
ReadComponentRes
ReadComponent
ReadResHeader
Read
Seek
THandleStream
WriteBuffer
WriteComponentRes
WriteComponent
WriteDescendentRes
WriteDescendent
Write

THandleStream::~THandleStream
THandleStream See also
~THandleStream frees the memory associated with the THandleStream object. Do not call ~
THandleStream directly. Instead, use the delete keyword on the object, which causes ~
THandleStream to be invoked automatically.
__fastcall virtual ~THandleStream(void);

THandleStream::Read
THandleStream See also
Read reads up to Count bytes of data from the resource associated with the handle stream into
Buffer.
virtual long __fastcall Read(void *Buffer, long Count);
Description
Use Read to read data from the resource associated with the handle stream when the number of
bytes in the file is not known. Read transfers up to Count bytes from the resource, starting at the
current position, and then advances the current position in the resource by the number of bytes
actually transferred. Read returns the number of bytes actually transferred, which may be less
than Count if the end of file marker is encountered.
All other data-reading methods of a handle stream (ReadBuffer, ReadComponent) call Read to
do the actual reading.

THandleStream::Seek
THandleStream See also
Seek resets the current position of the handle stream.
virtual long __fastcall Seek(long Offset, unsigned short Origin);
Description
Use Seek to move the current position within the resource associated with the handle stream by
the indicated offset. Seek allows an application to read from or write to a particular location
within the resource.
The Origin parameter indicates how to interpret the Offset parameter. Origin should be one of
the following values::
Value Meaning

soFromBeginning Offset is from the beginning of the resource. Seek moves to the position
Offset. Offset must be >= 0.

soFromCurrent Offset is from the current position in the resource. Seek moves to Position
+ Offset.

soFromEnd Offset is from the end of the resource. Offset must be <= 0 to indicate a
number of bytes before the end of the file.

Seek returns the new value of the Position property, the new current position in the resource.

THandleStream::THandleStream
THandleStream See also
The THandleStream method creates an instance of THandleStream.
__fastcall THandleStream(int AHandle);
Description
Call THandleStream to instantiate a THandleStream for a given handle. The handle must be
obtained by opening or creating the resource in the appropriate mode. For example, to create a
handle stream for reading from a file, obtain the file handle by opening the file with an
fmOpenRead or fmOpenReadWrite mode. To create a handle stream for writing to a file, obtain
the file handle by opening the file with an fmOpenWrite or fmOpenReadWrite mode.

THandleStream::Write
THandleStream See also
Write writes Count bytes from the Buffer to the current position in the resource.
virtual long __fastcall Write(const void *Buffer, long Count);
Description
Use Write to write Count bytes to the resource associated with the handle stream, starting at the
current position. After writing to the resource, Write advances the current position by the number
bytes written, and returns the number of bytes written.
All other data-writing methods of a handle stream (WriteBuffer, WriteComponent) call Write to do
the actual writing.

Accessibility
Read-only

Hierarchy

TObject

TStream

THandleStream example
THandleStream

THeaderControl
Hierarchy Properties Methods Events See also
THeaderControl is a container for THeaderSection objects. It provides a set of resizable column
headers.
Header
vcl/comctrls.hpp
Description
A THeaderControl is a set of column headers that the user can resize at runtime. Each header is
represented by a THeaderSection object listed in the Sections property.
The header sections can be positioned above columns or fields of information. For example,
header sections could be placed over a list box (TListBox). Because THeaderControl provides a
generic header element that can be paired with virtually any other visual component, runtime
manipulation of the header sections is not automatically extended to the components beneath it;
if, for example, you want the column beneath a header section to be resized whenever the
header section is resized, you will have to write a custom OnSectionResize event handler to
accomplish this.

THeaderControl properties
THeaderControl Alphabetically Legend

In THeaderControl
Canvas

Sections
Derived from TWinControl

Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name

Parent
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

THeaderControl properties
THeaderControl By object Legend

Align
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
DragCursor
DragMode
Enabled
Font

Handle
Height
HelpContext
Hint
Left
Name

Owner
ParentFont
ParentShowHint
Parent
PopupMenu
Sections
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Visible
Width

THeaderControl::Canvas
THeaderControl See also
Provides runtime access to the header control’s drawing surface.
__property Graphics::TCanvas* Canvas;
Description
The read-only Canvas property provides access to the header control’s drawing surface that
can be used when implementing a handler for the OnDrawSection event.

THeaderControl::Sections
THeaderControl See also
A list of header sections (column headings).
__property THeaderSections* Sections;
Description
The Sections property holds a THeaderSections—that is, a collection of THeaderSection objects.
At design time, header sections can be added, removed, or modified with the Sections editor. To
open the Sections editor, select the Sections property in the Object Inspector, then double-click
in the Value column to the right or click the ellipsis (...) button.

THeaderControl events
THeaderControl Alphabetically Legend

In THeaderControl
OnDrawSection
OnResize
OnSectionClick
OnSectionResize
OnSectionTrack

Derived from TControl
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

THeaderControl events
THeaderControl By object Legend

OnDragDrop
OnDragOver
OnDrawSection
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnResize
OnSectionClick
OnSectionResize
OnSectionTrack
OnStartDrag

THeaderControl::OnDrawSection
THeaderControl See also
OnDrawSection occurs when a header section needs to be redrawn.
typedef void __fastcall (__closure *TDrawSectionEvent)(THeaderControl*
HeaderControl, THeaderSection* Section, const Windows::TRect &Rect,
bool Pressed);

__property TDrawSectionEvent OnDrawSection;
Description
The OnDrawSection event occurs when a header section needs to be redisplayed—for example,
when the user selects or resizes a section. OnDrawSection occurs only if the header section’s
Style property is set to hsOwnerDraw.
TDrawSectionEvent is the type of the OnDrawSection property.

THeaderControl::OnResize
THeaderControl See also
OnResize occurs when the header control is resized.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnResize;
Description
The OnResize event occurs when the size of the header control changes at runtime.

THeaderControl::OnSectionClick
THeaderControl See also
OnSectionClick occurs when one of the header control’s sections is clicked.
typedef void __fastcall (__closure *TSectionNotifyEvent)
(THeaderControl* HeaderControl, THeaderSection* Section);

__property TSectionNotifyEvent OnSectionClick;
Description
The OnSectionClick event occurs when a header section is clicked at runtime. To disable a
section from being clicked set its AllowClick property to false.
TSectionNotifyEvent is the type of the OnSectionClick and OnSectionResize events.

THeaderControl::OnSectionResize
THeaderControl See also
OnSectionResize occurs when one of the header control’s sections is resized.
typedef void __fastcall (__closure *TSectionNotifyEvent)
(THeaderControl* HeaderControl, THeaderSection* Section);

__property TSectionNotifyEvent OnSectionResize;
Description
The OnSectionResize event occurs when a header section is resized at runtime. This happens
when the user positions the mouse pointer between two sections and drags their border to the
right or left.
TSectionNotifyEvent is the type of the OnSectionClick and OnSectionResize events.

THeaderControl::OnSectionTrack
THeaderControl See also
OnSectionTrack occurs as one of the header control’s sections is being resized.
enum TSectionTrackState { tsTrackBegin, tsTrackMove, tsTrackEnd };
typedef void __fastcall (__closure *TSectionTrackEvent)
(THeaderControl* HeaderControl, THeaderSection* Section, int Width,
TSectionTrackState State);

__property TSectionTrackEvent OnSectionTrack;
Description
The OnSectionTrack event tracks the dragging of a header section’s border as it happens.
OnSectionTrack occurs when the mouse pointer is positioned between two header sections and
the left mouse button is depressed.
OnSectionTrack is of type TSectionTrackEvent, whose Width and State parameters indicate the
size of the header section (in pixels) and the status of the event. The State property can take
three values:
Value Meaning

tsTrackBegin The border has not yet been dragged.
tsTrackMove The border is being dragged.
tsTrackEnd The border is no longer being dragged.
Use OnSectionTrack when you want something to happen at runtime as a header section is
being resized.

THeaderControl methods
THeaderControl Alphabetically

In THeaderControl
~THeaderControl
THeaderControl

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

THeaderControl methods
THeaderControl By object

~THeaderControl
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
THeaderControl
UpdateControlState
Update

THeaderControl::~THeaderControl
THeaderControl See also
Destroys THeaderControl and frees its memory.
__fastcall virtual ~THeaderControl(void);
Description
The THeaderControl method destroys the header control along with its canvas and header
sections.

THeaderControl::THeaderControl
THeaderControl See also
Creates and initializes a THeaderControl component.
__fastcall virtual THeaderControl(Classes::TComponent* AOwner);
Description
The Create method creates a header control along with its canvas and header sections.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

THeaderControl example
THeaderControl

THeaderSection
Hierarchy Properties Methods See also
THeaderSection represents a section of a header control.
Header
vcl/comctrls.hpp
Description
Each THeaderControl uses a THeaderSections to maintain a collection of THeaderSection
objects.

THeaderSection properties
THeaderSection Alphabetically Legend

In THeaderSection
Alignment
AllowClick

Left
MaxWidth
MinWidth

Right
Style
Text
Width

Derived from TCollectionItem
Collection
Index

THeaderSection properties
THeaderSection By object Legend

Alignment
AllowClick
Collection
Index

Left
MaxWidth
MinWidth

Right
Style
Text
Width

THeaderSection::Alignment
THeaderSection See also Example
Specifies how text is aligned within the header section.
__property Classes::TAlignment Alignment;
Description
These are the possible values of Alignment:
Value Meaning

taLeftJustify Align text on the left side of the header section.
taCenter Center text in the header section.
taRightJustify Align text on the right side of the header section.

THeaderSection::AllowClick
THeaderSection See also
Allows section to be clicked at runtime.
__property bool AllowClick;
Description
If AllowClick is set to true (the default), the header section can be clicked with the mouse at
runtime. Header sections behave like buttons when clicked: They loose their raised borders and
appear depressed on the form. To attach functionality to the clicking of header sections, write an
event handler for the header control’s OnSectionClick event.

THeaderSection::Left
THeaderSection See also Example
The horizontal position of the header section’s left edge.
__property int Left;
Description
The Left property is the horizontal coordinate of the header section’s left edge, relative to the
left border of the header control and measured in pixels.

THeaderSection::MaxWidth
THeaderSection See also
The maximum width of the header section.
__property int MaxWidth;
Description
Sets the maximum width, in pixels, for the header section. If MaxWidth = MinWidth, the header
section cannot be resized at runtime.

THeaderSection::MinWidth
THeaderSection See also
The minimum width of the header section.
__property int MinWidth;
Description
Sets the minimum width, in pixels, for the header section. If MinWidth = MaxWidth, the header
section cannot be resized at runtime.

THeaderSection::Right
THeaderSection See also
The horizontal position of the header section’s right edge.
__property int Right;
Description
The Right property is the horizontal coordinate of the header section’s right edge, relative to the
left border of the header control and measured in pixels. The Right value is the value of Left plus
the value of Width.

THeaderSection::Style
THeaderSection See also
Determines how the header section’s text is displayed.
__property THeaderSectionStyle Style;
Description
If Style is set to hsText (the default), the string contained in the Text property is displayed in the
header section, using the alignment specified by Alignment. The font is determined by the
header control’s Font property.
If Style is set to hsOwnerDraw, the content displayed in the header section is drawn at runtime
on the header control’s canvas by code in a THeaderControl.OnDrawSection event handler.

THeaderSection::Text
THeaderSection See also Example
The header section’s caption.
__property System::AnsiString Text;
Description
The Text property contains a string that identifies the header section or the column beneath it. If
Style is set to hsText, the value of Text appears in the header section.

THeaderSection::Width
THeaderSection See also Example
The width of the header section.
__property int Width;
Description
The Width property determines the default width of the header section, in pixels. Header
sections can be resized at runtime by dragging their borders.

THeaderSection methods
THeaderSection Alphabetically

In THeaderSection
~THeaderSection
Assign
THeaderSection

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

THeaderSection methods
THeaderSection By object

~THeaderSection
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
THeaderSection

THeaderSection::~THeaderSection
THeaderSection
~THeaderSection frees the memory associated with the THeaderSection object. Do not call ~
THeaderSection directly. Instead, use the delete keyword on the object, which causes ~
THeaderSection to be invoked automatically.
__fastcall virtual ~THeaderSection(void);

THeaderSection::Assign
THeaderSection See also
Copies the contents of the source header section to a new header section.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
Assign creates a new header section with the same Alignment, AllowClick, MaxWidth, MinWidth,
Style, Text, and Width values as the source object.

THeaderSection::THeaderSection
THeaderSection See also
Creates and initializes a header section.
__fastcall virtual THeaderSection(Classes::TCollection* Collection);
Description
THeaderSection should take a THeaderSections instance as its argument.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TCollectionItem

THeaderSection example
THeaderSection

THeaderSections
Hierarchy Properties Methods See also
THeaderSections is a container for THeaderSection objects.
Header
vcl/comctrls.hpp
Description
Each THeaderSections holds a collection of THeaderSection objects in a THeaderControl.
THeaderSections maintains an index of the header sections in its Items array. The Count
property contains the number of header sections in the collection. At design time, use the header
control’s Sections editor to add, remove, or modify header sections.

THeaderSections properties
THeaderSections Alphabetically Legend

In THeaderSections
Items

Derived from TCollection
Count

THeaderSections properties
THeaderSections By object Legend

Count
Items

THeaderSections::Items
THeaderSections See also
An index of the header sections in the collection.
__property THeaderSection* Items[int Index];
Description
The value of the Index parameter corresponds to the Index property of THeaderSection. It
represents the position of the header section in the header.

THeaderSections methods
THeaderSections Alphabetically

In THeaderSections
~THeaderSections
Add
THeaderSections

Derived from TCollection
Assign
BeginUpdate
Clear
EndUpdate

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

THeaderSections methods
THeaderSections By object

~THeaderSections
Add
Assign
BeginUpdate
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
Dispatch
EndUpdate
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
THeaderSections

THeaderSections::~THeaderSections
THeaderSections
~THeaderSections frees the memory associated with the THeaderSections object. Do not call ~
THeaderSections directly. Instead, use the delete keyword on the object, which causes ~
THeaderSections to be invoked automatically.
__fastcall virtual ~THeaderSections(void);

THeaderSections::Add
THeaderSections See also
Creates a new THeaderSection instance and adds it to the Items array.
THeaderSection* __fastcall Add(void);
Description
Add returns the new header section. At design time, use the header control’s Sections editor to
add sections to the header.

THeaderSections::THeaderSections
THeaderSections See also
Creates and initializes a THeaderSections object.
__fastcall THeaderSections(THeaderControl* HeaderControl);
Description
The THeaderSections method takes a THeaderControl instance as a parameter.

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TCollection

THeaderSections example
THeaderSections

THeader
Hierarchy Properties Methods Events
The THeader component is a sectioned visual control that displays text and allows each section
to be resized with the mouse. THeader is provided for backward compatibility. Use the
THeaderControl component in MicrosoftWindows95 and WindowsNT applications.
Header
vcl/extctrls.hpp
At design time, resize a section by clicking the right mouse button on a section border and
dragging to the new size. At runtime, the user can resize the header by clicking and dragging
with the left mouse button. The widths of the other sections that are not resized remain
unchanged.
The Sections property specifies the sections of a header. The AllowResize property enables or
prevents the user from resizing sections at runtime. When a section is resized, an OnSizing
event occurs. After a section has been resized, an OnSized event occurs.
To use a header you should attach code to these event handlers. One use would be to align text
under a header. When the header is resized, you would realign the text in the OnSized event
handler. To move the text as the header is being resized, realign the text in the OnSizing event
handler.

THeader properties
THeader Alphabetically Legend

In THeader
AllowResize
BorderStyle
Sections
SectionWidth
Width

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle
Cursor
Enabled
Font
Height
Hint
Left
Name
Parent
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

THeader properties
THeader By object Legend

Align
AllowResize
BorderStyle
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled
Font

Handle
Height
HelpContext
Hint
Left
Name

Owner
ParentFont
ParentShowHint
Parent
PopupMenu
Sections
SectionWidth
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Visible
Width

THeader::AllowResize
THeader
Determines if the user can modify the size of the header at runtime with the mouse.
__property bool AllowResize;

If AllowResize is false, the sections within a header can't be resized. If AllowResize is true,
clicking a border of a header section and dragging it left or right changes the width of the
section. The default value is true.

THeader::BorderStyle
THeader Example
Determines whether the header control has a border.
__property Forms::TBorderStyle BorderStyle;

These are the possible values:
Value Meaning

bsNone No visible border
bsSingle Single-line border
If you set the AutoSize property of an edit box or hot-key to true, the edit box or hot-key resizes
automatically when the font size of the text changes. You must set the value of the BorderStyle
property to bsSingle, or else AutoSize has no effect.

THeader::Sections
THeader
Alist of strings that contain the text for the sections of a header.
__property Classes::TStrings* Sections;

The number of lines of the string list determines the number of sections of the header. If the
string list is empty, the header has one blank section. If this string list contains one or more lines,
the text of each line is in its own section. The first line is in the leftmost section, the second line
is in the next section to the right, and so on.

THeader::SectionWidth
THeader
Determines the width in pixels of the sections of a header.
__property int SectionWidth[int X];

X is an index into the sections, from 0 to the number of sections - 1. For example, the index of
the first section is 0, the second section is 1, and so on.

THeader::Width
THeader Example
Determines the horizontal size of the control or form in pixels.

When you increase the Width property value, the form or control becomes wider. If you decrease
the value, the form or control becomes narrower.
If the width is set to a value too narrow to show even one character of text then the first
character and the ellipsis will appear to the right of the section boundary of that header section.

THeader events
THeader Alphabetically Legend

In THeader
OnSized
OnSizing

THeader events
THeader By object Legend

OnSized
OnSizing

THeader::OnSized
THeader See also
Occurs after the header has been resized.
typedef void __fastcall (__closure *TSectionEvent)(System::TObject*
Sender, int ASection, int AWidth)
;

__property TSectionEvent OnSized;
Description
Override OnSized to perform special processing after the header has been resized.

THeader::OnSizing
THeader See also
Occurs when the header is being resized.
typedef void __fastcall (__closure *TSectionEvent)(System::TObject*
Sender, int ASection, int AWidth)
;

__property TSectionEvent OnSizing;
Description
Override OnSizing to perform special processing when the header is being resized.

THeader methods
THeader Alphabetically

In THeader
~THeader
THeader

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

THeader methods
THeader By object

~THeader
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
THeader
UpdateControlState
Update

THeader::~THeader
THeader
~THeader frees the memory associated with the THeader object. Do not call ~THeader directly.
Instead, use the delete keyword on the object, which causes ~THeader to be invoked
automatically.
__fastcall virtual ~THeader(void);

THeader::THeader
THeader
THeader creates a new THeader object
__fastcall virtual THeader(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl

THeader example
THeader

THintWindow
Hierarchy Properties Methods
The THintWindow component is a a simple custom control descended from TCustomControl. A
hint window is the small popup window that appears over a control at runtime if that control has
its ShowHint property set to true.
Header
vcl/controls.hpp
Description
In addition to everything inherited from TCustomControl, THintWindow provides several
properties and methods. The hint window makes public the inherited Canvas, Caption, and Color
properties. THintWindow overrides the protected CreateParams and Paint methods and
introduces three new methods:
• ActivateHint, which the application uses to display a hint window.
• IsHintMsg, which allows the hint window to monitor application messages so it can determine

when to disappear.
• ReleaseHandle, which destroys the hint window's window handle.
If you want to derive a new kind of hint-window component for your applications, derive a new
type from THintWindow, override methods as needed, and then assign the new type to the
HintWindowClass variable at application startup.

THintWindow properties
THintWindow Alphabetically Legend

Derived from TCustomControl
Canvas

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
Caption
ClientHeight
ClientWidth
Color
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top

Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

THintWindow properties
THintWindow By object Legend

Align
BoundsRect

Brush
Canvas

Caption
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
Left
Name

Owner
Parent

ShowHint
Showing

TabOrder
TabStop
Tag
Top
Visible
Width

THintWindow methods
THintWindow Alphabetically

In THintWindow
~THintWindow
ActivateHint
IsHintMsg
ReleaseHandle
THintWindow

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification

GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

THintWindow methods
THintWindow By object

~THintWindow
ActivateHint
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
IsHintMsg
MethodAddress
MethodName
NewInstance

PaintTo
Perform
Realign
Refresh
ReleaseHandle
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
THintWindow
UpdateControlState
Update

THintWindow::~THintWindow
THintWindow
~THintWindow frees the memory associated with the THintWindow object. Do not call ~
THintWindow directly. Instead, use the delete keyword on the object, which causes ~
THintWindow to be invoked automatically.
__fastcall virtual ~THintWindow(void);

THintWindow::ActivateHint
THintWindow
Activates the hint window.
virtual void __fastcall ActivateHint(const Windows::TRect &Rect, const
System::AnsiString AHint);

Description
The ActivateHint method activates the hint window, setting its caption to the string passed in
AHint and its bounding rectangle to Rect. By default, ActivateHint calls the SetWindowPos API
function to display the hint window.
After activation, all application messages go through the hint window's IsHintMsg method, which
determines whether to deactivate the hint window.
To change the appearance of the hint window, override the hint window's Paint method. The hint
window should not modify the rectangle passed in Rect, since the application has explicitly set
the rectangle.

THintWindow::IsHintMsg
THintWindow
Determines whether an application message requires hiding the hint window.
virtual bool __fastcall IsHintMsg(MSG &Msg);
Description
The IsHintMsg method checks application messages while the hint window is on the screen
(after the call to ActivateHint). Upon seeing a mouse, keyboard, command, or activation
message, IsHintMsg returns true, causing the application to hide the hint window.

THintWindow::ReleaseHandle
THintWindow
Destroys the window handle of the hint window.
void __fastcall ReleaseHandle(void);
Description
The ReleaseHandle method calls the DestroyHandle method to destroy the window handle used
by the hint window.

THintWindow::THintWindow
THintWindow
THintWindow creates a new THintWindow object.
__fastcall virtual THintWindow(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl

THintWindow example
THintWindow

THotKey
Hierarchy Properties Methods Events
The THotKey component is used to set a shortcut property at runtime. The user can enter a key
combination, typically consisting of a modifier key (such as Ctrl, Alt, or Shift) and an
accompanying key (such as a character key, an arrow key, a function key, etc.), into the hot-key
control. The hot key is associated with another control by assigning its HotKey property to the
desired control’s shortcut property.
Header
vcl/comctrls.hpp
To select a key combination at design-time use the HotKey and Modifiers properties. The names
of the keys will appear in the hot-key control. To invalidate specific modifier keys use the
InvalidKeys property. To change the key combination at runtime hold down the Alt, Ctrl or Shift
keys or combinations of them and type a letter or number. The HotKey property can then be
assigned to the shortcut property of a menu item, for example.
In addition to these properties, methods, and events, this component also has the properties,
methods, and events that apply to all windowed controls. The THotKey component is an indirect
descendent of TWinControl.

THotKey properties
THotKey Alphabetically Legend

Derived from TCustomHotKey
AutoSize
HotKey
InvalidKeys
Modifiers

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

THotKey properties
THotKey By object Legend

Align
AutoSize
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
HotKey
InvalidKeys
Left
Modifiers
Name

Owner
ParentShowHint
Parent
PopupMenu
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Visible
Width

THotKey events
THotKey Alphabetically Legend

Derived from TWinControl
OnEnter
OnExit

Derived from TControl
OnMouseDown
OnMouseMove
OnMouseUp

THotKey events
THotKey By object Legend

OnEnter
OnExit
OnMouseDown
OnMouseMove
OnMouseUp

THotKey methods
THotKey Alphabetically

Derived from TCustomHotKey
~TCustomHotKey
TCustomHotKey

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

THotKey methods
THotKey By object

~TCustomHotKey
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TCustomHotKey
UpdateControlState
Update

~THotKey
~THotKey frees the memory associated with the THotKey object. Do not call ~THotKey directly.
Instead, use the delete keyword on the object, which causes ~THotKey to be invoked
automatically.
__fastcall virtual ~THotKey(void);

THotKey
THotKey creates a new THotKey object.
__fastcall virtual THotKey(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomHotKey

THotKey example
THotKey

TIconOptions
Hierarchy Properties Methods See also
TIconOptions describes how the icons in a list view should be arranged.
Header
vcl/comctrls.hpp
Description
Use TIconOptions with a list view object that has a ViewStyle of vsIcon or vsSmallIcon. Set the
properties of the icon options object owned by the list view to represent how the icons in the list
view should be arranged.
The properties of a TIconOptions object are not valid when it is not owned by a list view object.
Note
TIconOptions has no effect if the associated list view does not have a ViewStyle of vsIcon or
vsSmallIcon.

TIconOptions properties
TIconOptions Alphabetically Legend

In TIconOptions
Arrangement
AutoArrange
WrapText

TIconOptions properties
TIconOptions By object Legend

Arrangement
AutoArrange
WrapText

TIconOptions::Arrangement
TIconOptions See also
Arrangement determines where the items are to be aligned in the list view.
__property TIconArrangement Arrangement;

Set Arrangement to indicate whether the list view should display icon entries in rows or columns.
Arrangement has no effect on the arrangement of entries in the list view when the ViewStyle is
not vsIcon or vsSmallIcon. These are the possible values of Arrangement:
Value Meaning

iaTop Items are aligned left to right in rows at the top of the list view control
iaLeft Items are aligned in columns top to bottom at the left of the list view

control

TIconOptions::AutoArrange
TIconOptions See also
AutoArrange determines if icons in a list view are automatically rearranged when a list item is
added, removed, or moved.
__property bool AutoArrange;
Description
Set AutoArrange to specify whether the list view object should rearrange its items whenever
changes are made. If AutoArrange is true, the icons are automatically arranged. If AutoArrange
is false, the icons are not arranged until the Arrange method of the list view is called.

TIconOptions::WrapText
TIconOptions See also
WrapText determines whether the caption of an icon in a list view is displayed all on one line, or
if it can wrap.
__property bool WrapText;
Description
Set WrapText to true to have the caption of icons wrap rather than display on one line when it
exceeds the width of the icon.

TIconOptions methods
TIconOptions Alphabetically

In TIconOptions
~TIconOptions
TIconOptions

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIconOptions methods
TIconOptions By object

~TIconOptions
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TIconOptions

TIconOptions::~TIconOptions
TIconOptions
~TIconOptions frees the memory associated with the TIconOptions object. Do not call ~
TIconOptions directly. Instead, use the delete keyword on the object, which causes ~
TIconOptions to be invoked automatically.
__fastcall virtual ~TIconOptions(void);

TIconOptions::TIconOptions
TIconOptions See also
TIconOptions creates an instance of TIconOptions.
__fastcall TIconOptions(TCustomListView* AOwner);
Do not call TIconOptions directly in an application. The properties of a TIconOptions are only
valid when it is owned by a list view object. The list view object instantiates a TIconOptions
object to represent the arrangement properties of its icon views.
After calling the inherited constructor, TIconOptions initializes
• Arrangement to iaTop.
• AutoArrange to false.
• WrapText to true.

Scope
Published

Hierarchy

TObject

TPersistent

TIconOptions example
TIconOptions

TIcon
Hierarchy Properties Methods Events See also
TIcon is an encapsulation of a Windows icon.
Header
vcl/graphics.hpp
Description
Use TIcon to represent one of the icons in an image list. Assign an icon to objects that have an
Icon property, such as TForm or TPicture.
Icon objects represent the value loaded from a Windows icon file (.ICO file). Draw an icon on a
canvas, using the Draw method of the TCanvas object. Icons do not stretch, so do not use
TCanvas.StretchDraw with an icon.

TIcon properties
TIcon Alphabetically Legend

In TIcon
Empty

Handle
Height
Width

Derived from TGraphic
Modified

TIcon properties
TIcon By object Legend

Empty
Handle
Height
Modified
Width

TIcon::Empty
TIcon See also
Empty indicates whether the icon object contains an icon.
__property bool Empty;
Description
If Empty is true, no icon has been loaded into the icon object. If Empty is false, the icon object
contains an icon.

TIcon::Handle
TIcon See also Example
Handle provides access to the Windows GDI icon handle.
__property HICON Handle;
Description
Use Handle to specify the icon when using a Windows API function that requires the handle of
an icon object. The Handle property is NULL if the icon has not been loaded.
Call the ReleaseHandle method before changing the icon image by setting the Handle property.
The icon image can also be loaded by assigning another icon object or using the
LoadFromClipboardFormat, LoadFromFile, or LoadFromStream method.

TIcon::Height
TIcon See also Example
Height is the vertical size of the icon in pixels.
Description
All icons in an application have the same height, which is determined by Windows. Read Height
to determine this common height.
Attempting to set the Height property raises an exception.

TIcon::Width
TIcon See also Example
Width is the horizontal size of the icon in pixels.
Description
All icons in an application have the same width, which is determined by Windows. Read Width to
determine this common width.
Attempting to set the Width property raises an exception.

TIcon events
TIcon Alphabetically

Derived from TGraphic
OnChange

TIcon events
TIcon By object

OnChange

TIcon methods
TIcon Alphabetically

In TIcon
~TIcon
Assign
LoadFromStream
ReleaseHandle
SaveToStream
TIcon

Derived from TGraphic
LoadFromClipboardFormat
LoadFromFile
SaveToClipboardFormat
SaveToFile

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIcon methods
TIcon By object

~TIcon
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
LoadFromClipboardFormat
LoadFromFile
LoadFromStream
MethodAddress
MethodName
NewInstance
ReleaseHandle
SaveToClipboardFormat
SaveToFile
SaveToStream
TIcon

TIcon::~TIcon
TIcon See also
~TIcon frees the memory associated with the TIcon object. Do not call ~TIcon directly. Instead,
use the delete keyword on the object, which causes ~TIcon to be invoked automatically.
__fastcall virtual ~TIcon(void);
Description
TIcon releases the Windows icon handle before the object is freed.

TIcon::Assign
TIcon See also
Assign copies an icon image from another TIcon object.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
Call Assign to copy another icon object. Assign copies the icon image from the Source
parameter if it is another TIcon object. Otherwise, Assign calls the inherited method, which
copies the icon image from any source object that specifies how to copy to a TIcon in its
AssignTo method.

TIcon::LoadFromStream
TIcon See also
LoadFromStream loads the icon from a stream.
virtual void __fastcall LoadFromStream(Classes::TStream* Stream);
Description
Use LoadFromStream to read the icon image from a stream. Set the Stream parameter to a
stream object that provides access to the memory image of the icon. To load the icon from a .
ICO file, use the LoadFromFile method. To load the icon from the clipboard, use the
LoadFromClipboardFormat method.

TIcon::ReleaseHandle
TIcon See also
ReleaseHandle releases the Windows GDI object represented by the icon.
HICON __fastcall ReleaseHandle(void);
Description
Call ReleaseHandle to release the resources used to represent the icon. ReleaseHandle sets
the Handle property to NULL.
Call ReleaseHandle before setting the Handle property, so that the resources associated with
the icon image are not lost.

TIcon::SaveToStream
TIcon See also
SaveToStream saves the icon to a stream.
virtual void __fastcall SaveToStream(Classes::TStream* Stream);
Description
Use SaveToStream to write the icon image to a stream. Specify the Stream parameter as the
stream object that receives the memory image of the icon. To write the icon to a .ICO file, use
the SaveToFile method. To write the icon to the clipboard, use the SaveToClipboardFormat
method.

TIcon::TIcon
TIcon See also
TIcon creates an instance of TIcon.
__fastcall virtual TIcon(void);
Description
Call TIcon to create an empty icon object. Once an image has been read into the icon from a file
or stream, or by assigning another icon object, the icon can be drawn to a canvas, or added to
an image list. Do not create an icon object for setting the icon property of a form or picture.
These objects create a TIcon object in their own constructors. Instead, use the LoadFromFile,
LoadFromStream, or LoadFromClipboardFormat method on the TIcon object returned when
reading the Icon property.
.

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TGraphic

TIcon example
TIcon

TIconImage
Hierarchy Methods See also
TIconImage is the internal representation of the bitmap image for a TIcon object.
Header
vcl/graphics.hpp
Description
TIconImage is used for internal implementation only in Borland C++Builder. It represents the
internal image of the bitmap encapsulated by the TIcon object. All of the data and methods
introduced in TIconImage are private. They contain information about the specific HICON,
including pointers to the standard HICON structures defined by Windows. TIconImage is
referenced in the constructor of the TIcon object the icon image is created.

TIconImage methods
TIconImage Alphabetically

In TIconImage
~TIconImage
TIconImage

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIconImage methods
TIconImage By object

~TIconImage
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TIconImage

TIconImage::~TIconImage
TIconImage
~TIconImage frees the memory associated with the TIconImage object. Do not call ~
TIconImage directly. Instead, use the delete keyword on the object, which causes ~TIconImage
to be invoked automatically.
__fastcall virtual ~TIconImage(void);

TIconImage::TIconImage
TIconImage
TIconImage creates a new TIconImage object.
__fastcall TIconImage(void);

Hierarchy

TObject

TInternalImage

TIconImage example
TIconImage

TImage
Hierarchy Properties Methods Events
The TImage component displays a graphical image on a form. The image that appears is the
value of the Picture property. If you want the image control to resize to fit the current image, set
the AutoSize property to true. If you want to resize the image to completely fill an image control
when the control is larger than the native size of the image, use the Stretch property.
Header
vcl/extctrls.hpp
In addition to these properties, methods, and events, this component also has the properties and
methods that apply to all controls.

TImage properties
TImage Alphabetically Legend

In TImage
AutoSize

Canvas
Picture

Derived from TControl
Align
BoundsRect
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Height
Hint
Left
Name
Parent
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TImage properties
TImage By object Legend

Align
AutoSize
BoundsRect

Canvas
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

ControlState
ControlStyle

Cursor
DesignInfo
DragCursor
DragMode
Enabled
Height
Hint
Left
Name

Owner
ParentShowHint
Parent
Picture
PopupMenu
ShowHint
Tag
Top
Visible
Width

TImage::AutoSize
TImage
Determines whether the image resizes to accommodate the image it contains.
__property bool AutoSize;

When the AutoSize property is true, the image control resizes to accommodate the image it
contains (specified by the Picture property). When AutoSize is false, the image control remains
the same size, regardless of the size of the image. If the image control is smaller than the image,
only the portion of the picture that fits inside the image component will be visible.
Note
You must remember to set the AutoSize property to true before loading the picture, or AutoSize
has no effect.
To resize the image to fill an image control completely when the control is larger than the native
size of the image, use the Stretch property.

TImage::Canvas
TImage
The canvas for the image.
__property Graphics::TCanvas* Canvas;

TImage::Picture
TImage
Determines the image that appears on the image control.
__property Graphics::TPicture* Picture;

The property value is a TPicture object which can contain an icon, metafile, bitmap graphic, or
user-defined graphic object.

TImage events
TImage Alphabetically Legend

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TImage events
TImage By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TImage methods
TImage Alphabetically

In TImage
~TImage
TImage

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Invalidate
Perform
Refresh
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
Update

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress

MethodName
NewInstance

TImage methods
TImage By object

~TImage
Assign
BeginDrag
BringToFront
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
DefaultHandler
DestroyComponents
Destroying
Dispatch
DragDrop
Dragging
EndDrag
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
GetTextBuf
GetTextLen
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
Perform
Refresh
RemoveComponent
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
TImage
Update

TImage::~TImage
TImage
~TImage frees the memory associated with the TImage object. Do not call ~TImage directly.
Instead, use the delete keyword on the object, which causes ~TImage to be invoked
automatically.
__fastcall virtual ~TImage(void);

TImage::TImage
TImage
TImage creates a new TImage object.
__fastcall virtual TImage(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TGraphicControl

TImage example
TImage

TImageList
Hierarchy Properties Methods Events See also
The TImageList component is a collection of same-sized images, each of which can be referred to by its
index.

Header
vcl/controls.hpp
Description
Image lists are used to efficiently manage large sets of icons or bitmaps. All images in an image
list are contained in a single, wide bitmap in screen device format. An image list may also
include a monochrome bitmap that contains masks used to draw images transparently (icon
style).
The image list is capable of holding a large number of same sized images and retrieving them
via their index within the range 0 to n - 1. The image list also has methods to facilitate storing,
retrieving, and drawing of the stored images.
The TImageList is derived from TCustomImageList and exposes many of the protected
properties and methods of the TCustomImageList.

TImageList properties
TImageList Alphabetically Legend

Derived from TCustomImageList
AllocBy
BkColor
BlendColor

Count
DragCursor

Dragging
DrawingStyle
Handle
Height
ImageType
Masked
ShareImages
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TImageList properties
TImageList By object Legend

AllocBy
BkColor
BlendColor

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
Count

DesignInfo
DragCursor

Dragging
DrawingStyle
Handle
Height
ImageType
Masked
Name

Owner
ShareImages
Tag
Width

TImageList events
TImageList Alphabetically Legend

Derived from TCustomImageList
OnChange

TImageList events
TImageList By object Legend

OnChange

TImageList methods
TImageList Alphabetically

In TImageList
~TImageList
TImageList

Derived from TCustomImageList
Add
AddIcon
AddImages
AddMasked
Assign
BeginDrag
Clear
Delete
DragLock
DragMove
DragUnlock
Draw
DrawOverlay
EndDrag
FileLoad
GetBitmap
GetHotSpot
GetIcon
GetImageBitmap
GetMaskBitmap
GetResource
HandleAllocated
HideDragImage
Insert
InsertIcon
InsertMasked
Move
Overlay
RegisterChanges
Replace
ReplaceIcon
ReplaceMasked
ResourceLoad
SetDragImage
ShowDragImage
UnRegisterChanges

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TImageList methods
TImageList By object

~TImageList
AddIcon
AddImages
AddMasked
Add
Assign
BeginDrag
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
Delete
DestroyComponents
Destroying
Dispatch
DragLock
DragMove
DragUnlock
DrawOverlay
Draw
EndDrag
FieldAddress
FileLoad
FindComponent
FreeInstance
FreeNotification
Free
GetBitmap
GetHotSpot
GetIcon
GetImageBitmap
GetMaskBitmap
GetParentComponent
GetResource
HandleAllocated
HasParent
HideDragImage
InheritsFrom
InitInstance
InsertComponent
InsertIcon
InsertMasked
Insert
InstanceSize
MethodAddress

MethodName
Move
NewInstance
Overlay
RegisterChanges
RemoveComponent
ReplaceIcon
ReplaceMasked
Replace
ResourceLoad
SetDragImage
ShowDragImage
TImageList
UnRegisterChanges

TImageList::~TImageList
TImageList
~TImageList frees the memory associated with the TImageList object. Do not call ~TImageList
directly. Instead, use the delete keyword on the object, which causes ~TImageList to be invoked
automatically.
__fastcall virtual ~TImageList(void);

TImageList::TImageList
TImageList
TImageList creates a new TImageList object.
__fastcall virtual TImageList(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TCustomImageList

TImageList example
TImageList

TIndexDef
Hierarchy Properties Methods See also
The TIndexDef object is an index definition that describes an index in a database table.
Header
vcl/dbtables.hpp
Description
Use the properties and methods of an index definition to:
• Determine the name of an index.
• Identify the fields that make up the index, or the dBASE expression that orders the index.
• Determine the characteristics of the index.
TIndexDef is used by TTable objects when creating or managing the indexes of a database
table.

TIndexDef properties
TIndexDef Alphabetically Legend

In TIndexDef
Expression
Fields
Name
Options
Source

TIndexDef properties
TIndexDef By object Legend

Expression
Fields
Name
Options
Source

TIndexDef::Expression
TIndexDef See also
Expression contains the string that is a dBASE key expression.
__property System::AnsiString Expression;
Description
Read Expression to learn the key expression of a dBASE expression index.
A key expression for a dBASE table is a field name, or a combination of field names, functions,
and operators that specifies how the index orders records in the table. If the table is not a
dBASE table, Expression is an empty string.

If the Options property set does not contain the value ixExpression, the Expression property
string returned is an empty string. To learn the fields in an index that is not a dBASE expression
index, use the Fields property.
Note
For more information about key expressions, see your dBASE documentation.

TIndexDef::Fields
TIndexDef See also
Fields identifies the fields that comprise the index.
__property System::AnsiString Fields;
Description
Read Fields to determine the fields that make up the index. The string returned can be either the
names of the fields, or the numbers of the field. When numbers are used, the numbers
correspond to the physical field numbers in the table; Multiple fields in the string are separated
by semicolons (“;”).

If the index is based on a dBASE key expression, the Fields property does not specify the fields
that make up the index. Thus, if the Options property set contains the ixExpression value, Fields
returns an empty string. To determine the specification of a dBASE expression index, use the
Expression property instead.

TIndexDef::Name
TIndexDef See also Example
Name identifies the name of the index definition.
__property System::AnsiString Name;
Description
Use Name to determine the name of the index. This value is the name used by the physical
database tables to identify the index.
Note
For dBASE maintained indexes, Name refers to the tag name of the index. For Paradox tables,
the Name of the primary key is an empty string.

TIndexDef::Options
TIndexDef See also
Options describes the characteristics of the index.
__property TIndexOptions Options;
Description
Read Options to learn the attributes of the index. Options is a set, which can be empty, or can
contain one or more of these values:
Value Description

ixPrimary The index is the primary index of the table.
ixUnique Each value in the index is unique; there are no duplicates.
ixDescending The index is in descending order.
ixExpression The index order depends of a dBASE key expression.
ixCaseInsensitive The index is case insensitive.
Note
Different database drivers may support only a subset of these options. For example, with dBASE
tables, ixCaseInsensitive is not supported.

TIndexDef::Source
TIndexDef See also
Source contains the name of a dBASE maintained index.
__property System::AnsiString Source;
Description
When the table uses dBASE .MDX indexes, Name indicates the index tag name and Source is
the name of the index file. Source is applicable to dBASE table indexes only.

TIndexDef methods
TIndexDef Alphabetically

In TIndexDef
~TIndexDef
TIndexDef

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIndexDef methods
TIndexDef By object

~TIndexDef
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TIndexDef

TIndexDef::TIndexDef
TIndexDef See also
Create creates an instance of TIndexDef.
__fastcall TIndexDef(TIndexDefs* Owner, const System::AnsiString Name,
const System::AnsiString Fields, TIndexOptions Options);

Description
Applications should not call Create directly. The constructor for a TIndexDef is called by a
TIndexDefs object when it adds a new index to its list. To create a new TIndexDef object, call the
Add method of the appropriate TIndexDefs object.
Create assigns the Name, Fields, and Options parameter values to the properties of the same
names. The Owner parameter is the TIndexDefs object that contains all the index definitions for
the table.

TIndexDef::~TIndexDef
TIndexDef See also
Destroy destroys an instance of TIndexDef.
__fastcall virtual ~TIndexDef(void);
Description
Never call the Destroy method for TIndexDef. The TIndexDefs object that owns the index definition
destroys it by calling the Free method. Free verifies that the TIndexDef object is not already freed, and
only then calls Destroy.
Destroy removes the index definition from the Items property of the TIndexDefs object that is the
owner of this index definition before calling the inherited destructor.

Accessibility
Read-only

Hierarchy

TObject

TIndexDef example
TIndexDef

TIndexDefs
Hierarchy Properties Methods See also
The TIndexDefs object holds the list of available index definitions for a table.
Header
vcl/dbtables.hpp
Description
Use the properties and methods of TIndexDefs to:
• Access a specific index definition.
• Determine how many index definitions this TIndexDefs object contains.
• Add or delete index definitions.
• Copy all index definitions from one TIndexDefs to another.
TIndexDefs is used by TTable or TMemoryDataSet when creating or managing the indexes of a
database table.

TIndexDefs properties
TIndexDefs Alphabetically Legend

In TIndexDefs
Count
Items

Updated

TIndexDefs properties
TIndexDefs By object Legend

Count
Items

Updated

TIndexDefs::Count
TIndexDefs See also
Count specifies the number of index definitions in this TIndexDefs object.
__property int Count;
Description
Read Count to learn the number of indexes associated with the dataset. To iterate through all
the index definitions in the Items array, use Count to control the loop variable.
Count is a read-only property. The value of Count is changed indirectly when adding or deleting
index definitions.

TIndexDefs::Items
TIndexDefs See also
Items is an array of pointers to the index definitions that describe each index of a table.
__property TIndexDef* Items[int Index];
Description
Use Items to access a particular index definition. Specify the index definition to access with the
Index parameter. Index is an integer identifying the index definition’s position in the list of index
definitions, in the range 0 to Count - 1.
Items is a read-only property. The value of Items is changed indirectly when adding or deleting
index definitions.

TIndexDefs::Updated
TIndexDefs See also Example
Updated indicates that the index definitions in the Items array are known to correctly match the
indexes in the underlying database.
Description
Check Updated to determine whether the index definitions may be out of date. When Updated is
false, call the Update method to re-read the index definitions from the underlying database.

TIndexDefs methods
TIndexDefs Alphabetically

In TIndexDefs
~TIndexDefs
Add
Assign
Clear
FindIndexForFields
GetIndexForFields
IndexOf
TIndexDefs
Update

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIndexDefs methods
TIndexDefs By object

~TIndexDefs
Add
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
Dispatch
FieldAddress
FindIndexForFields
FreeInstance
Free
GetIndexForFields
IndexOf
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TIndexDefs
Update

TIndexDefs::~TIndexDefs
TIndexDefs See also
~TIndexDefs frees the memory associated with the TIndexDefs object. Do not call ~TIndexDefs
directly. Instead, use the delete keyword on the object, which causes ~TIndexDefs to be invoked
automatically.
__fastcall virtual ~TIndexDefs(void);
Description
After calling the destructor of its parent object, ~TIndexDefs removes all the index definitions from
the Items property array and frees Items.

TIndexDefs::Add
TIndexDefs See also
Add creates a new index definition object and adds it to the Items property of this TIndexDefs
object.
void __fastcall Add(const System::AnsiString Name, const System::
AnsiString Fields, TIndexOptions Options);

Description
Applications should not need to call this method. When the dataset is opened, it calls Add to fill
the Items array.
To add an index to the dataset, use the AddIndex method of the TTable object. To change the
array of indexes when a new index has been added to the dataset, use the Update method
instead.
Add creates an index definition and assigns the values passed in the Name, Fields, and Options
parameters to the TIndexDef properties of the same names.
If an index definition with same name already exists, an EDatabaseError exception is raised.
The TIndexOptions type is the set of values that can be used in creating a new index. Options is
a set, which can be empty, or can contain one or more of these values:
Value Description

ixPrimary The index is the primary index of the table.
ixUnique Each value in the index is unique; there are no duplicates.
ixDescending The index is in descending order.
ixExpression The index order depends of a dBASE key expression.
ixCaseInsensitive The index is case insensitive.
Note
Different database drivers may support only a subset of these options. For example, with dBASE
tables, ixCaseInsensitive is not supported.

TIndexDefs::Assign
TIndexDefs See also
Assign creates a new set of TIndexDef objects in Items array from the IndexDefs parameter.
void __fastcall Assign(TIndexDefs* IndexDefs);
Description
Use Assign to copy one TIndexDefs object to another.
Assign removes all the index definitions for the Items property array and then copies the index
definitions to Items. Specify the TIndexDefs object as the value of the IndexDefs parameter.

TIndexDefs::Clear
TIndexDefs See also
Clear removes and frees all the index definitions in the Items property.
void __fastcall Clear(void);
Description
Call Clear to remove all index definitions from the list of index definitions held in the Items array.

TIndexDefs::FindIndexForFields
TIndexDefs See also
FindIndexForFields locates an index definition in the Items array.
TIndexDef* __fastcall FindIndexForFields(const System::AnsiString
Fields);

Description
Use FindIndexForFields to search for the index that starts with the fields specified in the Fields
parameter. If more than one field comprises the index, separate the fields with semicolons.
FindIndexForFields returns the index definition that exactly matches the specified fields in the
order specified, if it exists. If no exact match is found, FindIndexForFields returns the first index
that begins with the indicated fields. If no match can be found, FindIndexForFields raises an
exception.
To restrict the search to case insensitive indexes, use the GetIndexForFields method.

TIndexDefs::GetIndexForFields
TIndexDefs See also
GetIndexForFields locates an index definition in the Items array.
TIndexDef* __fastcall GetIndexForFields(const System::AnsiString
Fields, bool CaseInsensitive);

Description
Use GetIndexForFields to search for the index that starts with the fields specified in the Fields
parameter. If more than one field comprises the index, separate the fields with semicolons. Set
the CaseInsensitive parameter to true to restrict the search to only the case insensitive indexes
in the Items array.
GetIndexForFields returns the index definition that exactly matches the specified fields in the
order specified, if it exists. If no exact match is found, GetIndexForFields returns the first index
that begins with the indicated fields. If no match can be found, GetIndexForFields returns NULL.
Note
When CaseInsensitive is true, descending indexes are considered even if they are case-
sensitive.

TIndexDefs::IndexOf
TIndexDefs See also
IndexOf returns the position of the index definition in the Items property array.
int __fastcall IndexOf(const System::AnsiString Name);
Description
Call IndexOf to determine the position of the index definition in the Items property array. IndexOf
returns a value from zero (the first index definition) to Count - 1. Specify the name of the index
as the value of the Name parameter.
If no index definition with the specified Name, the return value is -1.
Note
IndexOf finds an index based on the Name of the index. FindIndexForFields locates an index
based on the names of the fields that comprise the index.

TIndexDefs::TIndexDefs
TIndexDefs See also
TIndexDefs creates an instance of TIndexDefs.
__fastcall TIndexDefs(TTable* Table);
Description
Applications should not call TIndexDefs directly. TIndexDefs is created automatically by the
dataset to specify the indexes for the table.
After calling the constructor of its parent object, TIndexDefs creates the Items property array.

TIndexDefs::Update
TIndexDefs See also
Update refreshes index definitions in Items to reflect the current state of the table.
void __fastcall Update(void);
Description
Call Update when the set of indexes for the table may have changed. Update refreshes the
index definitions without opening the table.

Accessibility
Read-only

Hierarchy

TObject

TIndexDefs example
TIndexDefs

TIniFile
Hierarchy Properties Methods See also
TIniFile is a low-level wrapper for the 16-bit Windows 3.x INI file system that enables storage
and retrieval of application-specific information and settings in an application-specific INI file.
Header
vcl/inifiles.hpp
Description
TIniFile enables handling the storage and retrieval of application-specific information and
settings in a Windows 3.x INI file. The INI file text format is the standard way for Windows 3.x
applications to store and retrieve application settings from session to session. An INI file stores
information in logical groupings, called “sections.” For example, the WIN.INI file contains a
section called “[Desktop]”. Within each section, actual data values are stored in named keys.
Keys take the form:
The FileName passed to a TIniFile object when it is created is the name of the INI file for the
application.
TIniFile provides a property and methods for reading from and writing to specific INI files, and for
deleting entire sections in an INI file. In addition to these properties and methods, TIniFile
inherits the methods of TObject.
Note
TIniFile is supported only for migration purposes and backward compatibility. Windows 95/NT
replaces INI files with a system registry where all applications store and retrieve their settings.
Applications that target Windows 95/NT should use the system registry instead of INI files.
Borland C++Builder provides two objects for handling the system registry. TRegistry
encapsulates the system registry. TRegIniFile also encapsulates the registry, but provides an
easier migration path for existing Windows 3.1 applications that are upgraded to Windows 95/
NT.

TIniFile properties
TIniFile Alphabetically Legend

In TIniFile
FileName

TIniFile properties
TIniFile By object Legend

FileName

TIniFile::FileName
TIniFile See also
Contains the name of the INI file from which to read and to which to write application-specific
information.
__property System::AnsiString FileName;
Description
Use FileName to examine the name of the INI file used by the application for its application
settings and information. The methods that read and write INI file information automatically
handle opening and closing the file specified by FileName.
Note
Usually INI files are stored in the \WINDOWS directory. To work with an INI file in another
location, specify the full path name of the file in the FileName parameter passed to the TIniFile::
TIniFile method

TIniFile methods
TIniFile Alphabetically

In TIniFile
~TIniFile
DeleteKey
EraseSection
ReadBool
ReadInteger
ReadSection
ReadSections
ReadSectionValues
ReadString
TIniFile
WriteBool
WriteInteger
WriteString

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIniFile methods
TIniFile By object

~TIniFile
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DeleteKey
Dispatch
EraseSection
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
ReadBool
ReadInteger
ReadSections
ReadSection
ReadSectionValues
ReadString
TIniFile
WriteBool
WriteInteger
WriteString

TIniFile::~TIniFile
TIniFile
~TIniFile frees the memory associated with the TIniFile object. Do not call ~TIniFile directly.
Instead, use the delete keyword on the object, which causes ~TIniFile to be invoked
automatically.
__fastcall virtual ~TIniFile(void);

TIniFile::DeleteKey
TIniFile See also
Erases the data value that is associated with an INI file entry.
void __fastcall DeleteKey(const System::AnsiString Section, const
System::AnsiString Ident);

Description
Call DeleteKey to erase a data value associated with an INI file entry. Section is string containing
the name of an INI file section, and Ident is a string containing the name of the key from for
which to set a NULL value.
Note
Attempting to erase a data value in a non-existent section or attempting to erase data from a
non-existent key are not errors. In these cases, DeleteKey creates the section and key and sets
its initial value to an empty value.

TIniFile::EraseSection
TIniFile See also
Erases an entire section of an INI file.
void __fastcall EraseSection(const System::AnsiString Section);
Description
Call EraseSection to remove a section, all its keys, and their data values from an INI file. Section
identifies the INI file section to remove. If a section cannot be removed, an exception is raised.

TIniFile::ReadBool
TIniFile See also
Retrieves a Boolean value from an INI file.
bool __fastcall ReadBool(const System::AnsiString Section, const
System::AnsiString Ident, bool Default);

Description
Call ReadBool to read a Boolean value from an INI file. Section identifies the section in the file
that contains the desired key. Ident is the name of the key from which to retrieve the Boolean
value.
• Section does not exist.
• Key does not exist.
• Data value for the key is not assigned.

TIniFile::ReadInteger
TIniFile See also
Retrieves an integer value from an INI file.
long __fastcall ReadInteger(const System::AnsiString Section, const
System::AnsiString Ident, long Default);

Description
Call ReadInteger to read an integer value from an INI file. Section identifies the section in the file
that contains the desired key. Ident is the name of the key from which to retrieve the value.
Default is the integer value to return if the:
• Section does not exist.
• Key does not exist.
• Data value for the key is not assigned.

TIniFile::ReadSection
TIniFile See also
Reads all the key names from a specified section of an INI file into a string list.
void __fastcall ReadSection(const System::AnsiString Section, Classes:
:TStrings* Strings);

Description
Call ReadSection to retrieve the names of all keys within a specified section of an INI file into a
string list object.
Section identifies the section from which to retrieve a list of key names. Strings specifies the
string object to hold the retrieved names. Strings can point to a TString object such as a string
list, or to a component property, such as Items for a TListBox component, that is a TString object
itself.

TIniFile::ReadSections
TIniFile See also
Reads the names of all sections in an INI file into a string list.
void __fastcall ReadSections(Classes::TStrings* Strings);
Description
Call ReadSections to retrieve the names of all sections in an INI file into a string list object.
Strings specifies the string object to hold the retrieved names. Strings can point to a TString
object, or to a component property, such as Items for a TListBox component, that is a TString
object itself.

TIniFile::ReadSectionValues
TIniFile See also
Reads the values from all keys within a section of an INI file into a string list.
void __fastcall ReadSectionValues(const System::AnsiString Section,
Classes::TStrings* Strings);

Description
Call ReadSectionValues to read the values from all keys within a specified section of an INI file
into a string list object. Section identifies the section in the file from which to read key values.
Strings is the string list object into which to read the values.
Strings specifies the string object to hold the retrieved names. Strings can point to a TString
object, or to a component property, such as Items for a TListBox component, that is a TString
object itself.

TIniFile::ReadString
TIniFile See also
Retrieves a string value from an INI file.
System::AnsiString __fastcall ReadString(const System::AnsiString
Section, const System::AnsiString Ident, const System::AnsiString
Default);

Description
Call ReadString to read a string value from an INI file. Section identifies the section in the file
that contains the desired key. Ident is the name of the key from which to retrieve the value.
Default is the string value to return if the:
• Section does not exist.
• Key does not exist.
• Data value for the key is not assigned.

TIniFile::TIniFile
TIniFile See also
Creates a TIniFile object for an application.
__fastcall TIniFile(const System::AnsiString FileName);
Description
Call TIniFile to construct a TIniFile object for an application.
Note
Usually INI files are stored in the \WINDOWS directory. To work with an INI file in another
location, specify the full path name of the file in FileName.

TIniFile::WriteBool
TIniFile See also
Writes a Boolean value to an INI file.
void __fastcall WriteBool(const System::AnsiString Section, const
System::AnsiString Ident, bool Value);

Description
Call WriteBool to write a Boolean value to an INI file. Section identifies the section in the file that
contain the key to which to write. Ident is the name of the key for which to set a value. Value is
the Boolean value to write.
Note
Attempting to write a data value to a non-existent section or attempting to write data to a non-
existent key are not errors. In these cases, WriteBool creates the section and key and sets its
initial value to Value.

TIniFile::WriteInteger
TIniFile See also
Writes an integer value to an INI file.
void __fastcall WriteInteger(const System::AnsiString Section, const
System::AnsiString Ident, long Value);

Description
Call WriteInteger to write an integer value to an INI file. Section identifies the section in the file
that contain the key to which to write. Ident is the name of the key for which to set a value. Value
is the integer value to write.
Note
Attempting to write a data value to a non-existent section or attempting to write data to a non-
existent key are not errors. In these cases, WriteInteger creates the section and key and sets its
initial value to Value.

TIniFile::WriteString
TIniFile See also
Writes a string value to an INI file.
void __fastcall WriteString(const System::AnsiString Section, const
System::AnsiString Ident, const System::AnsiString Value);

Description
Call WriteString to write a string value to an INI file. Section identifies the section in the file that
contain the key to which to write. Ident is the name of the key for which to set a value. Value is
the string value to write.
Note
Attempting to write a data value to a non-existent section or attempting to write data to a non-
existent key are not errors. In these cases, WriteString creates the section and key and sets its
initial value to Value.

Accessibility
Read-only

Hierarchy

TObject

TIniFile example
TIniFile

TInplaceEdit
Hierarchy Properties Methods See also
TInplaceEdit provides text editing capabilities for grid controls.
Header
vcl/grids.hpp
Description
TInplaceEdit is a helper object tailored to work with grid controls. It provides a multiline editing
window that appears in the appropriate cell of a grid control. TInplaceEdit provides services so
that the grid can influence the response of the control to user actions, and can move or resize
the editing window as cells are moved or resized. TInplaceEdit is not a data-aware control, but
can work with a data-aware grid such as TDBGrid, allowing the grid to fetch or post the text, and
allowing the grid to impose a mask to limit the text of the edit control to data that is valid.

TInplaceEdit properties
TInplaceEdit Alphabetically Legend

In TInplaceEdit
Grid

Derived from TCustomMaskEdit
EditText

IsMasked
Text

Derived from TCustomEdit
Modified
SelLength
SelStart
SelText

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TInplaceEdit properties
TInplaceEdit By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
EditText
Enabled

Grid
Handle

Height
HelpContext
Hint

IsMasked
Left
Modified
Name

Owner
Parent
SelLength
SelStart
SelText
ShowHint

Showing
TabOrder
TabStop
Tag
Text
Top
Visible
Width

TInplaceEdit::Grid
TInplaceEdit See also
Grid specifies the grid object that owns and controls this TInplaceEdit.
__property TCustomGrid* Grid;
Description
Read Grid to obtain the grid object for which TInplaceEdit provides editing services. TInplaceEdit
uses the Grid property so that it can receive information about the text to be edited and so that it
can pass on relevant events.

TInplaceEdit methods
TInplaceEdit Alphabetically Legend

In TInplaceEdit
~TInplaceEdit

BoundsChanged
CreateParams
DblClick
Deselect
Hide
Invalidate
KeyDown
KeyPress
KeyUp
Move
PosEqual
SetFocus
TInplaceEdit
UpdateContents
UpdateLoc
WndProc

Derived from TCustomMaskEdit
Clear
GetTextLen
ValidateEdit

Derived from TCustomEdit
ClearSelection
CopyToClipboard
CutToClipboard
GetSelTextBuf
PasteFromClipboard
SelectAll
SetSelTextBuf

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
Update
UpdateControlState

Derived from TControl
BeginDrag

BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TInplaceEdit methods
TInplaceEdit By object Legend

~TInplaceEdit
Assign
BeginDrag

BoundsChanged
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClearSelection
Clear
ClientToScreen
ContainsControl

ControlAtPos
CopyToClipboard

CreateParams
CutToClipboard
DblClick
DefaultHandler
Deselect
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress

FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetSelTextBuf
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate

KeyDown
KeyPress

KeyUp
MethodAddress
MethodName
Move
NewInstance
PaintTo
PasteFromClipboard
Perform
PosEqual
Realign
Refresh
RemoveComponent

RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SelectAll
SendToBack
SetBounds
SetFocus
SetSelTextBuf
SetTextBuf
Show
TInplaceEdit

UpdateContents
UpdateControlState
UpdateLoc
Update

ValidateEdit
WndProc

TInplaceEdit::~TInplaceEdit
TInplaceEdit
~TInplaceEdit frees the memory associated with the TInplaceEdit object. Do not call ~
TInplaceEdit directly. Instead, use the delete keyword on the object, which causes ~
TInplaceEdit to be invoked automatically.
__fastcall virtual ~TInplaceEdit(void);

TInplaceEdit::BoundsChanged
TInplaceEdit See also
BoundsChanged sets a slight indentation in the text area of the window after the grid repositions
the edit control.
virtual void __fastcall BoundsChanged(void);
Description
BoundsChanged re-initializes the editing window after the control has been moved or resized. It
creates a slight indentation in the text formatting area so that the contents of the editor do not
appear to crowd the edges of the cell.
BoundsChanged is exposed as a protected method so that derived objects can add further
enhancements when the editing window changes size or location.

TInplaceEdit::CreateParams
TInplaceEdit See also
The CreateParams method initializes a window-creation parameter record passed in the Params
parameter.
virtual void __fastcall CreateParams(Controls::TCreateParams &Params);
Description
The CreateWnd method calls CreateParams to initialize the parameters it passes to
CreateWindowHandle. TInplaceEdit overrides the inherited method to specify a multiline edit
control.

TInplaceEdit::DblClick
TInplaceEdit See also
DblClick informs the grid when the user double-clicks in the edit window.
virtual void __fastcall DblClick(void);
Description
DblClick is called when the user double-clicks in the edit window. DblClick simply passes the
event on to the grid. The grid must interpret and respond to the double-click. If the edit window
needs to respond to the double-click, the grid must trigger the response by calling a method or
setting a property of the TInplaceEdit.

TInplaceEdit::Deselect
TInplaceEdit See also
Deselect removes the selection from the edit window.
void __fastcall Deselect(void);
Description
Use Deselect to cause all text in the edit window to be unselected. Deselect simply changes the
selection, it does not change the actual text.

TInplaceEdit::Hide
TInplaceEdit See also Example
Hide hides the edit control window and moves input focus to the grid.
void __fastcall Hide(void);
Description
Hide makes the edit control window invisible without destroying it. Hide also moves the input
focus from the editor window to the grid, so that the invisible window does not swallow keyboard
events.
The grid calls Hide to hide the edit window when changing out of edit mode. It also calls Hide
when scrolling the cell that is being edited out of the grid window.

TInplaceEdit::Invalidate
TInplaceEdit See also Example
Invalidate invalidates the edit window and the corresponding portion of the grid window.
void __fastcall Invalidate(void);
Description
Invalidate ensures that the portion of the grid window under the edit control is invalidated at the
same time as the edit window. This is important when the edit window is hidden or destroyed so
that the grid window can repaint the cell that was covered by the edit window.

TInplaceEdit::KeyDown
TInplaceEdit See also
KeyDown overrides the inherited method to pass many keystrokes on to the grid.
virtual void __fastcall KeyDown(unsigned short &Key, Classes::
TShiftState Shift);

Description
When the user presses a key, KeyDown checks whether the KeyDown event should be
processed by the edit control or the grid. The Enter key is always passed on to the grid. The F2
key calls Deselect to remove the current selection. Navigation keystrokes are passed on to the
grid when the movement cannot be accomodated within the text window. For example, if the
user types Left when the cursor is already at the left edge of the edit window, the keystroke is
passed to the grid which moves focus to the previous cell. If the cursor is in the middle of a line,
the keystroke is processed by the edit window, which moves left a single character.
KeyDown calls the OnKeyDown event handler for the grid, if there is one, before calling the
inherited KeyDown for the edit control.

TInplaceEdit::KeyPress
TInplaceEdit See also
KeyPress overrides the inherited method to give the grid first chance at handling the keystroke.
virtual void __fastcall KeyPress(char &Key);
Description
KeyPress allows the grid to handle the keystroke, and only processes keystrokes that the grid
does not fully handle. If the grid is not in edit mode after handling the keystroke, KeyPress
throws away the keystroke. Keystroke processes the Return Key and calls the inherited method
to handle all other unprocessed keystrokes.
Pressing the Return key causes KeyPress to select all the text, unless it is already selected, in
which case it causes KeyPress to deselect all the text.

TInplaceEdit::KeyUp
TInplaceEdit See also
KeyUp overrides the inherited method to pass all KeyUp events to the grid.
virtual void __fastcall KeyUp(unsigned short &Key, Classes::
TShiftState Shift);

Description
The inplace edit control does not process the KeyUp event at all. It simply passes this event on
to the grid, which may or may not process the event.

TInplaceEdit::Move
TInplaceEdit See also
Move changes the position of the edit window and repaints the contents.
void __fastcall Move(const Windows::TRect &Loc);
Description
The grid calls Move to move the edit window to the indicated rectangle when the corresponding
cell moves or resizes. The position of Loc is relative to the grid’s client area.

TInplaceEdit::PosEqual
TInplaceEdit See also
PosEqual indicates whether the edit window has the size and position indicated by Rect.
bool __fastcall PosEqual(const Windows::TRect &Rect);
Description
Use PosEqual to determine if the edit window occupies a particular rectangle, where Rect is
given in global coordinates. PosEqual can be used to determine whether the inplace edit control
represents a particular cell in the grid, by checking the bounding rectangle of the cell.

TInplaceEdit::SetFocus
TInplaceEdit See also Example
SetFocus gives the editor window input focus if it is visible.
void __fastcall SetFocus(void);
Description
Use SetFocus to cause keyboard events to go to the editor window. Focus will not move to the
window if it is hidden by a call to the Hide method.

TInplaceEdit::TInplaceEdit
TInplaceEdit See also
TInplaceEdit is the constructor for TInplaceEdit.
__fastcall virtual TInplaceEdit(Classes::TComponent* AOwner);
Description
TInplaceEdit makes sure that the control has a border to provide a visual indication that the
control exists.

TInplaceEdit::UpdateContents
TInplaceEdit See also
UpdateContents sets the EditMask and Text to the values specified by the grid.
virtual void __fastcall UpdateContents(void);
Description
UpdateContents calls the GetEditMask and GetEditText methods of the grid, and sets the
EditMask and Text properties accordingly. UpdateContents allows the grid to bring up the
inplace edit control with the contents of a particular cell, and to impose a mask to restrict the
editor to valid input for the particular cell.

TInplaceEdit::UpdateLoc
TInplaceEdit See also
UpdateLoc changes the position of the edit window but does not repaint the contents.
void __fastcall UpdateLoc(const Windows::TRect &Loc);
Description
The grid calls UpdateLoc to move the edit window when the grid is moved. Unlike the Move
method, UpdateLoc does not invalidate the edit window to cause a repaint.

TInplaceEdit::WndProc
TInplaceEdit See also
WndProc supplements the inherited method to add special processing to some Windows
messages.
virtual void __fastcall WndProc(Messages::TMessage &Message);
Description
WndProc is the first method that receives messages for a Borland C++Builder control.
WndProc for TInplaceEdit passes focus events on to the grid. It calls the inherited method for all
other Windows messages. WndProc converts mouse clicks to double clicks when the first click
was received by the grid within the double-click time period.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomEdit
TCustomMaskEdit

TInplaceEdit example
TInplaceEdit

TIntegerField
Hierarchy Properties Methods Events See also
A TIntegerField object represents a signed 32-bit integer field in a dataset.
Header
vcl/dbtables.hpp
Description
Integer fields can hold values in the range -2,147,483,648 to 2,147,483,647, and are frequently
used to hold values that are large, signed whole numbers.
TIntegerField introduces new properties to convert between integer values and other data types,
and to limit the range of valid integers that the field will permit. As a descendant of
TNumericField, TIntegerField includes many properties, methods, and events that are useful for
managing the value and properties of a numeric field in a database.
TIntegerField is the direct ancestor of three other field types that represent whole numbers:
TAutoIncField, TSmallintField, and TWordField.

TIntegerField properties
TIntegerField Alphabetically Legend

In TIntegerField
MaxValue
MinValue
Value

Derived from TNumericField
DisplayFormat
EditFormat

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TIntegerField properties
TIntegerField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayFormat
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditFormat

EditMaskPtr
EditMask
FieldKind

FieldName
FieldNo

Index
IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
MaxValue
MinValue
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Value
Visible

TIntegerField::MaxValue
TIntegerField See also
MaxValue limits the maximum value in the integer field.
__property long MaxValue;
Description
Use MaxValue to get or set the maximum value that can be entered into the field. If a value
greater than MaxValue is entered, an EDatabaseError exception is raised.
Newly created integer fields have a MaxValue of 2147483647. The MaxValue of an integer field
cannot exceed this value.

TIntegerField::MinValue
TIntegerField See also
MinValue limits the minimum value in the integer field.
__property long MinValue;
Description
Use MinValue to get or set the minimum value that can be entered into the field. If a value
smaller than MinValue is entered, an EDatabaseError exception is raised.
Newly created integer fields have a MinValue of -2147483648. The MinValue of an integer field
cannot be less than this value.

TIntegerField::Value
TIntegerField See also
Value is the actual data in the integer field.
__property long Value;
Description
Use Value to read data directly from and write data directly to an integer field. Using the Value
property is the same as using the AsInteger property. Use Value when you know the field
component is a 32-bit integer field. Use AsInteger when working with a generic field component.

TIntegerField events
TIntegerField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TIntegerField events
TIntegerField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TIntegerField methods
TIntegerField Alphabetically

In TIntegerField
~TIntegerField
IsValidChar
TIntegerField

Derived from TField
Assign
AssignValue
Clear
FocusControl
GetData
SetData
SetFieldType

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TIntegerField methods
TIntegerField By object

~TIntegerField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TIntegerField

TIntegerField::~TIntegerField
TIntegerField
~TIntegerField frees the memory associated with the TIntegerField object. Do not call ~
TIntegerField directly. Instead, use the delete keyword on the object, which causes ~
TIntegerField to be invoked automatically.
__fastcall virtual ~TIntegerField(void);

TIntegerField::IsValidChar
TIntegerField See also
IsValidChar determines if the specified character is valid in an integer field.
virtual bool __fastcall IsValidChar(char Ch);
Description
Call IsValidChar to determine if a character specified as the value of the InputChar is a valid
character in the string representation of an integer field.
Valid characters for an integer field are +, -, and the digits from 0 to 9. If InputChar is one of
these characters, IsValidChar returns true. For all other characters, IsValidChar returns false.
IsValidChar is used by many data-aware controls to determine if a particular character entered in
the field is valid for the field.

TIntegerField::TIntegerField
TIntegerField See also
TIntegerField creates an instance of TIntegerField.
__fastcall virtual TIntegerField(Classes::TComponent* AOwner);
Description
Call TIntegerField to create and initialize an instance of TIntegerField. After calling the
constructor of its parent object, TIntegerField sets the DataType to ftInteger, the MinValue to -
2147483648, and the MaxValue to 2147483647.
It is seldom necessary to call TIntegerField directly, because an integer field component is
instantiated automatically for all integer fields in a dataset.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField
TNumericField

TIntegerField example
TIntegerField

TInternalImage
Hierarchy Methods See also
TInternalImage is the abstract base class for classes that contain images used for graphics
objects.
Header
vcl/graphics.hpp
Description
TInternalImage is used as a base class for classes that hold the internal representation of
graphical images such as bitmaps and icons. TInternalImage is an abstract class. Its descendent
classes are used internally by Borland C++Builder graphics objects, and are automatically
created by their associated graphics objects.

TInternalImage methods
TInternalImage Alphabetically

In TInternalImage
~TInternalImage
TInternalImage

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TInternalImage methods
TInternalImage By object

~TInternalImage
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TInternalImage

TInternalImage::~TInternalImage
TInternalImage
~TInternalImage frees the memory associated with the TInternalImage object. Do not call ~
TInternalImage directly. Instead, use the delete keyword on the object, which causes ~
TInternalImage to be invoked automatically.
__fastcall virtual ~TInternalImage(void);

TInternalImage::TInternalImage
TInternalImage
TInternalImage creates a new TInternalImage object.
__fastcall TInternalImage(void);

Hierarchy

TObject

TInternalImage example
TInternalImage

TLabel
Hierarchy Properties Methods Events See also
TLabel is a nonwindowed control that displays text on a form. This text can be used to label
anther control, and can set focus to that control when the user types an accelerator key.
Header
vcl/stdctrls.hpp
TLabel is not a descendant of TWinControl, so it does not have its own window and can’t
receive direct input from the keyboard.
To add an object to a form that displays text that a user can scroll or edit, use TEdit.

TLabel properties
TLabel Alphabetically Legend

Derived from TCustomLabel
Alignment
AutoSize
FocusControl
ShowAccelChar
Transparent
WordWrap

Derived from TGraphicControl
Canvas

Derived from TControl
Align
BoundsRect
Caption
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TLabel properties
TLabel By object Legend

Alignment
Align
AutoSize
BoundsRect

Canvas
Caption
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

ControlState
ControlStyle
Cursor
DesignInfo
DragCursor
DragMode
Enabled
FocusControl
Font
Height
Hint
Left
Name

Owner
ParentColor
ParentFont
ParentShowHint
Parent
PopupMenu
ShowAccelChar
ShowHint
Tag
Top
Transparent
Visible
Width
WordWrap

TLabel events
TLabel Alphabetically Legend

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TLabel events
TLabel By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TLabel methods
TLabel Alphabetically

In TLabel
~TLabel
TLabel

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Invalidate
Perform
Refresh
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
Update

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress

MethodName
NewInstance

TLabel methods
TLabel By object

~TLabel
Assign
BeginDrag
BringToFront
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
DefaultHandler
DestroyComponents
Destroying
Dispatch
DragDrop
Dragging
EndDrag
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
GetTextBuf
GetTextLen
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
Perform
Refresh
RemoveComponent
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
TLabel
Update

TLabel::~TLabel
TLabel
~TLabel frees the memory associated with the TLabel object. Do not call ~TLabel directly.
Instead, use the delete keyword on the object, which causes ~TLabel to be invoked
automatically.
__fastcall virtual ~TLabel(void);

TLabel::TLabel
TLabel
TLabel creates a new TLabel object.
__fastcall virtual TLabel(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TGraphicControl
TCustomLabel

TLabel example
TLabel

TList
Hierarchy Properties Methods See also
TList maintains a list of pointers to objects.
Header
vcl/classes.hpp
Description
Use a TList object to store and maintain a list of objects. TList introduces properties and
methods to
• Add or delete the objects in the list.
• Rearrange the objects in the list.
• Locate and access objects in the list.
• Sort the objects in the list.

TList properties
TList Alphabetically Legend

In TList
Capacity
Count
Items

List

TList properties
TList By object Legend

Capacity
Count
Items

List

TList::Capacity
TList See also
Capacity is the allocated size of the array of pointers maintained by the TList object.
__property int Capacity;
Description
Set Capacity to the number of pointers the list will need to contain. When setting the Capacity
property, an EOutOfMemory exception occurs if there is not enough memory to expand the list to
its new size.
Read Capacity to learn number of objects the list can hold without reallocating memory. Don’t
confuse Capacity with the Count property, which is the number of entries in the list that are in
use. The value of Capacity is always greater than or equal to the value of Count. When Capacity
is greater than Count, the unused memory can be reclaimed by setting Capacity to Count.
When an object is added to a list that is already filled to capacity, the Capacity property is
automatically increased. If the value of Capacity is greater than 8, the Capacity of the list is
increased by 16. If the value of Capacity is greater than 4, but less than 9, the Capacity of the list
increases by 8. If the value of Capacity is less than 4, the Capacity of the list grows by 4.
Setting Capacity before adding objects can reduce the number of memory reallocations and
thereby improve performance. For example,
List->Clear;
List->Capacity = Count;
for(int i = 1; i < Count;i++)

List->Add(...);
The assignment to Capacity before the for loop ensures that each of the following Add
operations doesn’t cause the list to be reallocated. Avoiding reallocations on the calls to Add
improves performance and ensures that the Add operations never raise an exception.

TList::Count
TList See also
Count is the number of entries in the list that are in use.
__property int Count;
Description
Read Count to determine the number of entries in the Items array.
Increasing the size of Count will add the necessary number of NULL pointers to the end of the
Items array. Decreasing the size of Count will remove the necessary number of entries from the
end of the Items array.
Count is not always the same as the number of objects referenced in the list. Some of the
entries in the Items array may contain NULL pointers. To remove the NULL pointers and set
Count to the number of entries that contain references to objects, call the Pack method.

TList::Items
TList See also
Items is the array of object references.
__property void * Items[int Index];
Description
Use Items to obtain a pointer to a specific object in the array. The Index parameter indicates the
index of the object, where 0 is the index of the first object, 1 is the index of the second object,
and so on. Set Items to change the reference at a specific location.
Use Items with the Count property to iterate through all of the objects in the list.
Not all of the entries in the Items array need to contain references to objects. Some of the
entries may be NULL pointers. To remove the NULL pointers and reduce the size of the Items
array to the number of objects, call the Pack method.

TList::List
TList See also
List is a pointer to the array of pointers that make up the Items array.
__property PPointerList List;
Description
Use List to gain direct access to the Items array.

TList methods
TList Alphabetically

In TList
~TList
Add
Clear
Delete
Exchange
Expand
First
IndexOf
Insert
Last
Move
Pack
Remove
Sort
TList

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TList methods
TList By object

~TList
Add
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
Delete
Dispatch
Exchange
Expand
FieldAddress
First
FreeInstance
Free
IndexOf
InheritsFrom
InitInstance
Insert
InstanceSize
Last
MethodAddress
MethodName
Move
NewInstance
Pack
Remove
Sort
TList

TList::~TList
TList See also
~TList destroys an instance of TList.
__fastcall virtual ~TList(void);
Do not call ~TList directly in an application. Instead, call Free. Free verifies that the memory for
the TList object is not already freed, and only then calls ~TList.
~TList frees the memory used to store the list of items.

TList::Add
TList See also
Add inserts a new item to the end of a list.
int __fastcall Add(void * Item);
Description
Call Add to insert a new object at the end of the Items array. Add returns the index of the new
item, where the first item in the list has an index of 0.
Add allocates more memory if the Items array already uses up the Capacity of the list object.
Add increases the value of Count to reflect the addition of a new pointer.
Note
Add always inserts the Item pointer at the end of the Items array, even if the Items array
contains NULL pointers.

TList::Clear
TList See also
Clear deletes all items from the list.
void __fastcall Clear(void);
Description
Call Clear to empty the Items array and set the Count to 0. Clear also frees the memory used to
store the Items array and sets the Capacity to 0.

TList::Delete
TList See also
Delete removes the item at the position given by the Index parameter.
void __fastcall Delete(int Index);
Description
Call Delete to remove the item at a specific position from the list. The index is zero-based, so the
first item has an Index value of 0, the second item has an Index value of 1, and so on. Calling
Delete moves up all items in the Items array that follow the deleted item, and reduces the Count.
To remove the reference to an item without deleting the entry from the Items array and changing
the Count, set the Items property for Index to NULL.
Note
Delete does not free up any memory associated with the item. To free the memory that was
used to store a deleted item, set the Capacity property.

TList::Exchange
TList See also
Exchange swaps the position of two items in the Items array.
void __fastcall Exchange(int Index1, int Index2);
Description
Call Exchange to swap the positions of the items at positions Index1 and Index2 of the Items
array. The indexes are zero-based, so the first item in the list has an index value of 0, the
second item has an index value of 1, and so on.

TList::Expand
TList See also
Expand increases the Capacity of the list.
TList* __fastcall Expand(void);
Description
Call Expand to create more space for adding new items to the list. Expand does nothing if the list
is not already filled to Capacity.
If Count = Capacity, Expand increases the Capacity of the list as follows. If the value of Capacity
is greater than 8, Expand increases the Capacity of the list by 16. If the value of Capacity is
greater than 4, but less than 9, the Capacity of the list increases by 8. If the value of Capacity is
less than 4, the Capacity of the list grows by 4.
The returned value is the expanded list object.

TList::First
TList See also
First returns Items[0].
void * __fastcall First(void);
Description
Call First to get the first pointer in the Items array.

TList::IndexOf
TList See also
Index is the index of the first entry in the Items array with the value Item.
int __fastcall IndexOf(void * Item);
Description
Call IndexOf to get the index for an pointer in the Items array. The first item in the array has
index 0, the second item has index 1, and so on. If an item is not in the list, IndexOf returns –1.
If a pointer appears more than once in the array, IndexOf returns the index of the first
appearance.

TList::Insert
TList See also
Insert adds an object to the Items array at the position specified by Index.
void __fastcall Insert(int Index, void * Item);
Description
Call Insert to add Item to the middle of the Items array. The Index parameter is a zero-based
index, so the first position in the array has an index of 0. Insert adds the item at the indicated
position, shifting the item that previously occupied that position, and all subsequent items, up.
Insert expands the Capacity of the list if necessary, and increases the Count property.
To replace a NULL pointer in the array with a new item, without growing the Items array, set the
Items property.

TList::Last
TList See also
Last returns Items[Count – 1].
void * __fastcall Last(void);
Description
Call Count to retrieve the last pointer in the Items array.

TList::Move
TList See also
Move changes the position of an item in the Items array.
void __fastcall Move(int CurIndex, int NewIndex);
Description
Call Move to move the item at the position CurIndex so that it occupies the position NewIndex.
CurIndex and NewIndex are zero-based indexes into the Items array.

TList::Pack
TList See also
Pack deletes all NULL items from the Items Array.
void __fastcall Pack(void);
Description
Call Pack to move all non-NULL items to the front of the Items array and reduce the Count
property to the number of items actually used. Pack does not free up the memory used to store
the NULL pointers. To free up the memory for the unused entries removed by Pack, set the
Capacity property to the new value of Count.

TList::Remove
TList See also
Remove deletes the first reference to the Item parameter from the Items array.
int __fastcall Remove(void * Item);
Description
Call Remove to remove a specific item from the Items array when its index is unknown. The
value returned is the index of the item in the Items array before it was removed. After an item is
removed, all of the items that follow it are moved up in index position and the Count is reduced
by one.
If the Items array contains more than one copy of the pointer, only the first copy is deleted.

TList::Sort
TList See also
Sort performs a QuickSort on the list based on the comparison function Compare.
void __fastcall Sort(TListSortCompare Compare);
Description
Call Sort to sort the items in the Items array. Compare is a comparison function that indicates
how the items are to be ordered. Compare returns < 0 if Item1 is less than Item2, 0 if they are
equal and > 0 if Item1 is greater than Item2.

TList::TList
TList See also
TList creates a new TList object.
__fastcall TList(void);

Accessibility
Read-only

Hierarchy

TObject

TList example
TList

TListBox
Hierarchy Properties Methods Events
TListBox is a wrapper for a Windows list box control.
Header
vcl/stdctrls.hpp
Description
TListBox implements the generic behavior introduced in TCustomListbox. TListBox publishes
many of the properties inherited from TCustomListBox, but does not introduce any new behavior.
Use TListBox to display a scrollable list of items that users can select, add or delete. For
specialized list boxes use other descendent classes of TCustomListBox or derive from it.

TListBox properties
TListBox Alphabetically Legend

Derived from TCustomListBox
BorderStyle

Canvas
Columns
ExtendedSelect
IntegralHeight
ItemHeight
ItemIndex
Items
MultiSelect

SelCount
Selected
Sorted
Style
TabWidth

TopIndex
Derived from TWinControl

Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState

ComponentStyle
DesignInfo

Owner
Tag

TListBox properties
TListBox By object Legend

Align
BorderStyle
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
Color
Columns

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
Enabled
ExtendedSelect
Font

Handle
Height
HelpContext
Hint
IntegralHeight
ItemHeight
ItemIndex
Items
Left
MultiSelect
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu

SelCount
Selected
ShowHint

Showing
Sorted
Style
TabOrder
TabStop
TabWidth
Tag

TopIndex
Top
Visible
Width

TListBox events
TListBox Alphabetically Legend

Derived from TCustomListBox
OnDrawItem
OnMeasureItem

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TListBox events
TListBox By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnDrawItem
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMeasureItem
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TListBox methods
TListBox Alphabetically

Derived from TCustomListBox
~TCustomListBox
Clear
ItemAtPos
ItemRect
TCustomListBox

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification

GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TListBox methods
TListBox By object

~TCustomListBox
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
ItemAtPos
ItemRect
MethodAddress
MethodName

NewInstance
PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TCustomListBox
UpdateControlState
Update

~TListBox
~TListBox frees the memory associated with the TListBox object. Do not call ~TListBox directly.
Instead, use the delete keyword on the object, which causes ~TListBox to be invoked
automatically.
__fastcall virtual ~TListBox(void);

TListBox
TListBox creates a new TListBox object.
__fastcall virtual TListBox(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomListBox

TListBox example
TListBox

TListItem
Hierarchy Properties Methods
The TListItem object is an individual item of a TListView control. A list view item is represented
as a line, or row of the list view.
Header
vcl/comctrls.hpp
Description
A list item contains a Caption and Data defined by your application. Caption contains a string,
and Data contains a pointer to a data structure to be associated with each list item. Use the
Delete method to delete a list item. If the ReadOnly property is false, the user is allowed to edit
the Caption.
Each item is identified by a unique Index. Index corresponds to the index of the Items property of
the TListView control. The MakeVisible method scrolls a list item into view if the item is not in
view. The ListView property specifies the list view that is the owner of the item. The SubItems
property gives access to the sub items of the list item.
The Focused property determines whether the item has the focus, that is, it’s surrounded by a
standard focus rectangle. Only one item can have the focus. The Selected property determines
whether the list item is selected. The DropTarget property specifies if the item is the target of a
drag and drop operation.
In addition to these properties, methods, and events, this object also has the methods that apply
to all objects.

TListItem properties
TListItem Alphabetically Legend

In TListItem
Caption
Cut
Data
DropTarget
Focused

Handle
ImageIndex

Index
Left

ListView
OverlayIndex

Owner
Selected
StateIndex
SubItems
Top

TListItem properties
TListItem By object Legend

Caption
Cut
Data
DropTarget
Focused

Handle
ImageIndex

Index
Left

ListView
OverlayIndex

Owner
Selected
StateIndex
SubItems
Top

TListItem::Caption
TListItem Example
The Caption property specifies the name of the item in the list.
__property System::AnsiString Caption;
Description
Name of the item. If the Read-Only property is false, the user is allowed to edit the caption.

TListItem::Cut
TListItem
The Cut property determines if the list item is selected as part of a cut and paste operation.
__property bool Cut;
Description
If Cut is true, the item is selected as part of a cut and paste operation. If Cut is false, the list item
is not selected.

TListItem::Data
TListItem
The Data property specifies any data you want associated with a list item.
__property void * Data;
Description
Data contains a pointer to a data structure to be associated with each list item.

TListItem::DropTarget
TListItem
The DropTarget property determines whether the list item in the list view is selected as a drag
and drop target.
__property bool DropTarget;
Description
When DropTarget is true, the list item is drawn in the style used to indicate a drag and drop
target.

TListItem::Focused
TListItem
The Focused property determines whether the list item has the focus.
__property bool Focused;
Description
A list item with the focus has is surrounded by a standard focus rectangle. Only one list item can
have the focus at a time in a list view.

TListItem::Handle
TListItem Example
The Handle property returns the Handle property of the list view control that owns the list item.
__property HWND Handle;
Description
The Handle property gives you access to the Windows handle, so you can access GDI objects
or so you can call Windows API functions that take a handle as a parameter.

TListItem::ImageIndex
TListItem
The ImageIndex property determines which image from the image list is displayed when a list
item is not currently selected.
__property int ImageIndex;
Description
An image list is used by a list view component when either LargeImages or SmallImages is set.
If LargeImages is set, then the ViewStyle must be set to vsIcon to show the images. If
LargeImages is set, then the ViewStyle must be set to vsSmallIcon, vsReport or vsList to show
the images.
The default image (when the item is not selected) for an individual item in the list view will be the
first image in the image list, unless another one is specified with ImageIndex.

TListItem::Index
TListItem
The Index property uniquely identifies each list item in a list view.
__property int Index;
Description
The first item has an index of 0, and subsequent items are numbered sequentially.

TListItem::Left
TListItem Example
The Left property determines the horizontal coordinate of the left edge of a list item relative to
the list view in pixels.
__property int Left;
Description
Determines the horizontal coordinate of the left edge of a list item relative to the list view in
pixels.

TListItem::ListView
TListItem
The ListView property specifies the list view control that is the owner of the list item.
__property TCustomListView* ListView;
Description
Specifies the list view that is the owner of the item.

TListItem::OverlayIndex
TListItem
The OverlayIndex property determines which image from the image list is to be used as an
overlay mask.
__property int OverlayIndex;
Description
An overlay mask is an image drawn transparently over another image in the list view. For
example, to indicate that an item is no longer available you could use an overlay image that puts
an X over the current item's image.
An image list is used by a list view component when either LargeImages or SmallImages is set.
If LargeImages is set, then the ViewStyle must be set to vsIcon to show the images. If
LargeImages is set, then the ViewStyle must be set to vsSmallIcon, vsReport or vsList to show
the images.

TListItem::Owner
TListItem
The Owner property indicates which TListItems object owns the list item.
__property TListItems* Owner;
Description
Runtime and Read-only. Indicates which TListItems object owns the list item.

TListItem::Selected
TListItem Example
The Selected property determines whether a list item is selected.
__property bool Selected;
Description
When Selected is true, the list item is selected. When Selected is false, the list item is not
selected. The appearance of a selected item depends on whether it has the focus and whether
the system colors are used for selection. When an item is selected, the list view's OnChanging
and OnChanged events are triggered.

TListItem::StateIndex
TListItem
The StateIndex property indicates which image from the StateImages image list to display for the
item.
__property int StateIndex;
Description
Use a state image when you want to display an additional image to the left of the list item's icon.
For example, the following code sets the selected item’s state index:

TListItem::SubItems
TListItem
The SubItems property contains the strings that appear as sub items to the list items in the list
view control.
__property Classes::TStrings* SubItems;
Description
To add a new subitem, use the SubItem's Add method. SubItems are only visible when the list
view's ViewStyle property is set to vsReport.
Example
The following example adds a new subitem to the selected list item in the list view control.

TListItem::Top
TListItem Example
The Top property positions a list item within the list view.
__property int Top;
Description
The Top property moves an item vertically to a specified position in pixels within the list view
control's client area. The ViewStyle of the list view must be set to vsIcon or vsSmallIcons.

TListItem methods
TListItem Alphabetically

In TListItem
~TListItem
CancelEdit
Delete
DisplayRect
EditCaption
GetPosition
MakeVisible
SetPosition
TListItem
Update

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TListItem methods
TListItem By object

~TListItem
Assign
CancelEdit
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Delete
Dispatch
DisplayRect
EditCaption
FieldAddress
FreeInstance
Free
GetPosition
InheritsFrom
InitInstance
InstanceSize
MakeVisible
MethodAddress
MethodName
NewInstance
SetPosition
TListItem
Update

TListItem::~TListItem
TListItem
~TListItem frees the memory associated with the TListItem object. Do not call ~TListItem
directly. Instead, use the delete keyword on the object, which causes ~TListItem to be invoked
automatically.
__fastcall virtual ~TListItem(void);

TListItem::CancelEdit
TListItem
The CancelEdit method cancels the editing of an list item's text in a list view.
void __fastcall CancelEdit(void);
Description
The CancelEdit method ends the editing of an item’s label in a list view.

TListItem::Delete
TListItem
The Delete method deletes the list item from a list view.
void __fastcall Delete(void);
Description
Use the Delete method to delete a list item.

TListItem::DisplayRect
TListItem
The DisplayRect method returns the bounding rectangle (TRect record) for a list item in a list
view control.
Windows::TRect __fastcall DisplayRect(TDisplayCode Code);
Description
The Code parameter specifies the display type when retrieving the bounding rectangle for all or
part of an item in the list view. These are the possible values for the Code parameter.
Value Meaning

drBounds Returns the bounding rectangle of the entire list item, including the icon
and label.

drIcon Returns the bounding rectangle of the icon or small icon
drLabel Returns the bounding rectangle of the item text
drSelectBounds Returns the union of the icon and label rectangles, but excludes columns

in details view

TListItem::EditCaption
TListItem
The EditCaption method begins in-place editing of the specified list item's text.
bool __fastcall EditCaption(void);
Description
The method implicitly selects and focuses the specified item.

TListItem::GetPosition
TListItem
The GetPosition method returns the position of the list item as a point.
POINT __fastcall GetPosition(void);
Description
The position returned is the upper left coordinate of the list item.

TListItem::MakeVisible
TListItem See also
The MakeVisible method scrolls the list view, if necessary, to ensure a list item is in view.
void __fastcall MakeVisible(bool PartialOK);
Description
The PartialOK parameter specifies whether the item must be entirely visible. If this parameter is
true, no scrolling occurs if the item is at least partially visible. If PartialOK is false, the list item the
entire list item is visible in the list view.

TListItem::SetPosition
TListItem See also
The SetPosition property positions a list item in a list view control.
void __fastcall SetPosition(const POINT &Value);
Description
SetPosition moves a list item to a specified position in a list view control. The list view control
must have its ViewStyle property set to either vsIcon or vsSmallIcon. Specify the point you want
to move the list item to as the value of the Value parameter. The point is the set of coordinates
for the upper-left corner of the list item relative to the list view control. For example, this code
moves the selected list item to position 5, 5 in the list view:

TListItem::TListItem
TListItem
The ~TListItem method creates an instance of a TListItem component
__fastcall TListItem(TListItems* AOwner);
Description
Call TListItem to instantiate a TListItem component at runtime.

TListItem::Update
TListItem Example
The Update method updates a list view item display.
void __fastcall Update(void);
Description
The Update method updates a list view item display and returns true if successful.

Accessibility
Read-only

Hierarchy

TObject

TPersistent

TListItem example
TListItem

TListView
Hierarchy Properties Methods Events
The TListView component is a list of items that can be displayed in a variety of ways. The
ViewStyle property determines whether items are displayed in columns with column headers and
sub-items, or vertically or horizontally, with small or large icons.
Header
vcl/comctrls.hpp
Description
The Items property allows you to Add, Delete, modify the Caption, add SubItems, and pick icon
images for the items in the list view. Use the Columns property to add columns to the list view.
To see the column headers, set the ViewStyle to vsReport and set the ShowColumnHeaders
property to true. The ColumnClick property specifies whether the column header behaves like a
button. The OnColumnClick event occurs when the user has clicked on a column heading and
ColumnClick is set to true.
When using the list view with a ViewStyle of vsIcon, icons from the image list specified in the
LargeImages property are used. In the IconOptions property, the AutoArrange property arranges
the icons in the list view automatically as needed, the Arrangement property specifies where the
icons are aligned in the list view, and the WrapText property specifies whether to wrap the text of
the item’s Caption if it would go beyond the width of the icon. When using a ViewStyle of
vsSmallIcon, icons from the image list specified in the SmallImages property are used.
To allow editing of the caption of a list item, set ReadOnly to false. The OnEditing and OnEdited
events occur when the user begins and finishes editing the caption, respectively.
The TListView component is an indirect descendent of TWinControl. In addition to the following
properties, methods, and events, this component also has the properties, methods, and events
that apply to all windowed controls.

TListView properties
TListView Alphabetically Legend

Derived from TCustomListView
AllocBy
BorderStyle

BoundingRect
Column

ColumnClick
Columns
DropTarget
HideSelection
IconOptions
ItemFocused
Items
LargeImages
MultiSelect

ReadOnly
SelCount

Selected
ShowColumnHeaders
SmallImages
SortType
StateImages

TopItem
ViewOrigin

ViewStyle
VisibleRowCount

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name

Parent
ParentShowHint
PopupMenu
ShowHint
Top
Visible

Width
Derived from TComponent

ComponentCount
ComponentIndex

Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TListView properties
TListView By object Legend

Align
AllocBy
BorderStyle

BoundingRect
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color
ColumnClick
Columns

Column
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode

DropTarget
Enabled

Font
Handle

Height
HelpContext
HideSelection
Hint
IconOptions
ItemFocused
Items
LargeImages
Left
MultiSelect
Name

Owner
ParentShowHint
Parent
PopupMenu

ReadOnly
SelCount

Selected
ShowColumnHeaders
ShowHint

Showing
SmallImages
SortType
StateImages
TabOrder
TabStop
Tag

TopItem

Top
ViewOrigin

ViewStyle
VisibleRowCount

Visible
Width

TListView events
TListView Alphabetically Legend

Derived from TCustomListView
OnChange
OnChanging
OnColumnClick
OnCompare
OnDeletion
OnEdited
OnEditing
OnInsert

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TListView events
TListView By object Legend

OnChange
OnChanging
OnClick
OnColumnClick
OnCompare
OnDblClick
OnDeletion
OnDragDrop
OnDragOver
OnEdited
OnEditing
OnEndDrag
OnEnter
OnExit
OnInsert
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TListView methods
TListView Alphabetically

Derived from TCustomListView
~TCustomListView
AlphaSort
Arrange
CustomSort
FindCaption
FindData
GetItemAt
GetNearestItem
GetNextItem
GetSearchString
IsEditing
Scroll
StringWidth
TCustomListView
UpdateItems

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform

Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TListView methods
TListView By object

~TCustomListView
AlphaSort
Arrange
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
CustomSort
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindCaption
FindComponent
FindData
Focused
FreeInstance
FreeNotification
Free
GetItemAt
GetNearestItem
GetNextItem
GetParentComponent
GetSearchString
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance

InsertComponent
InsertControl
InstanceSize
Invalidate
IsEditing
MethodAddress
MethodName
NewInstance
PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
Scroll
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
StringWidth
TCustomListView
UpdateControlState
UpdateItems
Update

~TListView
~TListView frees the memory associated with the TListView object. Do not call ~TListView
directly. Instead, use the delete keyword on the object, which causes ~TListView to be invoked
automatically.
__fastcall virtual ~TListView(void);

TListView
TListView creates a new TListView object.
__fastcall virtual TListView(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomListView

TListView example
TListView

TListColumn
Hierarchy Properties Methods See also
TListColumn represents a column in a list view.
Header
vcl/comctrls.hpp
Description
Each TListView uses a TListColumns to maintain a collection of TListColumn objects.

TListColumn properties
TListColumn Alphabetically Legend

In TListColumn
Alignment
Caption
Width

WidthType
Derived from TCollectionItem

Collection
Index

TListColumn properties
TListColumn By object Legend

Alignment
Caption
Collection
Index
Width

WidthType

TListColumn::Alignment
TListColumn See also Example
Specifies how the caption is aligned within the list column.
__property Classes::TAlignment Alignment;
Description
These are the possible values of Alignment:
Value Meaning

taLeftJustify Align caption on the left side of the column.
taCenter Center caption in the column.
taRightJustify Align caption on the right side of the column.

TListColumn::Caption
TListColumn See also Example
The text that appears at the top of the column.
__property System::AnsiString Caption;
Description
The Caption property contains a text string that identifies the list column. If the list-view
control’s ViewStyle and ShowColumnHeaders properties are set to vsReport and true,
respectively, the value of Caption appears at the top of the column.

TListColumn::Width
TListColumn See also Example
The width of the column.
__property TWidth Width;
Description
The Width property determines the width of the list column, in pixels.
If Width is assigned the value -1, the list column is automatically resized to accommodate the
text in the column. If Width is assigned the value -2, the list column is automatically resized to
accommodate the column header (that is, the text in the Caption property). For more readable
code, use the global ColumnTextWidth and ColumnHeaderWidth constants when assigning
negative values to Width:
Constant Value Meaning

ColumnTextWidth -1 Column is resized to fit text.
ColumnHeaderWidth -2 Column is resized to fit header only.
For example, the following statement causes the leftmost column of ListView1 to be resized
automatically to accommodate its text:
ListView1->Columns[0]->Width = ColumnTextWidth;
In the form designer, the same thing can be accomplished by opening the Columns editor for
ListView1, selecting the first list column, and typing -1 next to Width in the Object Inspector.
When a column is automatically resized, the value of Width changes to indicate the actual
column width. The read-only WidthType property, however, retains its value of -1 or -2.

TListColumn::WidthType
TListColumn See also
Indicates whether the column is sized automatically.
__property TWidth WidthType;
Description
The read-only WidthType property is set to the same value as Width. WidthType, however,
retains its negative value when Width changes automatically.
If WidthType returns -1, the list column is automatically resized to accommodate the text in the
column. If WidthType returns -2, the list column is automatically resized to accommodate the
column header. If WidthType returns a nonnegative value, the column is not resized
automatically; in this case, the value of Width and WidthType should be the same.
To enable automatic column resizing, assign the value -1 or -2 directly to Width.

TListColumn methods
TListColumn Alphabetically

In TListColumn
~TListColumn
Assign
TListColumn

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TListColumn methods
TListColumn By object

~TListColumn
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TListColumn

TListColumn::~TListColumn
TListColumn See also
~TListColumn frees the memory associated with the TListColumn object. Do not call ~
TListColumn directly. Instead, use the delete keyword on the object, which causes ~
TListColumn to be invoked automatically.
__fastcall virtual ~TListColumn(void);
TListColumn eliminates the TListColumn instance and, if necessary, deletes the column from the
list-view control.

TListColumn::Assign
TListColumn See also
Copies the contents of the source list-column instance to a new list-column instance.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
Assign creates a new list column with the same Alignment, Width, and Caption values as the
source object.

TListColumn::TListColumn
TListColumn See also
Creates and initializes a list column.
__fastcall virtual TListColumn(Classes::TCollection* Collection);
Description
TListColumn should take a TListColumns instance as its argument.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TCollectionItem

TListColumn example
TListColumn

TListColumns
Hierarchy Properties Methods See also
TListColumns is a container for TListColumn objects.
Header
vcl/comctrls.hpp
Description
Each TListColumns holds a collection of TListColumn objects in a TListView. TListColumns
maintains an index of the list columns in its Items array. The Count property contains the number
of list columns in the collection. At design time, use the list-view control’s Columns editor to
add, remove, or modify columns.

TListColumns properties
TListColumns Alphabetically Legend

In TListColumns
Items

Owner
Derived from TCollection

Count

TListColumns properties
TListColumns By object Legend

Count
Items

Owner

TListColumns::Items
TListColumns See also
An index of the list columns in the collection.
__property TListColumn* Items[int Index];
Description
The value of the Index parameter corresponds to the Index property of TListColumn. It
represents the position of the column in the list view.

TListColumns::Owner
TListColumns See also
The list-view control to which the TListColumns instance belongs.
__property TCustomListView* Owner;
Description
The read-only Owner property indicates which list-view control owns the TListColumns object.

TListColumns methods
TListColumns Alphabetically

In TListColumns
~TListColumns
Add
TListColumns

Derived from TCollection
Assign
BeginUpdate
Clear
EndUpdate

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TListColumns methods
TListColumns By object

~TListColumns
Add
Assign
BeginUpdate
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
Dispatch
EndUpdate
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TListColumns

TListColumns::~TListColumns
TListColumns
~TListColumns frees the memory associated with the TListColumns object. Do not call ~
TListColumns directly. Instead, use the delete keyword on the object, which causes ~
TListColumns to be invoked automatically.
__fastcall virtual ~TListColumns(void);

TListColumns::Add
TListColumns See also
Creates a new TListColumn instance and adds it to the Items array.
TListColumn* __fastcall Add(void);
Description
Add returns the new list column. At design time, use the list-view control’s Columns editor to
add columns to the list view.

TListColumns::TListColumns
TListColumns See also
Creates and initializes a TListColumns object.
__fastcall TListColumns(TCustomListView* AOwner);
Description
The TListColumns method takes a TListView instance as a parameter.

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TCollection

TListColumns example
TListColumns

TListItems
Hierarchy Properties Methods See also
The TListItems object maintains a list of list items (TListItems objects) that appear in a list view
control.
Header
vcl/comctrls.hpp
Description
A list view control is a window that displays a collection of list items, each list item consisting of
an icon and a label. All list items that appear in the list view control are stored in a list items
object.

TListItems properties
TListItems Alphabetically Legend

In TListItems
Count
Handle

Item
Owner

TListItems properties
TListItems By object Legend

Count
Handle

Item
Owner

TListItems::Count
TListItems
The Count property reports the number of items in a TListItems object.
__property int Count;
Description
The Count property reports the number of items in a TListItems object.

TListItems::Handle
TListItems Example
The Handle property gives access to the Windows handle for the TListItems owner, a list view
control.
__property HWND Handle;
Description
The Handle property gives you access to the Windows handle of the list view that owns the list
items object, so you can access GDI objects or so you can call Windows API functions that take
a handle as a parameter.

TListItems::Item
TListItems
The Item property provides access to a list item in a TListItems object.
__property TListItem* Item[int Index];
Description
The Item array property provides access to an item (TListItem object) by its Index position in the
list view. The first item has an index of 0, the second an index of 1, and so on.

TListItems::Owner
TListItems
The Owner property indicates the list view object that owns the list items object.
__property TCustomListView* Owner;
Description
The Owner property indicates the list view object that owns the list items object.

TListItems methods
TListItems Alphabetically

In TListItems
~TListItems
Add
Assign
BeginUpdate
Clear
Delete
EndUpdate
IndexOf
Insert
TListItems

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TListItems methods
TListItems By object

~TListItems
Add
Assign
BeginUpdate
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
Delete
Dispatch
EndUpdate
FieldAddress
FreeInstance
Free
IndexOf
InheritsFrom
InitInstance
Insert
InstanceSize
MethodAddress
MethodName
NewInstance
TListItems

TListItems::~TListItems
TListItems
~TListItems frees the memory associated with the TListItems object. Do not call ~TListItems
directly. Instead, use the delete keyword on the object, which causes ~TListItems to be invoked
automatically.
__fastcall virtual ~TListItems(void);
Description
~TListItems sets OnStateChange to NULL, and frees the list before calling the inherited
destructor for the component.

TListItems::Add
TListItems
The Add method adds a new list item to the list view control.
TListItem* __fastcall Add(void);
Description
The Add method adds a new list item to the list view control.

TListItems::Assign
TListItems
The Assign method assigns an object to a list items object.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
If Source is another TListItems object, Assign discards any current property information and
replaces it with the information from the Source. If Source is any other type of object, Assign
calls its inherited method. Use this method to copy information from one list items object to
another.

TListItems::BeginUpdate
TListItems
The BeginUpdate method prevents the updating of the list items object until the EndUpdate
method is called.
void __fastcall BeginUpdate(void);
Description
Use BeginUpdate to prevent the screen from being repainted and to speed processing time
when new items are added, deleted, or inserted.

TListItems::Clear
TListItems
The Clear method removes all items from the list items object.
void __fastcall Clear(void);
Description
The Clear method removes all items from the list items object.

TListItems::Delete
TListItems
The Delete method deletes the item in the list view specified with the index parameter.
void __fastcall Delete(int Index);
Description
The Delete method deletes the item in the list view specified with the Index parameter. The
index is zero-based, so the first item has an index of 0, the second item has an index of 1, and
so on.

TListItems::EndUpdate
TListItems
The EndUpdate method re-enables screen repainting that was turned off with the BeginUpdate
method.
void __fastcall EndUpdate(void);
Description
The EndUpdate method re-enables screen repainting that was turned off with the BeginUpdate
method.

TListItems::IndexOf
TListItems
The IndexOf method returns the position (index) of a list item in a list items object.
int __fastcall IndexOf(TListItem* Value);
Description
The IndexOf method returns the index of the list item specified by the Value parameter.

TListItems::Insert
TListItems
The Insert method inserts a list item (TListItem object) into the list view.
TListItem* __fastcall Insert(int Index);
Description
The Insert method for a list items object inserts a list item (TListItem object) into the list view
after the item specified by the Index parameter. Insert returns the list item that is inserted.

TListItems::TListItems
TListItems
The TListItems method will create an instance of a TListItems component.
__fastcall TListItems(TCustomListView* AOwner);
Description
Call TListItems to instantiate a TListItems component at runtime.

Accessibility
Read-only

Hierarchy

TObject

TPersistent

TListItems example
TListItems

TListSourceLink
Hierarchy Properties Methods See also
TListSourceLink is a helper object that helps manage the link to the ListSource of a
TDBLookupControl object.
Header
vcl/dbctrls.hpp
Description
TListSourceLink is tailored to work with TDBLookupControl. It should only be used by the
TDBLookupControl class.

TListSourceLink properties
TListSourceLink Alphabetically Legend

Derived from TDataLink
Active

ActiveRecord
BufferCount

DataSet
DataSource
DataSourceFixed

Editing
ReadOnly

RecordCount

TListSourceLink properties
TListSourceLink By object Legend

ActiveRecord
Active

BufferCount
DataSet

DataSourceFixed
DataSource

Editing
ReadOnly

RecordCount

TListSourceLink methods
TListSourceLink Alphabetically Legend

In TListSourceLink
~TListSourceLink

ActiveChanged
DataSetChanged
TListSourceLink

Derived from TDataLink
Edit
UpdateRecord

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TListSourceLink methods
TListSourceLink By object Legend

~TListSourceLink
ActiveChanged
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DataSetChanged
DefaultHandler
Dispatch
Edit
FieldAddress
FreeInstance
Free
InheritsFrom

InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TListSourceLink
UpdateRecord

TListSourceLink::~TListSourceLink
TListSourceLink
~TListSourceLink frees the memory associated with the TListSourceLink object. Do not call ~
TListSourceLink directly. Instead, use the delete keyword on the object, which causes ~
TListSourceLink to be invoked automatically.
__fastcall virtual ~TListSourceLink(void);

TListSourceLink::ActiveChanged
TListSourceLink See also
ActiveChanged informs the TDBLookupControl of changes in the Active property of the dataset
that it maintains for the ListSource.
virtual void __fastcall ActiveChanged(void);
Description
Applications should not call the ActiveChanged procedure directly. Changes in the Active
property of the dataset which the TDBLookupControl uses to populate its list trigger this
procedure, which in turn calls the ListLinkActiveChanged method of the TDBLookupControl
object that owns this TListSourceLink.

TListSourceLink::DataSetChanged
TListSourceLink See also
DataSetChanged informs the TDBLookupControl of changes to the dataset that the
TDBLookupControl uses to populate its list.
virtual void __fastcall DataSetChanged(void);
Description
Applications should not call the DataSetChanged procedure directly. These calls are triggered
automatically by the dataset. DataSetChanged informs the TListSourceLink of dataset changes
by calling its ListLinkDataChanged method.

TListSourceLink::TListSourceLink
TListSourceLink
TListSourceLink creates a new TListSourceLink object.
__fastcall TListSourceLink(void);

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TDataLink

TListSourceLink example
TListSourceLink

TMainMenu
Hierarchy Properties Methods
The MainMenu component encapsulates a menu bar and its accompanying drop-down menus
for a form.
Header
vcl/menus.hpp
Description
To begin designing a menu, add a main menu component to your form, and double-click the
component.
The items on the menu bar and in its drop-down menus are specified with the Items object, a
property of a main menu. The Items object is of type TMenuItem. Your application can use the
Items property to access a particular command on the menu. To find out how many items a main
menu or menu item contains, use Menu.Items.Count.
You can choose to have the menus of one form merge with those of another using the
AutoMerge property and the Merge and Unmerge methods.
The main menu component is an indirect descendent of TComponent. In addition to the following
properties and methods, this component also has the properties and methods that apply to all
components.

TMainMenu properties
TMainMenu Alphabetically Legend

In TMainMenu
AutoMerge

Handle
Derived from TMenu

Items
WindowHandle

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TMainMenu properties
TMainMenu By object Legend

AutoMerge
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DesignInfo
Handle
Items

Name
Owner

Tag
WindowHandle

TMainMenu::AutoMerge
TMainMenu See also
Determines if the main menus of forms other than the main form merge with the main menu of
the main form in non-MDI applications at runtime.
__property bool AutoMerge;
Description
To merge the form's menus with the main menu in the main form, set the AutoMerge property of
each main menu you want merged to true. Make sure that the AutoMerge property of the main
menu you are merging with other menus remains false. How menus merge depends on the
value of the GroupIndex property for each menu item.
If the application is an MDI application (the FormStyle properties are set so the main form is a
parent form and subsequent forms are child forms), menu merging occurs automatically and you
don't need to use the AutoMerge property.

TMainMenu::Handle
TMainMenu Example
Provides access to the menu’s window handle, so you can call a Windows API function that
requires such a handle.
void __fastcall SetOle2MenuHandle(HMENU Handle);
Description
Use the Handle property to call a Windows API function that requires such a handle.
Example
The following code uses the Windows API function HiliteMenuItem to highlight the first menu
item in MainMenu1 on Form1.

TMainMenu methods
TMainMenu Alphabetically

In TMainMenu
~TMainMenu
GetOle2AcceleratorTable
Merge
PopulateOle2Menu
SetOle2MenuHandle
TMainMenu
Unmerge

Derived from TMenu
DispatchCommand
DispatchPopup
FindItem
GetHelpContext
IsShortCut

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TMainMenu methods
TMainMenu By object

~TMainMenu
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
DispatchCommand
DispatchPopup
Dispatch
FieldAddress
FindComponent
FindItem
FreeInstance
FreeNotification
Free
GetHelpContext
GetOle2AcceleratorTable
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsShortCut
Merge
MethodAddress
MethodName
NewInstance
PopulateOle2Menu
RemoveComponent
SetOle2MenuHandle
TMainMenu
Unmerge

TMainMenu::~TMainMenu
TMainMenu
~TMainMenu frees the memory associated with the TMainMenu object. Do not call ~
TMainMenu directly. Instead, use the delete keyword on the object, which causes ~TMainMenu
to be invoked automatically.
__fastcall virtual ~TMainMenu(void);

TMainMenu::GetOle2AcceleratorTable
TMainMenu
Returns the main menu’s accelerator table and related information.
void __fastcall GetOle2AcceleratorTable(HACCEL &AccelTable, int
&AccelCount, const int *Groups, const int Groups_Size);

Description
GetOle2AcceleratorTable provides OLE support that is used internally by the VCL
(TOleInPlaceSite.GetWindowContext function).

TMainMenu::Merge
TMainMenu See also
Merges a main menu of one form with a main menu of another for non-MDI applications.
void __fastcall Merge(TMainMenu* Menu);
Description
For example, when your application uses the main menu of the first form as the main menu for
the application, and your application displays a second form, you can call Merge to merge the
main menu on the second form with the main menu of the application.
Specify the menu you want merged with this menu as the Menu parameter.
Depending on the value of the GroupIndex property of menu items on the main menu, the
merged menu items can replace menu items on the menu bar, or add or insert menu items into
the menu bar. See GroupIndex for information on how to do these things.
It you want merging and unmerging to occur automatically when another form is displayed,
change the value of the AutoMerge property to true.

TMainMenu::PopulateOle2Menu
TMainMenu See also
Populates the OLE menu associated with the main menu.
void __fastcall PopulateOle2Menu(HMENU SharedMenu, const int *Groups,
const int Groups_Size, long * Widths, const int Widths_Size);

Description
GetOle2AcceleratorTable provides OLE support that is used internally by the VCL
(TOleInPlaceSite.InsertMenus function).

TMainMenu::SetOle2MenuHandle
TMainMenu See also
.Sets the handle for the OLE menu associated with the main menu.
void __fastcall SetOle2MenuHandle(HMENU Handle);
Description
SetOle2MenuHandle provides OLE support that is used internally by the VCL (TOleInPlaceSite.
SetMenu function).

TMainMenu::TMainMenu
TMainMenu
TMainMenu creates a new TMainMenu object.
__fastcall virtual TMainMenu(Classes::TComponent* AOwner);

TMainMenu::Unmerge
TMainMenu See also
Reverses the merging of two menus into one in a non-MDI application.
void __fastcall Unmerge(TMainMenu* Menu);
Description
The Menu parameter is the merged menu that you no longer want to be merged.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent
TMenu

TMainMenu example
TMainMenu

TMaskEdit
Hierarchy Properties Events See also
TMaskEdit implements a generic masked edit control.
Header
vcl/mask.hpp
Description
Use a TMaskEdit object to put a masked edit control on your form. Masked edit controls validate
the text the user enters against a mask that encodes the valid forms the text can take. The mask
can also format text that is displayed to the user.
TMaskEdit implements the generic behavior introduced in TCustomMaskEdit. TMaskEdit
publishes many of the properties and methods inherited from TCustomMaskEdit, but does not
introduce any new behavior.

TMaskEdit properties
TMaskEdit Alphabetically Legend

Derived from TCustomMaskEdit
EditMask
EditText

IsMasked
MaxLength
Text

Derived from TCustomEdit
AutoSelect
AutoSize
BorderStyle
CharCase
Modified
PasswordChar

ReadOnly
SelLength
SelStart
SelText

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth

Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name

Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TMaskEdit properties
TMaskEdit By object Legend

Align
AutoSelect
AutoSize
BorderStyle
BoundsRect

Brush
CharCase
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
EditMask
EditText
Enabled
Font

Handle
Height
HelpContext
Hint

IsMasked
Left
MaxLength
Modified
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PasswordChar
PopupMenu

ReadOnly
SelLength
SelStart
SelText
ShowHint

Showing
TabOrder
TabStop
Tag
Text
Top
Visible
Width

TMaskEdit events
TMaskEdit Alphabetically Legend

Derived from TCustomEdit
OnChange

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TMaskEdit events
TMaskEdit By object Legend

OnChange
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

OMethods
The following table lists the methods of TMaskEdit:
Method Visibility Documented in

~TMaskEdit public TMaskEdit
Assign public TPersistent
BeginDrag public TControl
BringToFront public TControl
Broadcast public TWinControl
CanFocus public TWinControl
ClassInfo public TObject
ClassName public TObject
ClassNameIs public TObject
ClassParent public TObject
ClassType public TObject
CleanupInstance public TObject
Clear public TCustomMaskEdit
ClearSelection public TCustomEdit
ClientToScreen public TControl
ContainsControl public TWinControl
ControlAtPos public TWinControl
CopyToClipboard public TCustomEdit
CutToClipboard public TCustomEdit
DefaultHandler public TObject
DestroyComponents public TComponent
Destroying public TComponent
DisableAlign public TWinControl
Dispatch public TObject
DragDrop public TControl
Dragging public TControl
EnableAlign public TWinControl
EndDrag public TControl
FieldAddress public TObject
FindComponent public TComponent
Focused public TWinControl
Free public TObject
FreeInstance public TObject
FreeNotification public TComponent
GetParentComponent public TComponent
GetSelTextBuf public TCustomEdit
GetTabOrderList public TWinControl
GetTextBuf public TControl
GetTextLen public TCustomMaskEdit
HandleAllocated public TWinControl
HandleNeeded public TWinControl
HasParent public TComponent
Hide public TControl
InheritsFrom public TObject
InitInstance public TObject
InsertComponent public TComponent
InsertControl public TWinControl
InstanceSize public TObject

Invalidate public TWinControl
MethodAddress public TObject
MethodName public TObject
NewInstance public TObject
PaintTo public TWinControl
PasteFromClipboard public TCustomEdit
Perform public TControl
Realign public TWinControl
Refresh public TControl
RemoveComponent public TComponent
RemoveControl public TWinControl
Repaint public TWinControl
ScaleBy public TWinControl
ScreenToClient public TControl
ScrollBy public TWinControl
SelectAll public TCustomEdit
SendToBack public TControl
SetBounds public TWinControl
SetFocus public TWinControl
SetSelTextBuf public TCustomEdit
SetTextBuf public TControl
Show public TControl
TMaskEdit public TMaskEdit
Update public TWinControl
UpdateControlState public TWinControl
ValidateEdit public TCustomMaskEdit

~TMaskEdit
~TMaskEdit frees the memory associated with the TMaskEdit object. Do not call ~TMaskEdit
directly. Instead, use the delete keyword on the object, which causes ~TMaskEdit to be invoked
automatically.
__fastcall virtual ~TMaskEdit(void);

TMaskEdit
TMaskEdit creates a new TMaskEdit object.
__fastcall virtual TMaskEdit(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomEdit
TCustomMaskEdit

TMaskEdit example
TMaskEdit

TMediaPlayer
Hierarchy Properties Methods Events
TMediaPlayer controls devices that provide a Media Control Interface (MCI) driver.
Header
vcl/mplayer.hpp
Description
The TMediaPlayer component is a set of buttons (Play, Stop, Eject, and so on) that controls a
multimedia device such as a CD-ROM drive, a MIDI sequencer, or a VCR. A multimedia device
may be hardware or software.
Button Value Action

Play btPlay Plays the media player
Pause btPause Pauses playing or recording. If already paused

when clicked, resumes playing or recording.
Stop btStop Stops playing or recording
Next btNext Skips to the next track, or to the end if the medium

doesn’t use tracks
Prev btPrev Skips to the previous track, or to the beginning if

the medium doesn’t use tracks
Step btStep Moves forward a number of frames
Back btBack Moves backward a number of frames
Record btRecord Starts recording
Eject btEject Ejects the medium
The media player component consists of multiple buttons. These buttons can be clicked with the
mouse, but are not separate objects or button components.
The multimedia device is played, paused, stopped, and so on when the user clicks the
corresponding button on the TMediaPlayer component. The device can also be controlled by the
control methods that correspond to the buttons (Play, Pause, Stop, Next, Previous, Step, Back,
StartRecording, and Eject).
The type of multimedia device (such as dtWaveAudio or dtVideodisc) is specified by the
DeviceType property. If the device stores its media in a file, the name of the media file is
specified by the FileName property. If DeviceType is dtAutoSelect, the media player attempts to
determine the type of device from the extension of the file specified by FileName.
To have the media player attempt to open the device specified by DeviceType automatically
when the media player component is created at runtime, set the AutoOpen property to true.

TMediaPlayer properties
TMediaPlayer Alphabetically Legend

In TMediaPlayer
AutoEnable
AutoOpen
AutoRewind

Capabilities
ColoredButtons

DeviceID
DeviceType
Display
DisplayRect
EnabledButtons
EndPos

Error
ErrorMessage

FileName
Frames

Length
Mode

Notify
NotifyValue

Position
Shareable

Start
StartPos
TimeFormat

TrackLength
TrackPosition
Tracks

Visible
VisibleButtons

Wait
Derived from TWinControl

Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ParentShowHint
PopupMenu
ShowHint

Top
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TMediaPlayer properties
TMediaPlayer By object Legend

Align
AutoEnable
AutoOpen
AutoRewind
BoundsRect

Brush
Capabilities

ClientHeight
ClientOrigin
ClientRect

ClientWidth
ColoredButtons

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo

DeviceID
DeviceType
DisplayRect
Display
EnabledButtons
Enabled
EndPos

ErrorMessage
Error

FileName
Frames

Handle
Height
HelpContext
Hint
Left

Length
Mode

Name
Notify

NotifyValue
Owner

ParentShowHint
Parent
PopupMenu
Position
Shareable
ShowHint

Showing
StartPos

Start
TabOrder
TabStop
Tag
TimeFormat
Top

TrackLength

TrackPosition
Tracks

VisibleButtons
Visible
Wait
Width

TMediaPlayer::AutoEnable
TMediaPlayer See also
AutoEnable determines whether the media player automatically enables and disables individual
buttons in the component.
__property bool AutoEnable;
Description
Use AutoEnable to automatically enable or disable the control buttons on the media player. If
AutoEnable is true, the media player automatically enables or disables its control buttons. The
media player determines which buttons to enable or disable by the current mode specified in the
Mode property, and the current multimedia device type specified in the DeviceType property.
AutoEnable overrides the EnabledButtons property. The buttons enabled or disabled
automatically by the media player supersede any buttons enabled or disabled with
EnabledButtons.
If AutoEnable is false, the media player does not enable or disable buttons. The buttons must
enabled or disabled with the EnabledButtons property.
The following table shows whether buttons are automatically enabled or disabled for each device
mode:
Button Play Record Pause Stop Not
Open

Back Enabled Enabled Enabled EnabledDisabled
Eject Enabled Enabled Enabled EnabledDisabled
Next Enabled Enabled Enabled EnabledDisabled
Pause Enabled Enabled Enabled DisabledDisabled
Play Disabled Disabled Enabled EnabledDisabled
Prev Enabled Enabled Enabled EnabledDisabled
Record Disabled Disabled Enabled EnabledDisabled
Step Enabled Enabled Enabled EnabledDisabled
Stop Enabled Enabled Disabled DisabledDisabled

TMediaPlayer::AutoOpen
TMediaPlayer See also
AutoOpen determines if the media player is opened automatically when the application is run.
__property bool AutoOpen;
Description
Use AutoOpen to have the media player automatically open at runtime.
If AutoOpen is true, the media player attempts to open the multimedia device specified by the
DeviceType property (or FileName if DeviceType is dtAutoSelect) when the form containing the
media player component is created at runtime.
If AutoOpen is false, the device must be opened with a call to the Open method.
If an error occurs when opening the device, an exception of type EMCIDeviceError exception is
raised which contains the error message. Upon completion, a numerical error code is stored in
the Error property, and the corresponding error message is stored in the ErrorMessage property.
The Wait property determines whether control is returned to the application before opening the
multimedia device. The Notify property determines whether opening the device generates an
OnNotify event.

TMediaPlayer::AutoRewind
TMediaPlayer See also
AutoRewind sets the current position to the beginning of the previous track.
__property bool AutoRewind;
Description
AutoRewind determines if the media player control rewinds before playing or recording.
If AutoRewind is true and the current position is at the end of the medium, Play or
StartRecording moves the current position to the beginning of the medium before playing or
recording. If AutoRewind is false, the user must click the Prev button or write code to call
Previous to move to the beginning.
Note
If values have been assigned to StartPos or EndPos or if the multimedia device uses tracks,
AutoRewind has no effect on playing or recording. When calling Play or StartRecording, the
current position remains at the end of the medium.

TMediaPlayer::Capabilities
TMediaPlayer See also
Capabilities determines the capabilities of the open multimedia device.
__property TMPDevCapsSet Capabilities;
Description
The various capabilities specified in Capabilities are determined when the device is opened with
the Open method. The following table lists the capabilities a device can have:
Value Capability

mpCanEject Can eject media
mpCanPlay Can play media
mpCanRecord Can record media
mpCanStep Can step forward or backward within media
mpUsesWindows Uses a window for displaying output
Note
Currently, there is no way to check whether a device can step forward or backward. Capabilities
includes mpCanStep only if the device type (specified in the DeviceType property) is Animation,
AVI Video, Digital Video, Overlay, or VCR.

TMediaPlayer::ColoredButtons
TMediaPlayer See also
ColoredButtons determines which of the buttons on the media player control has color.
__property TButtonSet ColoredButtons;
Description
ColoredButtons controls which buttons on the media player are colored.
If a button is not colored with ColoredButtons, it appears in black-and-white when visible. All
media player control buttons are colored by default.
Button Value Action

Play btPlay Plays the media player
Record btRecord Starts recording
Stop btStop Stops playing or recording
Next btNext Skips to the next track, or to the end if the medium

doesn’t use tracks
Prev btPrev Skips to the previous track, or to the beginning if

the medium doesn’t use tracks
Step btStep Moves forward a number of frames
Back btBack Moves backward a number of frames
Pause btPause Pauses playing or recording. If already paused

when clicked, resumes playing or recording.
Eject btEject Ejects the medium

TMediaPlayer::DeviceID
TMediaPlayer See also
DeviceID specifies the device ID for the currently open multimedia device.
__property unsigned short DeviceID;
Description
The value of DeviceID is determined when an device is opened with the Open method. If no
device is open, DeviceID is 0.

TMediaPlayer::DeviceType
TMediaPlayer See also
DeviceType specifies a multimedia device type to open the media player.
__property TMPDeviceTypes DeviceType;
Description
DeviceType specifies a multimedia device type to open with the Open method.
TMPDeviceTypes type contains the multimedia device types that can be opened by a
TMediaPlayer component. The valid values for TMPDeviceTypes are dtAutoSelect, dtAVIVideo,
dtCDAudio, dtDAT, dtDigitalVideo, dtMMMovie, dtOther, dtOverlay, dtScanner, dtSequencer,
dtVCR, dtVideodisc, or dtWaveAudio. The default is dtAutoSelect.
If DeviceType is dtAutoSelect, the device type is determined by the file extension specified in the
FileName property. If no device type is associated with the extension, the correct device type
must be explicitly specified by setting DeviceType to a value other than dtAutoSelect.
A multimedia device is typically associated with an appropriate file-name extension when the
device is installed. Associations are specified in the registry or SYSTEM.INI file. See the
documentation for the specific device for instructions about how to associate file-name
extensions with the device.

TMediaPlayer::Display
TMediaPlayer
Display specifies the display window for an multimedia device that uses a window for output.
__property Controls::TWinControl* Display;
Description
To use Display, assign the name of a windowed control such as a form or panel to Display to
display output in that control.
The default value of Display is NULL, meaning that the device creates its own window to display
output. Also, by freeing the control assigned to Display after the device has been opened, video
output will be in its own default window.
Examples of multimedia devices that use a window to display output are Animation, AVI Video,
Digital Video, Overlay, and VCR.

TMediaPlayer::DisplayRect
TMediaPlayer See also
DisplayRect specifies the rectangle area within the form specified in the Display property used to
display output from a multimedia device.
Description
DisplayRect is ignored if Display is NULL.
To display output in a specific rectangle area on a form assign a TRect record to DisplayRect.
The Rect function can be used to create a TRect record.
Examples of multimedia devices that use a window to display output are Animation, AVI Video,
Digital Video, Overlay, and VCR.
Media that use a rectangle to display output usually perform best if the default DisplayRect size
is used. To set DisplayRect to the default size, use 0,
0 for the lower right corner. Position the rectangle with the upper left corner.
Note
DisplayRect can only be set after the media device is opened.

TMediaPlayer::EnabledButtons
TMediaPlayer See also
EnabledButtons determines which buttons on the media player are usable.
__property TButtonSet EnabledButtons;
Description
EnabledButtons controls which buttons on the media player are enabled and usable.
An enabled button is colored and usable. A disabled button is dimmed and not usable. If a
button is not enabled with EnabledButtons, it is disabled. By default, all buttons are enabled.
If the AutoEnable property is true, AutoEnable supersedes EnabledButtons. The buttons
automatically enabled or disabled by the media player override any buttons enabled or disabled
with the EnabledButtons property.
Button Value Action

Play btPlay Plays the media player
Record btRecord Starts recording
Stop btStop Stops playing or recording
Next btNext Skips to the next track, or to the end if the medium

doesn’t use tracks
Prev btPrev Skips to the previous track, or to the beginning if

the medium doesn’t use tracks
Step btStep Moves forward a number of frames
Back btBack Moves backward a number of frames
Pause btPause Pauses playing or recording. If already paused

when clicked, resumes playing or recording.
Eject btEject Ejects the medium

TMediaPlayer::EndPos
TMediaPlayer See also
EndPos specifies the position within the currently loaded medium at which to stop playing or
recording.
__property long EndPos;
Description
EndPos is specified using the current time format, which is specified in the TimeFormat property.
The EndPos property affects only the next Play or StartRecording method called after setting
EndPos. Reset EndPos to affect any subsequent calls to Play or StartRecording.

TMediaPlayer::Error
TMediaPlayer See also
Error specifies the MCI error code returned by the media control method.
__property long Error;
Description
Error specifies the MCI error code returned by the most recent media control method (Back,
Close, Eject, Next, Open, Pause, PauseOnly, Play, Previous, StartRecording, Resume, Rewind,
Step, or Stop). The ErrorMessage property describes the Error.
The value of Error is zero if the most recent media control method didn’t cause an error. If a
method results in an error, a value other than zero is stored in Error. If the error occurs during
the opening of the device, an EMCIDeviceError exception occurs.

TMediaPlayer::ErrorMessage
TMediaPlayer See also
ErrorMessage describes the error code stored in the Error property.
__property System::AnsiString ErrorMessage;
Description
ErrorMessage specifies the error message that describes the error code returned from the most
recent media control method (Back, Close, Eject, Next, Open, Pause, PauseOnly, Play,
Previous, StartRecording, Resume, Rewind, Step, or Stop).
The error code described by the message is stored in the Error property.

TMediaPlayer::FileName
TMediaPlayer See also
FileName specifies the opened or saved media file.
__property System::AnsiString FileName;
Description
FileName specifies the media file to be opened by the Open method, or the file to save by the
Save method.
At design time, use a file open dialog box to specify the FileName property by clicking the
ellipses button (...) in the Object Inspector.

TMediaPlayer::Frames
TMediaPlayer See also
Frames specifies the number of frames moved forward or backward.
__property long Frames;
Description
Frames specifies the number of frames the Step method steps forward or the Back method
steps backward.
Frames defaults to ten percent of the length of the currently loaded medium, which is specified
by the Length property.
Note
The definition of frame varies by multimedia device. For display media, a frame is one still
image.

TMediaPlayer::Length
TMediaPlayer See also
Length specifies the length of the medium in the open multimedia device.
__property long Length;
Description
Length is specified using the current time format, which is specified by the TimeFormat property.

TMediaPlayer::Mode
TMediaPlayer
Mode indicates the state of the currently open multimedia device.
__property TMPModes Mode;
Description
Mode specifies the current state or mode of the currently open multimedia device.
The TMPModes type defines the modes for a multimedia device used with a TMediaPlayer.
The following table lists the possible values for of the TMPModes type:
Value Mode

mpNotReady Not ready
mpStopped Stopped
mpPlaying Playing
mpRecording Recording
mpSeeking Seeking
mpPaused Paused
mpOpen Open

TMediaPlayer::Notify
TMediaPlayer See also
Notify determines whether an OnNotify event is generated.
__property bool Notify;
Description
Notify determines whether the next call to a media control method (Back, Close, Eject, Next,
Open, Pause, PauseOnly, Play, Previous, StartRecording, Resume, Rewind, Step, or Stop)
generates an OnNotify event when the method has completed.
If Notify is true, the next media control method generates OnNotify event upon completion and
stores the notification message in the NotifyValue property. If Notify is false, the method does
not generate an OnNotify event and NotifyValue remains unchanged.
Notify affects only the next call to a media control method. After an OnNotify event, Notify must
be reset to affect any subsequent media control methods.
By default, Play and StartRecording function as if Notify is true. Set Notify to false before calling
Play or StartRecording to prevent an OnNotify event from being generated when playing or
recording has finished. By default, all other media control methods function as if Notify is false.
Note
Set Notify to true if the next media control is expected to take a long time, so the application is
notified when the media control method has completed. If Notify is set to true, it is recommended
to set Wait to false so that control returns to the application before the media control method is
finished.
Note
When trying to resume a device that doesn’t support Resume, the device is resumed as if the
Play method was called. If Notify was assigned true before calling Resume (or any other media
control method), Notify doesn’t affect the call to Resume. Resume does not generate an
OnNotify event upon completion, and NotifyValue remains unchanged.

TMediaPlayer::NotifyValue
TMediaPlayer
NotifyValue indicates the result of the last media control method that requested a notification.
__property TMPNotifyValues NotifyValue;
Description
NotifyValue reports the result of the last media control method (Back, Close, Eject, Next, Open,
Pause, PauseOnly, Play, Previous, StartRecording, Resume, Rewind, Step, or Stop) that
requested a notification.
To request notification, set Notify to true before calling a media control method.
The TMPNotifyValues type defines the notification values for a multimedia device used with a
TMediaPlayer. The possible values for the TMPNotifyValues type are as follows.
Value Result

nvSuccessful Command completed successfully
nvSuperseded Command was superseded by another command
nvAborted Command was aborted by the user
nvFailure Command failed

TMediaPlayer::Position
TMediaPlayer See also Example
Position specifies the current position within the currently loaded medium.
__property long Position;
Description
The value of Position is specified according to the current time format, which is specified in the
TimeFormat property.
Position defaults to the beginning of the medium. If the medium supports multiple tracks,
Position defaults to the beginning of the first track.

TMediaPlayer::Shareable
TMediaPlayer See also
Shareable determines whether more than one application can share a multimedia device.
__property bool Shareable;
Description
If Shareable is false, no other components or applications can access the device. If Shareable is
true, more than one component or application can access the device. Shareable defaults to
false.
Be sure to set Shareable before opening a device. Some devices aren’t shareable. Setting
Shareable to true and trying to open a device that isn’t shareable by more than one application,
the Open method fails and the error code is returned to the Error property.

TMediaPlayer::Start
TMediaPlayer See also
Start specifies the starting position within the currently loaded medium.
__property long Start;
Description
Start is the beginning of the medium for devices that don’t use tracks, or the beginning of the
first track for devices that use tracks. Start is defined when a multimedia device is opened with
the Open method. Start is specified according to the current time format, which is stored in the
TimeFormat property. Start is read-only at runtime and is unavailable at design time.

TMediaPlayer::StartPos
TMediaPlayer See also
StartPos specifies the position within the currently loaded medium from which to begin playing or
recording.
__property long StartPos;
Description
StartPos is specified using the current time format, which is specified in the TimeFormat
property.
The StartPos property affects only the next Play or StartRecording method called after setting
StartPos. Reset must be set to StartPos to affect any subsequent calls to Play or
StartRecording.
StartPos does not affect the current position of the medium (specified in the Position property)
until the next Play or StartRecording method is called.

TMediaPlayer::TimeFormat
TMediaPlayer See also
TimeFormat determines the format used to specify position information.
__property TMPTimeFormats TimeFormat;
Description
TimeFormat determines how the StartPos, Length, Position, Start, and EndPos properties are
interpreted. For example, if Position is 180 and TimeFormat is tfMilliseconds, the current position
is 180 milliseconds into the medium. If Position is 180 and TimeFormat is tfMSF, the current
position is 180 minutes into the medium.
Not all formats are supported by every device. When trying to set an unsupported format, the
assignment is ignored.
The current timing information is always passed in a 4-byte integer. In some formats, the timing
information returned is not really one integer, but single bytes of information packed in the long
integer.
The TMPTimeFormats type defines the time formats for a multimedia device used with a
TMediaPlayer. The following table lists the possible values for the TMPTimeFormats type:
Value Time format

tfMilliseconds Milliseconds are stored as a 4-byte integer variable.
tfHMS Hours, minutes, and seconds packed into a 4-byte integer. From least

significant to most significant byte, the data values are
Hours (least significant byte)
Minutes
Seconds
Unused (most significant byte)

tfMSF Minutes, seconds, and frames packed into a 4-byte integer. From least
significant to most significant byte, the data values are
Minutes (least significant byte)
Seconds
Frames
Unused (most significant byte)

tfFrames Frames are stored as a 4-byte integer variable.
tfSMPTE24 24-frame SMPTE packs values in a 4-byte variable. From least significant

to most significant byte, the data values are
Hours (least significant byte)
Minutes
Seconds
Frames (most significant byte)

SMPTE (Society of Motion Picture and Television Engineers) time is an
absolute time format expressed in hours, minutes, seconds, and frames.
The standard SMPTE division types are 24, 25, and 30 frames per
second.

tfSMPTE25 25-frame SMPTE packs data into a 4-byte variable in the same order as
24-frame SMPTE.

tfSMPTE30 30-frame SMPTE packs data into the 4-byte variable in the same order as
24-frame SMPTE.

tfSMPTE30Drop 30-drop-frame SMPTE packs data into the 4-byte variable in the same
order as 24-frame SMPTE.

tfBytes Bytes are stored as a 4-byte integer variable.
tfSamples Samples are stored as a 4-byte integer variable.
tfTMSF Tracks, minutes, seconds, and frames are packed in the 4-byte variable.

From least significant to most significant byte, the data values are
Tracks (least significant byte)
Minutes
Seconds

Frames (most significant byte)
Note that MCI uses continuous track numbering.
Note
Functions provided with MCI to help decoding the 4-byte integer specified in a given time format
are documented under MCI Macros for Encoding and Decoding Time Data in the MMSYSTEM.
HLP Help file.

TMediaPlayer::TrackLength
TMediaPlayer See also
TrackLength reports the length of the track.
__property long TrackLength[int TrackNum];
Description
TrackLength reports the length of the track specified by the TrackNum index.
The value of TrackLength is specified according to the current time format, which is specified in
the TimeFormat property.

TMediaPlayer::TrackPosition
TMediaPlayer See also
TrackPosition reports the starting position of the track.
__property long TrackPosition[int TrackNum];
Description
TrackPosition reports the starting position of the track specified by the TrackNum index.
The value of TrackPosition is specified according to the current time format, which is specified in
the TimeFormat property.

TMediaPlayer::Tracks
TMediaPlayer
Tracks specifies the number of playable tracks on the open multimedia device.
__property long Tracks;
Description
Tracks indicates how many of playable tracks are available on the open multimedia device.
Tracks is undefined for devices that don’t use tracks.

TMediaPlayer::Visible
TMediaPlayer Example
Visible determines whether the component appears onscreen.
__property Visible;
Description
Visible determines whether the media player is visible onscreen.
If Visible is true, the component appears. If Visible is false, the component is not visible. Calling
the Show method makes the control’s Visible property true, but it also performs other actions to
ensure that the user can see the control.

TMediaPlayer::VisibleButtons
TMediaPlayer See also
VisibleButtons indicates which of the buttons on the media player are visible.
__property TButtonSet VisibleButtons;
Description
VisibleButtons determines the buttons on the media player that are visible. If a button is not
made visible with VisibleButtons, it does not appear on the media player control. By default, all
buttons are visible when a media player component is added to a form.
Button Value Action

Play btPlay Plays the media player
Record btRecord Starts recording
Stop btStop Stops playing or recording
Next btNext Skips to the next track, or to the end if the medium

doesn’t use tracks
Prev btPrev Skips to the previous track, or to the beginning if

the medium doesn’t use tracks
Step btStep Moves forward a number of frames
Back btBack Moves backward a number of frames
Pause btPause Pauses playing or recording. If already paused

when clicked, resumes playing or recording.
Eject btEject Ejects the medium

TMediaPlayer::Wait
TMediaPlayer
Wait determines whether a media control method returns control to the application only after it
has been completed.
__property bool Wait;
Description
Wait determines whether a media control method (Back, Close, Eject, Next, Open, Pause,
PauseOnly, Play, Previous, StartRecording, Resume, Rewind, Step, or Stop) returns control to
the application only after it has been completed. Wait is unavailable at design time.
If Wait is true, the media player component waits until the next media control method has
completed before returning control to the application. If Wait is false, the application won’t wait
for the next media control method to finish before continuing.
Wait affects only the next media control method called after setting Wait. Wait must be reset to
affect any subsequent call to a media control method.
By default, Play and StartRecording function as if Wait is false. Wait must be set to true before
calling Play or StartRecording to prevent control from returning to the application before playing
or recording has finished. By default, all other media control methods function as if Wait is true.
Note
Wait is usually set to false only if the next media control is expected to take a long time, so that
the application can execute other code before the media control method has completed. If Wait
is set to false, it is recommended to set Notify to true so the application is notified when the
media control method completes.

TMediaPlayer events
TMediaPlayer Alphabetically Legend

In TMediaPlayer
OnClick
OnNotify
OnPostClick

Derived from TWinControl
OnEnter
OnExit

TMediaPlayer events
TMediaPlayer By object Legend

OnClick
OnEnter
OnExit
OnNotify
OnPostClick

TMediaPlayer::OnClick
TMediaPlayer See also Example
OnClick occurs when the user presses and releases the mouse button while the mouse pointer
is over one of the control buttons of the media player control, or when the user presses
Spacebar while the media player control has focus.
__property EMPNotify OnClick;
Description
When the media player control has focus and the Spacebar is pressed, the user can use the Left
Arrow or Right Arrow keys to select which control button to click.
The EMPNotify type is a method pointer that is called when an OnClick event for a TMediaPlayer
components occurs. The Button argument can be one of the following values: btBack, btEject,
btNext, btPause, btPlay, btPrev, btRecord, btStep, or btStop.
The default value of the DoDefault argument is true. If DoDefault is true, the media player control
calls the method that corresponds to the clicked button. For example, if the user clicks the Play
button (btPlay), the Play method is called.
If DoDefault is false, the user must write code that executes when a media player control button
is clicked in the OnClick event handler. The following table lists the default methods
corresponding to the media player control buttons:
Control button Button value Method called

Play btPlay Play
Record btRecord StartRecording
Stop btStop Stop
Next btNext Next
Prev btPrev Previous
Step btStep Step
Back btBack Back
Pause btPause Pause
Eject btEject Eject

TMediaPlayer::OnNotify
TMediaPlayer See also
OnNotify occurs upon the completion of a media control method.
__property Classes::TNotifyEvent OnNotify;
Description
OnNotify occurs upon the completion of a media control method (Back, Close, Eject, Next,
Open, Pause, PauseOnly, Play, Previous, Resume, Rewind, StartRecording, Step, or Stop)
when the Notify property is set to true before the call to the media control method. After an
OnNotify event, the Notify property must be reset to true for the next OnNotify event to occur.

TMediaPlayer::OnPostClick
TMediaPlayer See also
Notify property occurs after the OnClick event handler is called.
__property EMPPostNotify OnPostClick;
Description
OnPostClick is generated after the code of the OnClick event handler has been called. If Wait is
true when the media player was clicked, OnPostClick won’t be called until the completion of the
OnClick code. If Wait is false, control can return to the application before completion of the
OnClick code; therefore, the OnPostClick event may occur before the actions initiated by the
OnClick event have completed.
For example, if the user clicks the Play button and the DoDefault parameter of the OnClick event
handler for the media player is true, the media is played. If the media is long enough, it will still
be playing when the OnPostClick event is generated if Wait is true. If Wait is false, however,
OnPostClick won’t occur until the media has finished playing.
The EMPPostNotify type is a method that is called when an OnPostClick event for a
TMediaPlayer component occurs. The Button argument can be one of the following values:
btBack, btEject, btNext, btPause, btPlay, btPrev, btRecord, btStep, or btStop.

TMediaPlayer methods
TMediaPlayer Alphabetically Legend

In TMediaPlayer
~TMediaPlayer

AutoButtonSet
Back
Click
Close
DoNotify
Eject
Loaded
MMNotify
Next
Notification
Open
Paint
Pause
PauseOnly
Play
PostClick

Previous
Resume
Rewind
Save
StartRecording
Step
Stop
TMediaPlayer

Updated
Derived from TWinControl

Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront

ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TMediaPlayer methods
TMediaPlayer By object Legend

~TMediaPlayer
Assign

AutoButtonSet
Back
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Click
ClientToScreen
Close

ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch

DoNotify
DragDrop
Dragging
Eject
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance

FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate

Loaded
MethodAddress
MethodName

MMNotify

NewInstance
Next
Notification
Open
Paint
PaintTo
PauseOnly
Pause
Perform
Play
PostClick
Previous
Realign
Refresh
RemoveComponent

RemoveControl
Repaint
Resume
Rewind
Save
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
StartRecording
Step
Stop
TMediaPlayer
UpdateControlState

Updated
Update

TMediaPlayer::~TMediaPlayer
TMediaPlayer See also
~TMediaPlayer frees the memory associated with the TMediaPlayer object. Do not call ~
TMediaPlayer directly. Instead, use the delete keyword on the object, which causes ~
TMediaPlayer to be invoked automatically.
__fastcall virtual ~TMediaPlayer(void);
Description
~TMediaPlayer ensures that no device is open before it destroys the bitmaps, used for the
media player’s buttons, and then calls the destructor of its parent object.

TMediaPlayer::AutoButtonSet
TMediaPlayer See also
AutoButtonSet controls the enabling of the media player’s buttons.
virtual void __fastcall AutoButtonSet(TMPBtnType Btn);
Description
AutoButtonSet implements the automatic enabling and disabling of the media player’s buttons
when the AutoEnable property is true. The Btn parameter indicates which of the media player’s
buttons the used pressed.
TMPBtnType is the type of the Btn parameter. The values for TMPBtnType are as follows:.
Button Value Action

Play btPlay Plays the media player
Record btRecord Starts recording
Stop btStop Stops playing or recording
Next btNext Skips to the next track, or to the end if the medium

doesn’t use tracks
Prev btPrev Skips to the previous track, or to the beginning if

the medium doesn’t use tracks
Step btStep Moves forward a number of frames
Back btBack Moves backward a number of frames
Pause btPause Pauses playing or recording. If already paused

when clicked, resumes playing or recording.
Eject btEject Ejects the medium

TMediaPlayer::Back
TMediaPlayer See also
Back steps backward a number of frames (determined by the value of the Frames property) in
the currently loaded medium.
void __fastcall Back(void);
Description
Back is called when the Back button on the media player control is clicked at runtime.
Upon completion, Back stores a numerical error code in the Error property and the
corresponding error message in the ErrorMessage property.
The Wait property determines whether control is returned to the application before the Back
method has been completed. The Notify property determines whether Back generates an
OnNotify event.

TMediaPlayer::Click
TMediaPlayer See also
Click determines the action that takes place when an OnClick event occurs.
virtual void __fastcall Click(TMPBtnType Button, bool &DoDefault);
Description
Click for media-player components is the implementation method for the OnClick event. By
default, Click does nothing other than call any event handler attached to the media player’s
OnClick event.Click can be overridden in descendant types to customize responses to clicks.

TMediaPlayer::Close
TMediaPlayer See also
Close closes the open multimedia device.
void __fastcall Close(void);
Description
Upon completion, Close stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.
The Wait property determines whether control is returned to the application before the Close
method is completed. The Notify property determines whether Close generates an OnNotify
event.
Close is called automatically when the application is terminated.

TMediaPlayer::DoNotify
TMediaPlayer See also
DoNotify determines the action that takes place when an OnNotify event occurs.
virtual void __fastcall DoNotify(void);
Description
DoNotify is the implementation method for a media-player component’s OnNotify event. The
media player’s MMNotify method calls DoNotify after correcting the enabling and disabling of
buttons and setting internal flags from the values passed in the notification message parameters.
By default, DoNotify does nothing except call any event handler attached to the media player’s
OnNotify event. DoNotify can be overridden to provide other responses in addition to the
inherited event-handler call.

TMediaPlayer::Eject
TMediaPlayer See also
Eject forcefully releases the loaded medium from the open multimedia device.
void __fastcall Eject(void);
Description
Eject ejects the loaded medium from the open multimedia device.
Eject is called when the Eject button on the media player control is clicked at runtime.
Upon completion, Eject stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.
The Wait property determines whether control is returned to the application before the Eject
method has been completed. The Notify property determines whether Eject generates an
OnNotify event.

TMediaPlayer::Loaded
TMediaPlayer See also
Loaded provides an opportunity for initialization after the media player has been loaded from a
stream.
virtual void __fastcall Loaded(void);
Description
Loaded provides an opportunity for a component to initialize itself after all its parts have loaded
from a stream. When a Borland C++Builder application loads a form from its form file, for
example, it first constructs the form component by calling its constructor, then reading its
property values from the form file, which is a stream. After reading all the property values for all
the components, Borland C++Builder calls the Loaded methods of each component in the order
the components were created. This gives the components a chance to initialize any data that
depends on the values of other components or other parts of itself.

TMediaPlayer::Next
TMediaPlayer See also
Next moves to the beginning of the next track of the currently loaded medium.
void __fastcall Next(void);
Description
If the current position is at the last track when Next is called, Next makes the current position the
beginning of the last track. If the multimedia device doesn’t use tracks, Next goes to the end of
the medium. Next is called when the Next button on the media player control is clicked at
runtime.
Upon completion, Next stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.
The Wait property determines whether control is returned to the application before the Next
method has completed. The Notify property determines whether Next generates an OnNotify
event.

TMediaPlayer::MMNotify
TMediaPlayer See also
MMNotify responds to a notification that the MCI device has completed an operation.
MESSAGE void __fastcall MMNotify(Messages::TMessage &Message);
Description
MMNotify responds to a notification message from Windows that a multimedia command
completed by updating button states if the AutoEnable property is true, setting internal flags to
reflect the outcome of the command, then calling the DoNotify method to trigger the OnNotify
event and any other special responses.

TMediaPlayer::Notification
TMediaPlayer See also
Notification notifies the component that the component specified by AComponent is about to be
inserted or removed, as specified by Operation.
virtual void __fastcall Notification(Classes::TComponent* AComponent,
Classes::TOperation Operation);

Description
By default, components pass along the notification to their owned components, if any.

TMediaPlayer::Open
TMediaPlayer See also
Open opens a multimedia device.
void __fastcall Open(void);
Description
Use Open to open a multimedia device. The multimedia device type must be specified in the
DeviceType property before a device can be opened.
Upon completion, Open stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.
The Wait property determines whether control is returned to the application before the Open
method is completed. The Notify property determines whether Open generates an OnNotify
event.

TMediaPlayer::Paint
TMediaPlayer
Paint responds to a WM_PAINT Windows message.
virtual void __fastcall Paint(void);
Description
Paint renders the image of the media player. Custom controls, such as the medial player
component, respond to WM_PAINT messages by initializing the control’s canvas and calling
Paint.
When creating a descendant media player class, Paint can be overridden to draw the image of
the corresponding media player object.

TMediaPlayer::PostClick
TMediaPlayer See also
PostClick determines the action that takes place when an OnPostClick event occurs.
virtual void __fastcall PostClick(TMPBtnType Button);
Description
PostClick is the implementation method for the OnPostClick event. By default, PostClick does
nothing other than call any event handler attached to the media player’s OnPostClick event.
PostClick can be overridden in descendant types to customize responses to clicks.

TMediaPlayer::Pause
TMediaPlayer See also
Pause pauses the open multimedia device.
void __fastcall Pause(void);
Description
If the device is already paused when Pause is called, the device resumes playing or recording by
calling the Resume method. Pause is called when the Pause button on the media player control
is clicked at runtime.
Upon completion, Pause stores a numerical error code in the Error property and the
corresponding error message in the ErrorMessage property.
The Wait property determines whether control is returned to the application before the Pause
method has completed. The Notify property determines whether Pause generates an OnNotify
event.

TMediaPlayer::PauseOnly
TMediaPlayer See also
PauseOnly pauses the open multimedia device.
void __fastcall PauseOnly(void);
Description
If the device is already paused when PauseOnly is called, the device will remain paused.
Upon completion, PauseOnly stores a numerical error code in the Error property and the
corresponding error message in the ErrorMessage property.
The Wait property determines whether control is returned to the application before the
PauseOnly method has completed. The Notify property determines whether PauseOnly
generates an OnNotify event.

TMediaPlayer::Play
TMediaPlayer See also
Play plays the media loaded in the open multimedia device.
void __fastcall Play(void);
Description
Play is called when the Play button on the media player control is clicked at runtime.
Upon completion, Play stores a numerical error code in the Error property and the corresponding
error message in the ErrorMessage property.
The Wait property determines whether control is returned to the application before the Play
method has completed. The Notify property determines whether Play generates an OnNotify
event.
If the StartPos property is set, playing starts at the position specified in StartPos. Otherwise,
playing starts at the current position, specified in the Position property. Similarly, if the EndPos
property is set, playing stops at the position specified in EndPos. Otherwise, playing stops at the
end of the medium.
Whether the medium (specified in the Position property) is rewound before playing starts
depends on the AutoRewind property.

TMediaPlayer::Previous
TMediaPlayer See also
Previous sets the current position to the beginning of the previous track if the position was at the
beginning of a track when Previous was called.
void __fastcall Previous(void);
Description
If the position is at the first track or somewhere other than the beginning of a track when
Previous was called, Previous sets the current position to the beginning of the current track. If
the device doesn’t use tracks, Previous sets the current position to the beginning of the
medium, which is specified in the Start property. Previous is called when the Previous button on
the media player control is clicked at runtime.
Upon completion, Previous stores a numerical error code in the Error property and the
corresponding error message in the ErrorMessage property.
The Wait property determines whether control is returned to the application before the Previous
method has completed. The Notify property determines whether Previous generates an OnNotify
event.

TMediaPlayer::Resume
TMediaPlayer See also
Resume resumes playing or recording the currently paused multimedia device.
void __fastcall Resume(void);
Description
Resume is called when the Pause button on the media player control is clicked at runtime, when
the device is paused.
Upon completion, Resume stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.
The Wait property determines whether control is returned to the application before the Resume
method has completed. The Notify property determines whether Resume generates an OnNotify
event.

TMediaPlayer::Rewind
TMediaPlayer See also
Rewind sets the current position to the beginning of the medium, which is stored in the Start
property.
void __fastcall Rewind(void);
Description
Upon completion, Rewind stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.
The Wait property determines whether control is returned to the application before the Rewind
method has completed. The Notify property determines whether Rewind generates an OnNotify
event.

TMediaPlayer::Save
TMediaPlayer See also
Save saves the currently loaded medium to the file specified in the FileName property.
void __fastcall Save(void);
Description
Save is ignored for devices that don’t use media stored in files (videodiscs, for example).
Upon completion, Save stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.
The Wait property determines whether control is returned to the application before the Save
method has completed. The Notify property determines whether Save generates an OnNotify
event.

TMediaPlayer::StartRecording
TMediaPlayer See also
StartRecording begins recording from the current Position or from the position specified in
StartPos.
void __fastcall StartRecording(void);
Description
StartRecording is called when the Record button on the media player control is clicked at
runtime.
Upon completion, StartRecording stores a numerical error code in the Error property and the
corresponding error message in the ErrorMessage property.
The Wait property determines whether control is returned to the application before the
StartRecording method has completed. The Notify property determines whether StartRecording
generates an OnNotify event.
By default, the Notify property becomes true, and the Wait property becomes false upon
completion of the StartRecording method. However, if these properties have been set to specific
values prior to calling StartRecording, they remain unchanged.

TMediaPlayer::Step
TMediaPlayer See also
Step moves forward a number of frames (determined by the Frames property) in the currently
loaded medium.
void __fastcall Step(void);
Description
Step is called when the Step button on the media player control is clicked at runtime.
Upon completion, Step stores a numerical error code in the Error property and the corresponding
error message in the ErrorMessage property.
The Wait property determines whether control is returned to the application before the Step
method has completed. The Notify property determines whether Step generates an OnNotify
event.

TMediaPlayer::Stop
TMediaPlayer See also
Stop halts playing or recording.
void __fastcall Stop(void);
Description
Stop is called when the Stop button on the media player control is clicked at runtime.
Upon completion, Stop stores a numerical error code in the Error property, and the
corresponding error message in the ErrorMessage property.
The Wait property determines whether control is returned to the application before the Stop
method has completed. The Notify property determines whether Stop generates an OnNotify
event.

TMediaPlayer::TMediaPlayer
TMediaPlayer See also
TMediaPlayer instantiates a media player object.
__fastcall virtual TMediaPlayer(Classes::TComponent* AOwner);
Description
Call TMediaPlayer to instantiate a media player at runtime. For media players created at design
time, TMediaPlayer is called automatically.
TMediaPlayer allocates memory for a media player, and calls the constructor of its parent object.
Then it loads the bitmaps used for its buttons and sets initial values for the media player
including setting the AutoEnable, AutoRewind, Colored, Enabled, and Visible properties to true,
AutoOpen to false, and DeviceType to dtAutoSelect.

TMediaPlayer::Updated
TMediaPlayer See also
Updated signals that the media player has finished updating.
virtual void __fastcall Updated(void);
Description
Updated calls the inherited Updated before it modifies the layout of the media player buttons
forces a repaint.

Scope
Published

Accessibility
Read-only

Scope
Protected

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl

TMediaPlayer example
TMediaPlayer

TMemo
Hierarchy Properties Methods Events See also
TMemo is a wrapper for a windows multiline edit control.
Header
vcl/stdctrls.hpp
Description
Use TMemo to put a standard Windows multiline edit control on a form. Multiline edit boxes allow
the user to enter more than one line of text. They are appropriate for representing lengthy
information.
TMemo implements the generic behavior introduced in TCustomMemo. TMemo publishes many
of the properties inherited from TCustomMemo, but does not introduce any new behavior.

TMemo properties
TMemo Alphabetically Legend

Derived from TCustomMemo
Alignment
Lines
ScrollBars
WantReturns
WantTabs
WordWrap

Derived from TCustomEdit
BorderStyle
HideSelection
MaxLength
Modified
OEMConvert

ReadOnly
SelLength
SelStart
SelText

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Text
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TMemo properties
TMemo By object Legend

Alignment
Align
BorderStyle
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
Enabled
Font

Handle
Height
HelpContext
HideSelection
Hint
Left
Lines
MaxLength
Modified
Name
OEMConvert

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint

Parent
PopupMenu

ReadOnly
ScrollBars
SelLength
SelStart
SelText
ShowHint

Showing
TabOrder
TabStop
Tag
Text
Top
Visible
WantReturns
WantTabs
Width

WordWrap

TMemo events
TMemo Alphabetically Legend

Derived from TCustomEdit
OnChange

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TMemo events
TMemo By object Legend

OnChange
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TMemo methods
TMemo Alphabetically

Derived from TCustomMemo
~TCustomMemo
TCustomMemo

Derived from TCustomEdit
Clear
ClearSelection
CopyToClipboard
CutToClipboard
GetSelTextBuf
PasteFromClipboard
SelectAll
SetSelTextBuf

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf

Show
Derived from TComponent

DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TMemo methods
TMemo By object

~TCustomMemo
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClearSelection
Clear
ClientToScreen
ContainsControl
ControlAtPos
CopyToClipboard
CutToClipboard
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetSelTextBuf
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate

MethodAddress
MethodName
NewInstance
PaintTo
PasteFromClipboard
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SelectAll
SendToBack
SetBounds
SetFocus
SetSelTextBuf
SetTextBuf
Show
TCustomMemo
UpdateControlState
Update

~TMemo
~TMemo frees the memory associated with the TMemo object. Do not call ~TMemo directly.
Instead, use the delete keyword on the object, which causes ~TMemo to be invoked
automatically.
__fastcall virtual ~TMemo(void);

TMemo
TMemo creates a new TMemo object.
__fastcall virtual TMemo(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomEdit
TCustomMemo

TMemo example
TMemo

TMemoField
Hierarchy Properties Methods Events See also
The TMemoField component represents a memo field in a dataset.
Header
vcl/dbtables.hpp
Description
Memo fields are a form of binary large object (BLOB) field where the data consists of an
arbitrarily large string of text. TMemoField differs from its immediate ancestor TBlobField only in
the introduction of a Transliterate property to govern language driver conversions, and the value
of the DataType property. As a descendent of TBlobField, TMemoField includes many
properties, methods, and events that are useful for managing the value and properties of a
BLOB field in a database.

TMemoField properties
TMemoField Alphabetically Legend

In TMemoField
Transliterate

Derived from TBlobField
BlobType
Value

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TMemoField properties
TMemoField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
BlobType
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditMaskPtr

EditMask
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Transliterate
Value
Visible

TMemoField::Transliterate
TMemoField See also
Transliterate determines whether the text in the memo field should be converted between the
ANSI character set and the character set identified by the dataset, when reading from or writing
to the physical database tables.
__property Transliterate;
Description
Use Transliterate when the physical database table identified by the dataset does not use an
ANSI language driver and the data may contain extended ascii characters.
When Transliterate is true, the AnsiToNative function is called to translate the ANSI characters
to the character set used by the dataset when the memo field value is set. When the memo field
value is read, the NativeToAnsi function is called to translate the characters in the database
table to the ANSI character set.

TMemoField events
TMemoField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TMemoField events
TMemoField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TMemoField methods
TMemoField Alphabetically

In TMemoField
~TMemoField
TMemoField

Derived from TBlobField
Assign
Clear
LoadFromFile
LoadFromStream
SaveToFile
SaveToStream
SetFieldType
SetText

Derived from TField
AssignValue
FocusControl
GetData
IsValidChar
SetData

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TMemoField methods
TMemoField By object

~TMemoField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
LoadFromFile
LoadFromStream
MethodAddress
MethodName
NewInstance
RemoveComponent
SaveToFile
SaveToStream
SetData
SetFieldType
SetText
TMemoField

TMemoField::~TMemoField
TMemoField
~TMemoField frees the memory associated with the TMemoField object. Do not call ~
TMemoField directly. Instead, use the delete keyword on the object, which causes ~
TMemoField to be invoked automatically.
__fastcall virtual ~TMemoField(void);

TMemoField::TMemoField
TMemoField See also
The TMemoField method creates an instance of TMemoField.
__fastcall virtual TMemoField(Classes::TComponent* AOwner);
Description
Call TMemoField to instantiate a TMemoField object at runtime. For TMemoField objects placed
on forms or data modules at design time, TMemoField is called automatically.
After calling the constructor of its parent object, TMemoField sets the DataType to ftMemo.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField
TBlobField

TMemoField example
TMemoField

TMemoryStream
Hierarchy Properties Methods See also
The TMemoryStream object is a stream object that stores its data in dynamic memory.
Header
vcl/classes.hpp
Description
Use TMemoryStream to store data in a dynamic memory buffer that is enhanced with I/O
capabilities. TMemoryStream provides the general I/O capabilities of a stream object while
introducing methods and properties to manage a dynamic memory buffer.
Memory streams are useful as intermediary objects that can hold information as well as read it
from or write it to another storage medium. They provide a useful format for comparing the
contents of streams, or for manipulating data that is stored in a less accessible medium.

TMemoryStream properties
TMemoryStream Alphabetically Legend

In TMemoryStream
Capacity

Derived from TCustomMemoryStream
Memory

Derived from TStream
Position

Size

TMemoryStream properties
TMemoryStream By object Legend

Capacity
Memory

Position
Size

TMemoryStream::Capacity
TMemoryStream See also
Capacity is the amount of memory that is currently allocated by the TMemoryStream object.
__property long Capacity;
Description
Use Capacity to find out how much memory is available in the memory buffer, or to reallocate
the memory buffer to create more or less memory.
Capacity is the actual number of bytes in the memory buffer, as opposed to Size, which is the
amount of the memory buffer that is used. Thus, Capacity is always greater than or equal to
Size. Setting the Size property will change the Capacity to match, but setting the Capacity
property will not change the Size property. Do not set Capacity to a value less than Size, or the
data will be truncated and Size will indicate that more memory is used than is actually the case.
To reallocate the memory associated with the memory stream, set the Capacity property. Do not
use the Realloc method, which does not update the Memory property, and so leaves a pointer to
an invalid memory location.
Capacity is a protected property. Applications can change the capacity of a memory stream by
calling the SetSize method.

TMemoryStream methods
TMemoryStream Alphabetically Legend

In TMemoryStream
~TMemoryStream
LoadFromFile
LoadFromStream

Realloc
SetSize
TMemoryStream
Write

Derived from TCustomMemoryStream
Read
SaveToFile
SaveToStream
Seek

Derived from TStream
CopyFrom
ReadBuffer
ReadComponent
ReadComponentRes
ReadResHeader
WriteBuffer
WriteComponent
WriteComponentRes
WriteDescendent
WriteDescendentRes

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TMemoryStream methods
TMemoryStream By object Legend

~TMemoryStream
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CopyFrom
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
LoadFromFile
LoadFromStream
MethodAddress
MethodName
NewInstance
ReadBuffer
ReadComponentRes
ReadComponent
ReadResHeader
Read

Realloc
SaveToFile
SaveToStream
Seek
SetSize
TMemoryStream
WriteBuffer
WriteComponentRes

WriteComponent
WriteDescendentRes
WriteDescendent
Write

TMemoryStream::~TMemoryStream
TMemoryStream See also
Destroy destroys an instance of TMemoryStream.
__fastcall virtual ~TMemoryStream(void);
Description
Do not call Destroy directly in an application. Instead, call Free. Free verifies that the
TMemoryStream object is not already freed, and only then calls Destroy.
Destroy a TMemoryStream object when it is no longer needed to store or write data. Destroy
calls Clear to free the memory buffer before calling the inherited destructor.

Clear
Clear frees the memory buffer, discarding all data associated with the memory stream.
void __fastcall Clear(void);
Description
Use Clear to empty the memory buffer for the memory stream and free all associated memory.
In addition to freeing the memory associated with the memory buffer, Clear
• Sets the Memory property to NULL.
• Sets the Position property to 0.
• Sets the Size property to 0.
• Sets the Capacity property to 0.

TMemoryStream::LoadFromFile
TMemoryStream See also
LoadFromFile ensures that there is enough memory allocated to hold the contents of the named
file, and then loads the entire contents of the file into the memory buffer.
void __fastcall LoadFromFile(const System::AnsiString FileName);
Description
Use LoadFromFile to fill the memory stream with the contents of a file. LoadFromFile allows an
application to read the contents of a file into the memory stream without having to explicitly
create and free a file stream object.
LoadFromFile reallocates the memory buffer so that the contents of the file will exactly fit. It sets
the Size and Capacity properties accordingly, and then reads the entire contents of the file into
the memory buffer. Thus, LoadFromFile will discard any pre-existing data stored in the memory
stream.

TMemoryStream::LoadFromStream
TMemoryStream See also
LoadFromStream ensures that there is enough memory allocated to hold the contents of another
stream, and then loads the entire contents of that stream into the memory buffer.
void __fastcall LoadFromStream(TStream* Stream);
Description
Use LoadFromStream to fill the memory stream with the contents of another stream object.
LoadFromStream always sets the Position of the source stream to 0, before streaming in the
number of bytes indicated by the source stream’s Size property.
LoadFromStream reallocates the memory buffer so that the contents of the source stream will
exactly fit. It sets the Size and Capacity properties accordingly, and then reads the entire
contents of the source stream into the memory buffer. Thus, LoadFromStream will discard any
pre-existing data stored in the memory stream.
If the source stream is a TFileStream object, LoadFromStream does the same thing as
LoadFromFile, except that the application must create and free the TFileStream object.
LoadFromStream also allows applications to fill a memory stream object from other types of
stream objects.

TMemoryStream::Realloc
TMemoryStream See also
Realloc reallocates the memory buffer, and returns a pointer to a memory buffer with the
requested NewCapacity that contains as much of the data from the pre-existing memory buffer
as will fit.
virtual void * __fastcall Realloc(long &NewCapacity);
Description
Do not call Realloc to reallocate the memory buffer. Realloc does not reset the Memory property,
and hence leaves the Memory property with an invalid pointer. Use the Capacity property to
reallocate the memory buffer. Setting Capacity calls Realloc, and then adjusts the properties of
the memory stream object to reflect the change.
Note
Calling LoadFromStream will also reallocate the memory buffer, but does not preserve the
existing contents of the memory stream.

TMemoryStream::SetSize
TMemoryStream See also
SetSize sets the Size property of the memory stream.
void __fastcall SetSize(long NewSize);
Description
Use SetSize to set the Size of a memory stream before filling it with data. SetSize allocates the
memory buffer to hold NewSize bytes, after discarding the current contents of Memory. There is
no need to free the memory buffer before calling SetSize. SetSize updates the Capacity property
as well as the Size property.
Use SetSize before filling the memory buffer with data from various sources, or from a portion of
another stream. If the intended contents of the memory stream is exactly the same as the
contents of another stream or file, use LoadFromStream or LoadFromFile instead.

TMemoryStream::TMemoryStream
TMemoryStream
TMemoryStream creates a new TMemoryStream object.
__fastcall TMemoryStream(void);

TMemoryStream::Write
TMemoryStream See also
Write writes Count bytes from Buffer to the current position in the memory buffer and updates
the current position by Count bytes.
__property long Capacity;
Description
Use Write to insert Count bytes into the memory buffer of the memory stream, starting at the
current position. Write will increase the size of the memory buffer, if necessary, to accommodate
the data being written in. If the current position is not the end of the memory buffer, Write will
overwrite the data following the current position.
Write updates the Capacity property if it must allocate more memory to hold the new data. Write
updates the Size property to Position +Count, and sets the Position property to the new value of
Size. Thus, any data that was stored in the memory stream after the current position is lost when
calling Write.
Write always writes the Count bytes in the Buffer, unless there is a memory failure. Thus, for
TMemoryStream, Write is equivalent to the WriteBuffer method.
All other data-writing methods of a memory stream (WriteBuffer, WriteComponent) call Write to
do the actual writing.

Scope
Protected

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TStream
TCustomMemoryStream

TMemoryStream example
TMemoryStream

TMenu
Hierarchy Properties Methods See also
The TMenu component is the abstract base type for usable menu components such as
TMainMenu and TPopupMenu.
Header
vcl/menus.hpp
Description
In addition to the items it inherits from its ancestor, TComponent, TMenu introduces three
properties and several methods.

TMenu properties
TMenu Alphabetically Legend

In TMenu
Handle
Items

WindowHandle
Derived from TComponent

ComponentCount
ComponentIndex

Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TMenu properties
TMenu By object Legend

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

DesignInfo
Handle
Items

Name
Owner

Tag
WindowHandle

TMenu::Handle
TMenu See also
The handle for the menu.
__property HMENU Handle;
Description
The Handle property lets you access the menu or menu item's window handle, so you can call a
Windows API function that requires a menu handle.
Handle is a read-only property

TMenu::Items
TMenu See also
Specifies a menu item in a menu component.
__property TMenuItem* Items;
Description
For menu items, the Items array property provides access to a subitem of a menu item
(TMenuItem) by its position in the list of subitems. The value of Index is the position of the
subitem within the Items array. For example, if an application has a File drop-down menu that
contains the menu items New, Open, and Save, in that order, FileMenu.Items[2] refers to the
Save command. For menu items, Items is runtime only property.
For main menus, the Items property provides access to a menu item on the main menu bar, and
is available at both design time and runtime.
For pop-up menus, the Items property provides access to a menu item on the pop-up menu, and
is available at both design time and runtime.

TMenu::WindowHandle
TMenu See also
Provides access to the same window handle as the Handle property, but it is protected, and
therefore only accessible to code inside the component.
__property HWND WindowHandle;
Description
The advantage to WindowHandle is that it is writable, where Handle is read-only. You can
therefore assign a new handle to an existing windowed control through WindowHandle. In
addition, reading the value of WindowHandle does not automatically create a valid handle. The
access method for Handle always calls HandleNeeded to generate a handle if there is not one
already. Reading WindowHandle can return a zero value.

TMenu methods
TMenu Alphabetically

In TMenu
~TMenu
DispatchCommand
DispatchPopup
FindItem
GetHelpContext
IsShortCut
TMenu

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TMenu methods
TMenu By object

~TMenu
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
DispatchCommand
DispatchPopup
Dispatch
FieldAddress
FindComponent
FindItem
FreeInstance
FreeNotification
Free
GetHelpContext
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsShortCut
MethodAddress
MethodName
NewInstance
RemoveComponent
TMenu

TMenu::~TMenu
TMenu See also
~TMenu frees the memory associated with the TMenu object. Do not call ~TMenu directly.
Instead, use the delete keyword on the object, which causes ~TMenu to be invoked
automatically.
__fastcall virtual ~TMenu(void);
Description
TMenu frees the Items property, and then calls the destructor of its parent object.

TMenu::DispatchCommand
TMenu See also
Dispatches a menu command.
bool __fastcall DispatchCommand(unsigned short ACommand);
Description
The DispatchCommand method searches the items in the menu for one with an associated
command matching the one passed in ACommand. If such an item exists, DispatchCommand
calls the Click method for that item and returns true. If there is no such item, DispatchCommand
returns false.

TMenu::DispatchPopup
TMenu See also
Dispatches a pop-up menu command.
bool __fastcall DispatchPopup(HMENU AHandle);
Description
The DispatchPopup method searches the items in the menu for one with a menu handle
matching the one passed in AHandle. If such an item exists, DispatchPopup calls the Click
method for that item and returns true. If there is no such item, DispatchPopup returns false.

TMenu::FindItem
TMenu See also
Returns a menu item.
TMenuItem* __fastcall FindItem(int Value, TFindItemKind Kind);
Description
The menu item returned is either a menu handle, menu command, or menu shortcut matching
the value of the Value parameter. The Kind parameter can be any of these values:
Value Meaning

fkCommand Menu command number used by Windows WM_COMMAND message
fkHandle Menu handle
fkShortCut Menu shortcut

TMenu::GetHelpContext
TMenu See also
Returns the help context number associated with the menu.
Classes::THelpContext __fastcall GetHelpContext(unsigned short Value,
bool ByCommand);

Description
Identify the menu to search as the value of the Value property. If ByCommand is true, Value is
the Command property of a TMenuItem. If ByCommand is false, Value is the Handle property.

TMenu::IsShortCut
TMenu See also
Determines whether the key specified in a key message is a shortcut key for an menu item in the
menu.
bool __fastcall IsShortCut(Messages::TWMKey &Message);
Description
The IsShortCut method decodes the key message passed in the Message parameter and if the
keystroke in that message is the shortcut key for an item in the menu, calls that item's Click
method and returns true. If no item in the menu has a shortcut corresponding to the message,
IsShortCut returns false.

TMenu::TMenu
TMenu See also
Constructs a menu component.
__fastcall virtual TMenu(Classes::TComponent* AOwner);
Description
Create calls the inherited Create method, then sets the initial values for the menu component,
including creating an Items property.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent

TMenu example
TMenu

TMenuItem
Hierarchy Properties Methods Events
A TMenuItem component contains the properties, methods, and events for each menu item on a
menu (TMainMenu or TPopupMenu).
Header
vcl/menus.hpp
Description
Each TMainMenu or TPopupMenu component may contain multiple menu items. As you design
a menu with the Menu Designer, you are creating a menu item object for each command on the
menu.
When the user chooses a command on a menu, that menu item’s OnClick event occurs.
The text that appears on a menu is the Caption of a menu item. You can also use the caption of
the menu item to specify an accelerator key for a menu item or to provide a line that separates a
menu into parts. You can assign a shortcut key to a menu item with the ShortCut property.
You can use the Items property to access a subitem of the current menu item.
If you want a check mark to alternately appear and disappear next to a menu item when the user
has selected it, use the Checked property. If you want to disable a menu item (make it dim and
unavailable to the user), set the Enabled property to false. You can simulate a user clicking a
menu item with the Click method. If you are working with a lengthy menu, you can break the
menu into two or more columns with the Break property.
When you want to merge menus of one form with those of another, use the GroupIndex property
of menu items, and either the AutoMerge property or the Merge and Unmerge methods of a
main menu (TMainMenu).
You can insert and delete menu items from a menu at runtime with the Insert and Remove
methods.
In addition to these properties, methods, and events, this component also has the properties and
methods that apply to all components.

TMenuItem properties
TMenuItem Alphabetically Legend

In TMenuItem
Break
Caption
Checked

Command
Count

Default
Enabled
GroupIndex

Handle
HelpContext
Hint

Items
MenuIndex

Parent
RadioItem
ShortCut
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TMenuItem properties
TMenuItem By object Legend

Break
Caption
Checked

Command
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
Count

Default
DesignInfo
Enabled
GroupIndex

Handle
HelpContext
Hint

Items
MenuIndex
Name

Owner
Parent

RadioItem
ShortCut
Tag
Visible

TMenuItem::Break
TMenuItem
Breaks a long menu into columns.
__property TMenuBreak Break;
Description
These are the possible values:
Value Meaning

mbNone No menu breaking occurs.
mbBarBreak The menu breaks into another column with the menu item appearing at

the top of the new column. A bar separates the new and the old columns.
mbBreak The menu breaks into another column with the menu item appearing at

the top of the new column. Only space separates the new and the old
columns.

The default value is mbNone.

TMenuItem::Caption
TMenuItem Example
Contains the text of the menu item.
__property System::AnsiString Caption;
Description
To underline a character in a string, include an ampersand (&) before the character. This type of
character is called an accelerator character. The user can then select the menu item by pressing
Alt while typing the underlined character. The default value is the name of the component.
You can use the Caption property to include a line that separates the menu into parts. Specify a
hyphen character (-) as the value of Caption for the menu item.

TMenuItem::Checked
TMenuItem Example
Determines whether a menu item is selected.
__property bool Checked;
Description
If Checked is true, a check appears next to the menu item, indicated the menu item is selected.
If Checked is false, the menu item remains unchecked.

TMenuItem::Command
TMenuItem
Contains the command number passed to Windows and the number that arrives in the
WM_COMMAND message sent by Windows to the form when the user chooses the menu item
on the menu.
__property unsigned short Command;
Description
Command is useful only if you are handling WM_COMMAND messages directly.
Example
The following procedure is a WM_COMMAND message handler. It checks the ItemID field of
Msg to see if the message was generated by a menu item called MenuThink. If so, it displays a
message dialog box. When writing message handlers, remember to call Inherited afterward, if
necessary, so Windows can perform default message processing.
__fastcall TForm1::WMCommand(TWMCommand &Msg) {

if(Msg->ItemID == MenuThink->Command)
MessageDlg("This is the Think command", mtInformation,

TMsgDlgButtons() << mbOK, 0);
TForm::WMCommand(Msg);

}

TMenuItem::Count
TMenuItem See also
Contains the number of items in a menu item.
__property int Count;
Description
The Count property contains the number of items in a menu item. Count contains the number of
subitems that belongs to a menu item. Subitems can be the menu items in a drop-down or pop-
up menu, or the items in a submenu.
For example, if you have a File menu item on the main menu bar, but haven't added any
commands to the File menu yet, the File menu's Count property value is 0. If you add New and
Open commands to the File menu, the Count property value is 2. Because New and Open are
also menu items, they too have Count property values. Unless either of these menu items have
submenus, their Count property values are 0.

TMenuItem::Default
TMenuItem See also
Determines whether the menu item is boldfaced and whether the menu item is invoked when the
parent item is double clicked.
__property TMenuItem* Items[int Index];
Description
The default value is false.
The Default property works under Windows 95 and under Windows NT 3.51 only if the “new
shell” has been installed.

TMenuItem::Enabled
TMenuItem See also Example
Determines whether a menu item is enabled.
__property bool Enabled;
Description
If Enabled is true, the menu item is enabled. If Enabled is false, the menu item is dimmed, and
the user will not be able to select it.

TMenuItem::GroupIndex
TMenuItem See also
Determines how menus are merged.
__property unsigned char GroupIndex;
Description
If your application has multiple forms, you’ll probably want your application’s main menu to
change as different forms become active. The alternative is for each form to display its own
menu within itself. MDI applications always merge the menus of child windows with the main
menu of the parent window. By using the GroupIndex property for menu items, you can
determine how menus are merged. You can choose to replace or insert menu items in a menu
bar.
Each menu item has a GroupIndex property value. By default, all menu items in a menu bar
have the same GroupIndex value, unless you explicitly change them. Each successive menu
item in a menu bar must have a GroupIndex value equal to or greater than the previous menu
item.
Replacing menu items in a menu bar

If a menu item in a menu bar on a form other than the main form has the same GroupIndex value as a menu
item in a menu bar on the main form, the menu item replaces the menu item in the menu bar of the main
form when that form becomes active.
If multiple menu items in the menu bar on the main form have the same GroupIndex value, and
all menu items of another form also have the same GroupIndex value, then the other form’s
menu items replace all menu items on the menu bar on the main form.
For example, imagine that the menu bar on Form1 has three items: One, Two, and Three, and
all have a GroupIndex value of 0. If Form2 has a menu bar with one menu item, Four, with a
GroupIndex value of 0, when Form2 becomes active, only the menu item Four appears in the
menu bar on Form1.
Inserting menu items in a menu bar
If one or more menu items in a menu bar on a form that isn’t the main form have a GroupIndex
value greater than a menu item in the menu bar on the main form, those menu items are
inserted into the menu bar on the main form when the menus merge. If the item’s GroupIndex
value is greater than all other GroupIndex values in the main form’s menu bar, the item appears
at the end of the menu. If the GroupIndex value is between other GroupIndex values in the menu
bar on the main form, the menu item appears between other menu items, depending on the
value.
For example, an item with a GroupIndex value of 2 would be inserted between items with
GroupIndex values of 1 and 3. An item with a GroupIndex value of 4 would appear after all the
other items.
Note
The GroupIndex value must be different from all others in the menu bar on the main form, or
else the new menu item will replace one or more menu items with the same GroupIndex value,
which you may or may not want to do.
OLE application menus

When you activate an object created by an OLE 2.0 server application, the server might try to merge its
menus with the menus of your container application, depending on the OLE server application. The
GroupIndex property of each of the container application’s menus determines where the merging menu
items appear in the container’s menu bar. Merged menu items from the OLE server might replace those on
the main menu bar, or they might be inserted beside existing container application menu items.

Note
See the documentation for the OLE server for information about whether it attempts menu merge
during in-place activation.
The OLE server can merge up to three groups of menu items. Each group is distinguished by a
unique group index and can contain any number of menu commands. The following table
summarizes the menu item groups that the OLE server application can merge:
Group Index Description

Edit 1 Menu item(s) from the server for editing the active
OLE object

View 3 Menu item(s) from the server for modifying the
view of the OLE object.

Help 5 Menu item(s) from the server for accessing the
server’s online Help

Any menu items in your container application with values of 1, 3, or 5 for their GroupIndex
properties are replaced by menu items with corresponding index values from the OLE server
application. The menu items from your OLE container with a GroupIndex value other than 1, 3,
or 5 won’t be replaced by menus from the server.
Note
TMenuItems with RadioItem set to true will act like radio buttons. Checking one will uncheck the
others in the same GroupIndex group. In Windows 95 and Windows NT with the Windows 95
shell, these menus will also be displayed with a round dot instead of a check. This will only work
on TMenuItems that are either in a TPopupMenu or a sub-menu of a TMainMenu.

TMenuItem::Handle
TMenuItem Example
Provides access to the menu item’s Window handle.
__property HMENU Handle;
Description
Use Handle when calling a Windows API function that requires such a handle.
Example
The following code uses the Windows API function HiliteMenuItem to highlight the first menu
item in MainMenu1 on Form1.

TMenuItem::HelpContext
TMenuItem See also
Provides a context number for an item on a menu for use in calling context-sensitive online Help.
__property Classes::THelpContext HelpContext;

Description
Each screen in the Help system should have a unique context number. When a component is
selected in the application, pressing F1 displays a Help screen. Which Help screen appears
depends on the value of the HelpContext property.

TMenuItem::Hint
TMenuItem See also Example
The text string that can appear when the OnHint event of an application occurs, which happens
when the user moves the mouse pointer over a menu item.
__property System::AnsiString Hint;
Description
The code within the OnHint event handler determines how the string is displayed. For more
information, see the TControl.Hint property.

TMenuItem::Items
TMenuItem See also
Provides access to a subitem of a menu item.
__property TMenuItem* Items[int Index];
Description
The Items array property provides access to a subitem of a menu item (TMenuItem) by its
position in the list of subitems. The value of Index is the position of the subitem within the Items
array. For example, if an application has a File drop-down menu that contains the menu items
New, Open, and Save, in that order, FileMenu.Items[2] refers to the Save command.
Example
The following code disables all the subitems of MenuItem1.
for(int i = 0;i < MenuItem1->ItemCount-1;i++)

MenuItem1->Items[i]->Enabled = False;

TMenuItem::MenuIndex
TMenuItem See also
The index of the menu item within its parent menu.
__property int MenuIndex;
Description
Changing this value moves the menu item within the parent.

TMenuItem::Parent
TMenuItem See also Example
Identifies the parent menu item of this menu item.
__property TMenuItem* Parent;
Description
Use Parent to determine the menu item that contains this menu item.

TMenuItem::RadioItem
TMenuItem See also
Determines the appearance of the indicator that shows a menu item is selected.
__property bool RadioItem;
Description
When RadioItem is true, the indicator is a round dot instead of a check mark and checking the
item unchecks any menu items with the same GroupIndex value.
Note
The dot will only show up under Windows 95 and under Windows NT 3.51 if the “new shell”
has been installed.

TMenuItem::ShortCut
TMenuItem See also
Determines the key strokes users can use to quickly access a menu item.
__property TShortCut ShortCut;
Description
The key combination the user can use appears to the right of the menu item in the menu. To see
an example of menu shortcuts, pull down the Borland C++Builder Edit menu and note the menu
shortcuts on the right side of some of the editing commands.
Usually you set menu shortcuts for menu items in the Object Inspector, which gives you a long
list to choose from. If you create menu items at runtime, however, you can create shortcuts for
them too. Choose from these routines for more information about working with shortcuts at
runtime:
Routine Purpose

ShortCut routine Creates a shortcut for a menu item programmatically.
ShortCutToKey routineObtains the virtual key code and shift state of an existing shortcut.
ShortCutToText routineReturns the text string of an existing shortcut. Use this function to display

a shortcut you created at runtime on a menu item.
TextToShortCut routineConverts a text string to a shortcut. Use this function to allow users to

specify the shortcut characters.
Example

This code creates a shortcut, Ctrl+C, at runtime and assigns it to the Close command on a File menu.
CloseCommand->ShortCut = ShortCut(Word('C'), TShiftState() << ssCtrl);

TMenuItem::Visible
TMenuItem See also Example
Determines whether a menu item on a menu is visible.
__property bool Visible;
Description
If Visible is true, the menu item appears. If Visible is false, the menu item is hidden, and
therefore, the user can’t select it.

TMenuItem events
TMenuItem Alphabetically Legend

In TMenuItem
OnClick

TMenuItem events
TMenuItem By object Legend

OnClick

TMenuItem::OnClick
TMenuItem See also Example
Occurs when the user clicks menu item.
__property Classes::TNotifyEvent OnClick;
Description
This event can also occur when the Click method is called.

TMenuItem methods
TMenuItem Alphabetically

In TMenuItem
~TMenuItem
Add
Click
Delete
IndexOf
Insert
Remove
TMenuItem

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TMenuItem methods
TMenuItem By object

~TMenuItem
Add
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Click
DefaultHandler
Delete
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
IndexOf
InheritsFrom
InitInstance
InsertComponent
Insert
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
Remove
TMenuItem

TMenuItem::~TMenuItem
TMenuItem See also
~TMenuItem frees the memory associated with the TMenuItem object. Do not call ~TMenuItem
directly. Instead, use the delete keyword on the object, which causes ~TMenuItem to be invoked
automatically.
__fastcall virtual ~TMenuItem(void);
Description
~TMenuItem frees the list of menu items in the Items property, then calls the destructor of its
parent object.

TMenuItem::Add
TMenuItem See also
Adds a menu item to the end of a menu.
void __fastcall Add(TMenuItem* Item);
Description
Specify the menu item you want added as the value of the Item parameter.
Example
This code adds a menu item to a File menu:
__fastcall Form1::Button1Click(TSender *Sender) {
TMenuItem *NewItem=new TMenuItem();
NewItem->Caption = "New item";
File->Add(NewItem);
delete NewItem;

}

TMenuItem::Click
TMenuItem See also
Simulates a mouse click.
virtual void __fastcall Click(void);
Description
The Click method simulates a mouse click, as if the user had clicked a menu item, executing any
code attached to the OnClick event.

TMenuItem::Delete
TMenuItem See also
Removes a menu item.
void __fastcall Delete(int Index);
Description
The Delete method removes the menu item specified with the Index parameter from a menu.
The index is zero-based, so the first item has an Index value of 0, the second item has an Index
value of 1, and so on.
If the menu item deleted has a submenu, the submenus are also deleted.
Example
FileMenu in the following code is a menu that contains four menu items (menu commands).
They are New, Open, Save, and Save As, in that order. This event handler deletes the Save
command from the menu:
__fastcall TForm1::Button1Click(TObject *Sender) {
FileMenu->Delete(2);

}

TMenuItem::IndexOf
TMenuItem
Returns the position of a menu item within a menu.
int __fastcall IndexOf(TMenuItem* Item);
Description
The first position in a menu is 0. If a menu item is not in the menu, IndexOf returns -1.

TMenuItem::Insert
TMenuItem See also
Inserts a menu item in a menu.
void __fastcall Insert(int Index, TMenuItem* Item);

The Insert method inserts a menu item in a menu at the position indicated by the value of Index.
Example
This example inserts a new menu item after the first item in a menu named FileMenu:
__fastcall TForm1::Button1Click(TObject *Sender) {

auto_ptr<TMenuItem> NewItem(new TMenuItem(Sender));
NewItem->Create(FileMenu);
NewItem->Caption = "Do this";
FileMenu->Insert(1, NewItem);

}

TMenuItem::Remove
TMenuItem See also
Removes a menu item from the Items property.
void __fastcall Remove(TMenuItem* Item);
Description
Specify the menu item you want removed as the value of the Item parameter.

TMenuItem::TMenuItem
TMenuItem See also
Constructs a menu item component.
__fastcall virtual TMenuItem(Classes::TComponent* AOwner);
Description
TMenuItem calls the constructor of its parent object, and then sets the initial values of the menu
item.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent

TMenuItem example
TMenuItem

TMetafile
Hierarchy Properties Methods Events See also
TMetafile is an encapsulation of the Win32 Enhanced Metafile graphic.
Header
vcl/graphics.hpp
Description
TMetafile contains a metafile graphic (EMF file format).
The height and width in pixels of the metafile are specified by the Height and Width properties,
respectively.
To draw a metafile on a canvas, call the Draw or StretchDraw methods of a TCanvas object,
passing a TMetafile as a parameter. The Enhanced property determines how the metafile will be
stored on disk. If Enhanced is true, the metafile is stored as an .EMF (Win32 Enhanced Metafile)
. If Enhanced is false, the metafile is stored as a .WMF (Windows 3.1 Metafile, with Aldus
header).
The CreatedBy property is the optional name of the author or application used to create the
metafile, embedded in the metafile. The Description property is the optional text description
embedded in the metafile. To set the CreatedBy and Description strings of a new metafile, use
the TMetafileCanvas’ CreateWithComment method.
When the metafile is modified, an OnChange event occurs.

TMetafile properties
TMetafile Alphabetically Legend

In TMetafile
CreatedBy
Description
Empty

Enhanced
Handle
Height
Inch
MMHeight
MMWidth

Palette
Derived from TGraphic

Modified
Width

TMetafile properties
TMetafile By object Legend

CreatedBy
Description
Empty

Enhanced
Handle
Height
Inch
MMHeight
MMWidth
Modified

Palette
Width

TMetafile::CreatedBy
TMetafile See also
CreatedBy returns the optional name of the author or application used to create the metafile,
embedded in the metafile.
__property System::AnsiString CreatedBy;
Description
Set the CreatedBy string of a new metafile by calling the CreateWithComment method of
TMetafileCanvas.

TMetafile::Description
TMetafile See also
Description returns the optional text “description” embedded in the metafile.
__property System::AnsiString Description;
Description
Set the Description string of a new metafile by calling the CreateWithComment method of
TMetafileCanvas.

TMetafile::Empty
TMetafile
Empty specifies whether the metafile object contains a metafile.
Description
Empty is true if no metafile has been loaded into the metafile object and false if the metafile
object contains a metafile.

TMetafile::Enhanced
TMetafile
Enhanced determines how the metafile will be stored on disk.
__property bool Enhanced;
Description
If Enhanced is true (default) “it” stores the metafile as an EMF (Win32 Enhanced Metafile); If
Enhanced is false, it stores the metafile as a WMF (Windows 3.1 Metafile, with Aldus header).
The in-memory format is always EMF. WMF has very limited capabilities; storing as WMF will
lose information that would be retained by EMF. This property is set to match the metafile type
when loaded from a stream or file. This maintains form file compatibility with 16 bit Delphi. If
loaded as WMF, then save as WMF.
If Enhanced is true, the metafile is stored as an .EMF (Win32 Enhanced Metafile). If Enhanced is
false, the metafile is stored as a .WMF (Windows 3.1 Metafile, with Aldus header).

TMetafile::Handle
TMetafile Example
Handle provides access to the Windows GDI metafile handle, for accessing the GDI metafile
object.
__property int Handle;
Description
Use Handle when calling a Windows API function that requires the handle of a metafile object.
Pass the handle from the Handle property of the metafile object to the function.

TMetafile::Height
TMetafile See also Example
Height specifies the vertical size of the metafile in pixels.
Description
Use Height to find or set the vertical height of the metafile.

TMetafile::Inch
TMetafile
Inch returns the number of pixels per inch that are used for the metafile's coordinate mapping.
__property unsigned short Inch;
Description
Use Inch to find the metafile’s coordinate mapping in pixels per inch.
For example, if the metafile was created in a Twips coordinate system (using MM_TWIPS
mapping), the value of Inch is 1440.

TMetafile::MMHeight
TMetafile See also
MMHeight contains the height of the metafile image in 0.01 millimeter units, the native scale
used by enhanced metafiles.
__property int MMHeight;
Description
The MMHeight property is always in screen device pixel units; to avoid loss of precision in
converting between device pixels and millimeters, set or read the dimensions in millimeters with
MMHeight.
The MMWidth and MMHeight properties are the width and height, respectively, of the metafile
image in 0.01 millimeter units, the native scale used by enhanced metafiles. The Inch property is
the units per inch assumed by a WMF metafile. Used to alter scale when writing as WMF, but
otherwise this property is obsolete. Enhanced metafiles maintain complete scale information
internally.

TMetafile::MMWidth
TMetafile See also
MMWidth contains the width of the metafile image in 0.01 millimeter units, the native scale used
by enhanced metafiles.
__property int MMWidth;
Description
Use MMWidth to
The MMWidth property is always in screen device pixel units; to avoid loss of precision in
converting between device pixels and millimeters by set or read the dimensions in millimeters
with MMWidth.
The MMWidth and MMHeight properties are the width and height, respectively, of the metafile
image in 0.01 millimeter units, the native scale used by enhanced metafiles. The Inch property is
the units per inch assumed by a WMF metafile. Used to alter scale when writing as WMF, but
otherwise this property is obsolete. Enhanced metafiles maintain complete scale information
internally.

TMetafile::Palette
TMetafile
Palette controls a metafile's color mapping.
__property HPALETTE Palette;
Description
The Palette of a metafile contains up to 256 colors that can be used to display the metafile on
screen.
When running in a 256 color video mode, and if the metafile is drawn by an application running
in the foreground, all colors of Palette will be added to the Windows system palette. If the
metafile is drawn by an application running in the background and another application has
loaded the system palette with its own colors, the metafile's colors will be mapped to the system
palette. Palette=0 if the metafile has no palette. Assign custom palettes created with
CreatePalette to this property.

TMetafile events
TMetafile Alphabetically

Derived from TGraphic
OnChange

TMetafile events
TMetafile By object

OnChange

TMetafile methods
TMetafile Alphabetically

In TMetafile
~TMetafile
Assign
Clear
LoadFromClipboardFormat
LoadFromStream
SaveToClipboardFormat
SaveToFile
SaveToStream
TMetafile

Derived from TGraphic
LoadFromFile

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TMetafile methods
TMetafile By object

~TMetafile
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
LoadFromClipboardFormat
LoadFromFile
LoadFromStream
MethodAddress
MethodName
NewInstance
SaveToClipboardFormat
SaveToFile
SaveToStream
TMetafile

TMetafile::~TMetafile
TMetafile
~TMetafile frees the memory associated with the TMetafile object. Do not call ~TMetafile
directly. Instead, use the delete keyword on the object, which causes ~TMetafile to be invoked
automatically.
__fastcall virtual ~TMetafile(void);

TMetafile::Assign
TMetafile
Assigns an object to the metafile.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
The Assign method assigns one object to another. The general form of a call to Assign is
Destination->Assign(Source);
which tells the Destination object to assign the contents of the Source object to itself.
Consider these statements:
Button1->Font = Button2->Font;
ListBox1->Items = Memo1->Lines;
Table1->Fields[0] = Query1->Fields[2];
They correspond to these statements:
Button1->Font->Assign(Button2->Font);
ListBox1->Items->Assign(Memo1->Lines);
Table1->Fields[0]->Assign(Query1->Fields[2]);
The actions performed by Assign depend on the actual types of Destination and Source. For
example, if Destination and Source are string objects (TStrings), the strings contained in Source
are copied into Destination. Likewise, if Destination and Source are bitmaps (TBitmap), the
bitmap contained in Source is copied into Destination.
Although the compiler allows any two TPersistent objects to be used in a call to Assign, the call
succeeds at runtime only if the objects involved “know” how to perform an assignment. For
example, if Destination is a button (TButton) and Source is an edit box (TEdit), the call to Assign
raises an EConvertError exception at runtime.
An object of one type can always be assigned to another object of the same type. Also, the
Source can be of type TPicture if the Graphic property of the picture is a metafile

TMetafile::Clear
TMetafile See also
Clear deletes the old metafile image.
void __fastcall Clear(void);
Description
Clear releases the old metafile image, creates a new image, and increments a reference count
on it.

TMetafile::LoadFromClipboardFormat
TMetafile
LoadFromClipboardFormat loads a metafile from the Clipboard.
virtual void __fastcall LoadFromClipboardFormat(unsigned short AFormat,
int AData, HPALETTE APalette);

Description
Use LoadFromClipboardFormat to replace the current image with the data pointed to by the
AData parameter. The palette for the metafile is specified by the APalette parameter.
LoadFromClipboardFormat is called if the TMetafile is registered with the TPicture object using
the RegisterClipboardFormat method.

TMetafile::LoadFromStream
TMetafile
LoadFromStream loads the metafile from a stream.
virtual void __fastcall LoadFromStream(Classes::TStream* Stream);
Description
Specify the stream from which the metafile is loaded as the value of Stream.

TMetafile::SaveToClipboardFormat
TMetafile See also
SaveToClipboardFormat saves a metafile to a Clipboard format.
virtual void __fastcall SaveToClipboardFormat(unsigned short &AFormat,
int &AData, HPALETTE &APalette);

Description
Specify the palette as the value of the APalette parameter, the format as the value of AFormat,
and data to be saved as the value of AData. Before the metafile can be saved, an application
must have registered the format with the metafile object using the RegisterClipboardFormat
method.
To save a metafile to a file, call SaveToFile.

TMetafile::SaveToFile
TMetafile See also
SaveToFile saves the metafile to a file.
virtual void __fastcall SaveToFile(const System::AnsiString Filename);
Description
To load a metafile from a file, call the LoadFromFile method.

TMetafile::SaveToStream
TMetafile
SaveToStream saves the metafile to a stream.
virtual void __fastcall SaveToStream(Classes::TStream* Stream);
Description
Specify the stream to save the metafile to as the value of Stream.

TMetafile::TMetafile
TMetafile See also
TMetafile is the constructor for a metafile object.
__fastcall virtual TMetafile(void);
Description
To create a metafile image from scratch, draw the image in a metafile canvas. When the metafile
canvas is destroyed, it transfers the image into the metafile object provided to the metafile
canvas constructor. After the image is drawn on the canvas and the canvas is destroyed, the
image is 'playable' in the metafile object.

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TGraphic

TMetafile example
TMetafile

TMetaFileCanvas
Hierarchy Properties Methods Events See also
The TMetafileCanvas object allows applications to create metafile images from scratch.
Header
vcl/graphics.hpp
Description
Use TMetafileCanvas as a surface on which to draw a metafile image. When the canvas is
destroyed, it transfers the image into the metafile object provided to the canvas constructor. After
the image is drawn on the canvas and the canvas is destroyed, the image is 'playable' in the
metafile object. For example:
TMetafile* MyMetafile;
TMetafileCanvas* MyCanvas;
MyMetafile = new TMetafile;
MyCanvas = new TMetafileCanvas(MyMetafile, 0);
MyCanvas->Brush->Color = clRed;
MyCanvas->Ellipse(0,0,100,100);
delete MyCanvas;
Form1->Canvas->Draw(0,0,MyMetafile); // 1 red circle
To add to an existing metafile image, create a metafile canvas and play the source metafile into
the metafile canvas. For example:
{continued from previous example, so MyMetafile contains an image }
MyCanvas = new TMetafileCanvas(MyMetafile, 0);
MyCanvas->Draw(0,0,MyMetafile);
MyCanvas->Brush->Color = clBlue;
MyCanvas->Ellipse(100,100,200,200);
delete MyCanvas;
Form1->Canvas->Draw(0,0,MyMetafile); // 1 red circle and 1 blue circle
delete MyMetafile; // Clean up after we're done.

TMetaFileCanvas properties
TMetaFileCanvas Alphabetically Legend

Derived from TCanvas
Brush

ClipRect
CopyMode
Font
Handle
Pen
PenPos
Pixels

TMetaFileCanvas properties
TMetaFileCanvas By object Legend

Brush
ClipRect

CopyMode
Font
Handle
PenPos
Pen
Pixels

TMetaFileCanvas events
TMetaFileCanvas Alphabetically

Derived from TCanvas
OnChange
OnChanging

TMetaFileCanvas events
TMetaFileCanvas By object

OnChange
OnChanging

TMetaFileCanvas methods
TMetaFileCanvas Alphabetically

Derived from TMetafileCanvas
~TMetafileCanvas
TMetafileCanvas

Derived from TCanvas
Arc
BrushCopy
Chord
CopyRect
Draw
DrawFocusRect
Ellipse
FillRect
FloodFill
FrameRect
LineTo
MoveTo
Pie
Polygon
Polyline
Rectangle
Refresh
RoundRect
StretchDraw
TextHeight
TextOut
TextRect
TextWidth

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TMetaFileCanvas methods
TMetaFileCanvas By object

~TMetafileCanvas
Arc
Assign
BrushCopy
Chord
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CopyRect
DefaultHandler
Dispatch
DrawFocusRect
Draw
Ellipse
FieldAddress
FillRect
FloodFill
FrameRect
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
LineTo
MethodAddress
MethodName
MoveTo
NewInstance
Pie
Polygon
Polyline
Rectangle
Refresh
RoundRect
StretchDraw
TextHeight
TextOut
TextRect
TextWidth
TMetafileCanvas

~TMetaFileCanvas
~TMetafileCanvas frees the memory associated with the TMetafileCanvas object. Do not call ~
TMetafileCanvas directly. Instead, use the delete keyword on the object, which causes ~
TMetafileCanvas to be invoked automatically.
__fastcall virtual ~TMetafileCanvas(void);
Description
~TMetafileCanvas sets the Handle property of the TMetaFile object that was passed to the
constructor before freeing the memory associated with the object.

TMetaFileCanvas
TMetafileCanvas creates an instance of TMetafileCanvas and acquires a handle to a metafile
device context.
__fastcall TMetafileCanvas(TMetafile* AMetafile, HDC ReferenceDevice);

-Or-
__fastcall TMetafileCanvas(TMetafile* AMetafile, HDC ReferenceDevice,
const System::AnsiString CreatedBy, const System::AnsiString
Description);

Description
Call TMetafileCanvas to create an instantiate a TMetafileCanvas object. TMetafileCanvas sets
the size of the TMetafile object from the reference HDC if it does not already the MMHeight and
MMWidth properties set. TMetafileCanvas then creates a metafile device context, and sets the
Handle property to its handle. All subsequent drawing methods will draw to the metafile device
context.
TMetafileCanvas can also create a metafile device context using the CreatedBy and Description
strings as a description.
All subsequent drawing methods will draw to the metafile device context.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TCanvas

TMetaFileCanvas example
TMetaFileCanvas

TMetafileImage
Hierarchy Methods See also
TMetafileImage is the internal representation of the metafile image for a TMetafile object.
Header
vcl/graphics.hpp
Description
TMetafileImage is used for internal implementation only in Borland C++Builder. It represents the
internal image of the metafile encapsulated by the TMetafile object. All of the data and methods
introduced in TMetafileImage are private. They contain information about the specific metafile
image, including pointers to the standard HENHMETAFILE (enhanced metafile handle) and
HPALETTE (handle to palette) structures defined by Windows.

TMetafileImage methods
TMetafileImage Alphabetically

In TMetafileImage
~TMetafileImage
TMetafileImage

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TMetafileImage methods
TMetafileImage By object

~TMetafileImage
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TMetafileImage

TMetafileImage::~TMetafileImage
TMetafileImage
~TMetafileImage frees the memory associated with the TMetafileImage object. Do not call ~
TMetafileImage directly. Instead, use the delete keyword on the object, which causes ~
TMetafileImage to be invoked automatically.
__fastcall virtual ~TMetafileImage(void);

TMetafileImage::TMetafileImage
TMetafileImage
TMetafileImage creates a new TMetafileImage object.
__fastcall TMetafileImage(void);

Hierarchy

TObject

TMetafileImage example
TMetafileImage

TNavDataLink
Hierarchy Properties Methods See also
TNavDataLink is a helper object that helps manage the link to the dataset for a TDBNavigator
object.
Header
vcl/dbctrls.hpp
Description
TNavDataLink is tailored to work with a TDBNavigator. It should only be used by the
TDBNavigator class.

TNavDataLink properties
TNavDataLink Alphabetically Legend

Derived from TDataLink
Active

ActiveRecord
BufferCount

DataSet
DataSource
DataSourceFixed

Editing
ReadOnly

RecordCount

TNavDataLink properties
TNavDataLink By object Legend

ActiveRecord
Active

BufferCount
DataSet

DataSourceFixed
DataSource

Editing
ReadOnly

RecordCount

TNavDataLink methods
TNavDataLink Alphabetically Legend

In TNavDataLink
~TNavDataLink

ActiveChanged
DataSetChanged
EditingChanged
TNavDataLink

Derived from TDataLink
Edit
UpdateRecord

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TNavDataLink methods
TNavDataLink By object Legend

~TNavDataLink
ActiveChanged
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DataSetChanged
DefaultHandler
Dispatch
EditingChanged
Edit
FieldAddress
FreeInstance

Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TNavDataLink
UpdateRecord

TNavDataLink::~TNavDataLink
TNavDataLink See also
~TNavDataLink frees the memory associated with the TNavDataLink object. Do not call ~
TNavDataLink directly. Instead, use the delete keyword on the object, which causes ~
TNavDataLink to be invoked automatically.
__fastcall virtual ~TNavDataLink(void);

TNavDataLink::ActiveChanged
TNavDataLink See also
ActiveChanged informs the TDBNavigator of changes in the Active property.
virtual void __fastcall ActiveChanged(void);
Description
Applications should not call the ActiveChanged procedure directly. Changes in the Active
property trigger this procedure, which in turn calls the ActiveChanged method of the
TDBNavigator object that owns this TNavDataLink.

TNavDataLink::DataSetChanged
TNavDataLink See also
DataSetChanged informs the TDBNavigator of changes to the dataset.
virtual void __fastcall DataSetChanged(void);
Description
Applications do not need to call the DataSetChanged procedure. It is called automatically
following changes to the contents of the dataset. TNavDataLink informs the TDBNavigator of
these changes by calling its DataChanged method.

TNavDataLink::EditingChanged
TNavDataLink See also
EditingChanged informs the TDBNavigator of changes to the editing state of the DataSource.
virtual void __fastcall EditingChanged(void);
Description
Applications should not call the EditingChanged procedure directly. Changes to the editing state
of the DataSource trigger this procedure, which in turn calls the EditingChanged method of the
TDBNavigator object that owns this TNavDataLink.

TNavDataLink::TNavDataLink
TNavDataLink See also
TNavDataLink creates an instance of TNavDataLink.
__fastcall TNavDataLink(TDBNavigator* ANav);
Description
Applications should not call the TNavDataLink method directly. The TDBNavigator that owns the
TNavDataLink object calls TNavDataLink from its constructor.

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TDataLink

TNavDataLink example
TNavDataLink

TNotebook
Hierarchy Properties Methods Events
The TNotebook component is a component that can display multiple pages, each with its own
set of controls.
Header
vcl/extctrls.hpp
Description
Notebook components are frequently used with tab set controls (TTabSet) to let the user select
pages in the notebook by clicking a tab. TNotebook is provided for backward compatibility.
The pages available in the notebook control are the strings specified as the value of the Pages
property. You can access a particular page in the notebook either with the PageIndex property or
the ActivePage property.
If you are using a notebook with a tab set, this is the code that connects the pages of the
notebook with the tabs in the tab set, displaying the page strings as the text of the tabs:
Then, in the OnClick event handler of the tabset, this line of code changes the current page in
the notebook control when the user clicks a tab:
If you are using a notebook and a tab set together, you usually want the tab set at the bottom of
the form and the notebook to take up the remaining space on the form. To align the components
this way, use their Align properties.
The TNotebook component is an indirect descendent of TWinControl. In addition to these
properties, methods, and events, this component also has the properties, methods, and events
that apply to all windowed controls.

TNotebook properties
TNotebook Alphabetically Legend

In TNotebook
ActivePage
PageIndex
Pages

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TNotebook properties
TNotebook By object Legend

ActivePage
Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
Enabled
Font

Handle
Height
HelpContext
Hint
Left
Name

Owner
PageIndex
Pages
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Visible
Width

TNotebook::ActivePage
TNotebook See also
Determines which page displays in the notebook.
__property System::AnsiString ActivePage;
Description
The ActivePage property determines which page displays in the notebook. The value of
ActivePage must be one of the strings contained in the Pages property.

TNotebook::PageIndex
TNotebook See also
Determines which page displays in the notebook control.
__property int PageIndex;
Description
The value of the PageIndex property determines which page displays in the notebook. Changing
the PageIndex value changes the page in the control.
Each string in the Pages property is automatically assigned a PageIndex value when the page is
created. The first page receives a value of 0, the second has a value of 1, and so on. If you
delete a string from the Pages property, the PageIndex values are reassigned so that the values
always begin with 0 and continue to increase without any gaps between values.

TNotebook::Pages
TNotebook See also
Contains the strings that identify the individual pages of the notebook control.
__property Classes::TStrings* Pages;
Description
The Pages property contains the strings that identify the individual pages of the notebook
control. Both these controls create a separate page for each string in the Pages property. For
example, if Pages contains three strings, First, Second, and Third, the control has three separate
pages.
You can access the various pages in a notebook or tabbed notebook control with either the
ActivePage or PageIndex property.

TNotebook events
TNotebook Alphabetically Legend

In TNotebook
OnPageChanged

Derived from TWinControl
OnEnter
OnExit

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TNotebook events
TNotebook By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnMouseDown
OnMouseMove
OnMouseUp
OnPageChanged
OnStartDrag

TNotebook::OnPageChanged
TNotebook
Occurs when the user selects a new page in the notebook.
__property Classes::TNotifyEvent OnPageChanged;
Description
Use the OnPageChanged event when you want special processing to occur when the active
page changes.

TNotebook methods
TNotebook Alphabetically

In TNotebook
~TNotebook
TNotebook

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TNotebook methods
TNotebook By object

~TNotebook
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TNotebook
UpdateControlState
Update

TNotebook::~TNotebook
TNotebook See also
Destroys the TNotebook component.
__fastcall virtual ~TNotebook(void);
Description
TNotebook frees the page list created for the notebook control, then calls the destructor of its
parent object.

TNotebook::TNotebook
TNotebook See also
Constructs a TNotebook component.
__fastcall virtual TNotebook(Classes::TComponent* AOwner);
Description
TNotebook calls the constructor of its parent object and sets the size, the list of pages, and other
default parameters of the notebook control.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl

TNotebook example
TNotebook

TNumericField
Hierarchy Properties Methods Events See also
TNumericField component is the common ancestor of all the numeric fields in a dataset.
Header
vcl/dbtables.hpp
Description
TNumericField is an abstract base class that encapsulates the fundamental behavior common to
all numeric field components. In addition to the properties, events, and methods common to all
field components introduced by TField, TNumericField introduces new properties for formatting
numeric data for display or editing purposes.

TNumericField properties
TNumericField Alphabetically Legend

In TNumericField
DisplayFormat
EditFormat

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Value
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TNumericField properties
TNumericField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayFormat
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditFormat

EditMaskPtr
EditMask
FieldKind

FieldName
FieldNo

Index
IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Value
Visible

TNumericField::DisplayFormat
TNumericField See also
DisplayFormat determines how a numeric field’s value is formatted for display in a data-aware
control.
__property System::AnsiString DisplayFormat;
Description
Use the DisplayFormat property to override automatic formatting of a field for display purposes.

The value of DisplayFormat is a string that encodes the formatting of numeric data using the
specifiers in the following table:
Specifier Represents

0 Digit placeholder. If the value being formatted has a digit in the position
where the “0” appears in the format string, then that digit is copied to
the output string. Otherwise, a “0” is stored in that position in the output
string.

Digit placeholder. If the value being formatted has a digit in the position
where the “#” appears in the format string, then that digit is copied to
the output string. Otherwise, nothing is stored in that position in the output
string.

. Decimal point. The first “.” character in the format string determines the
location of the decimal separator in the formatted value; any additional “.
” characters are ignored. The actual character used as a the decimal
separator in the output string is determined by the DecimalSeparator
global variable. The default value of DecimalSeparator is specified in the
Number Format of the Regional Settings section in the Windows Control
Panel.

, Thousand separator. If the format string contains one or more “,”
characters, the output will have thousand separators inserted between
each group of three digits to the left of the decimal point. The placement
and number of “,” characters in the format string does not affect the
output, except to indicate that thousand separators are wanted. The
actual character used as a the thousand separator in the output is
determined by the ThousandSeparator global variable. The default value
of ThousandSeparator is specified in the Number Format of the Regional
Settings section in the Windows Control Panel.

E+ Scientific notation. If any of the strings “E+”, “E-”, “e+”, or “e-” are
contained in the format string, the number is formatted using scientific
notation. A group of up to four “0” characters can immediately follow the
“E+”, “E-”, “e+”, or “e-” to determine the minimum number of digits
in the exponent. The “E+” and “e+” formats cause a plus sign to be
output for positive exponents and a minus sign to be output for negative
exponents. The “E-” and “e-” formats output a sign character only for
negative exponents.

'xx'/"xx" Characters enclosed in single or double quotes are output as-is, and do
not affect formatting.

; Separates sections for positive, negative, and zero numbers in the format
string.

The locations of the leftmost “0” before the decimal point in the format string and the rightmost
“0” after the decimal point in the format string determine the range of digits that are always
present in the output string.
The number being formatted is always rounded to as many decimal places as there are digit
placeholders (“0” or “#”) to the right of the decimal point. If the format string contains no
decimal point, the value being formatted is rounded to the nearest whole number.
If the number being formatted has more digits to the left of the decimal separator than there are
digit placeholders to the left of the “.” character in the format string, the extra digits are output
before the first digit placeholder.
To allow different formats for positive, negative, and zero values, the format string can contain
between one and three sections separated by semicolons.
• One section: The format string applies to all values.

• Two sections: The first section applies to positive values and zeros, and the second section
applies to negative values.

• Three sections: The first section applies to positive values, the second applies to negative
values, and the third applies to zeros.

If the section for negative values or the section for zero values is empty, that is, if there is
nothing between the semicolons that delimit the section, the section for positive values is used
instead.
If the section for positive values is empty, or if the entire format string is empty, the value is
formatted using general floating-point formatting with 15 significant digits. General floating-point
formatting is also used if the value has more than 18 digits to the left of the decimal point and the
format string does not specify scientific notation.
Note
DisplayFormat affects only the display of the field’s data. It does not affect the validity of strings
assigned to a numeric field using the AsString property.

TNumericField::EditFormat
TNumericField See also
EditFormat determines how a numeric field’s value is formatted when it is being edited in a
data-aware control.
__property System::AnsiString EditFormat;
Description
Use the EditFormat property to override the formatting of a field when the field’s value is being
edited in a data-aware control.
When EditFormat is unassigned, but the DisplayFormat property has a value, the DisplayFormat
string is used.
The value of EditFormat is a string that encodes the formatting of numeric data using the
specifiers in the following table:
Specifier Represents

0 Digit placeholder. If the value being formatted has a digit in the position
where the “0” appears in the format string, then that digit is copied to
the output string. Otherwise, a “0” is stored in that position in the output
string.

Digit placeholder. If the value being formatted has a digit in the position
where the “#” appears in the format string, then that digit is copied to
the output string. Otherwise, nothing is stored in that position in the output
string.

. Decimal point. The first “.” character in the format string determines the
location of the decimal separator in the formatted value; any additional “.
” characters are ignored. The actual character used as a the decimal
separator in the output string is determined by the DecimalSeparator
global variable. The default value of DecimalSeparator is specified in the
Number Format of the Regional Settings section in the Windows Control
Panel.

, Thousand separator. If the format string contains one or more “,”
characters, the output will have thousand separators inserted between
each group of three digits to the left of the decimal point. The placement
and number of “,” characters in the format string does not affect the
output, except to indicate that thousand separators are wanted. The
actual character used as a the thousand separator in the output is
determined by the ThousandSeparator global variable. The default value
of ThousandSeparator is specified in the Number Format of the Regional
Settings section in the Windows Control Panel.

E+ Scientific notation. If any of the strings “E+”, “E-”, “e+”, or “e-” are
contained in the format string, the number is formatted using scientific
notation. A group of up to four “0” characters can immediately follow the
“E+”, “E-”, “e+”, or “e-” to determine the minimum number of digits
in the exponent. The “E+” and “e+” formats cause a plus sign to be
output for positive exponents and a minus sign to be output for negative
exponents. The “E-” and “e-” formats output a sign character only for
negative exponents.

'xx'/"xx" Characters enclosed in single or double quotes are output as-is, and do
not affect formatting.

; Separates sections for positive, negative, and zero numbers in the format
string.

The locations of the leftmost “0” before the decimal point in the format string and the rightmost
“0” after the decimal point in the format string determine the range of digits that are always
present in the output string.
The number being formatted is always rounded to as many decimal places as there are digit
placeholders (“0” or “#”) to the right of the decimal point. If the format string contains no
decimal point, the value being formatted is rounded to the nearest whole number.
If the number being formatted has more digits to the left of the decimal separator than there are
digit placeholders to the left of the “.” character in the format string, the extra digits are output
before the first digit placeholder.

To allow different formats for positive, negative, and zero values, the format string can contain
between one and three sections separated by semicolons.
• One section: The format string applies to all values.
• Two sections: The first section applies to positive values and zeros, and the second section

applies to negative values.
• Three sections: The first section applies to positive values, the second applies to negative

values, and the third applies to zeros.
If the section for negative values or the section for zero values is empty, that is if there is nothing
between the semicolons that delimit the section, the section for positive values is used instead.
If the section for positive values is empty, or if the entire format string is empty, the value is
formatted using general floating-point formatting with 15 significant digits. General floating-point
formatting is also used if the value has more than 18 digits to the left of the decimal point and the
format string does not specify scientific notation.
Note
EditFormat affects only the display of the field’s data when it is being edited. It does not affect
the validity of strings assigned to a numeric field using the AsString property, nor does it affect
the display of the field’s data when it is not being edited.

TNumericField events
TNumericField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TNumericField events
TNumericField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TNumericField methods
TNumericField Alphabetically

In TNumericField
~TNumericField
TNumericField

Derived from TField
Assign
AssignValue
Clear
FocusControl
GetData
IsValidChar
SetData
SetFieldType

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TNumericField methods
TNumericField By object

~TNumericField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TNumericField

TNumericField::~TNumericField
TNumericField
~TNumericField frees the memory associated with the TNumericField object. Do not call ~
TNumericField directly. Instead, use the delete keyword on the object, which causes ~
TNumericField to be invoked automatically.
__fastcall virtual ~TNumericField(void);

TNumericField::TNumericField
TNumericField See also
The Create method creates an instance of a TNumericField object.
__fastcall virtual TNumericField(Classes::TComponent* AOwner);
Description
Do not call the create method for TNumericField directly. TNumericField is an abstract class and
its constructor should only be called as an inherited method from the constructor of a derived
class.
After calling the inherited Create method, Create changes the Alignment property to
taRightJustify.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField

TNumericField example
TNumericField

TObject
Methods See also
TObject is the ultimate ancestor for all other objects and components in Borland C++Builder.
Header
vcl/sysdefs.h
Description
TObject encapsulates the fundamental behavior common to all objects in Borland C++Builder by
introducing interfaces for methods that provide:
• The ability to create, maintain and destroy an instance of the object by allocating, initializing

and freeing the memory needed for that object.
• Class type and instance information on an object, and runtime type information (RTTI) about

its published properties.
• Support for message-handling.
Use TObject as an immediate base class when declaring simple objects that are not
components, and that do not need streaming or assignment capabilities. If no ancestor type is
specified when declaring a new object type, Borland C++Builder automatically uses TObject as
the ancestor.
Much of the powerful capability of Borland C++Builder objects is established by the methods that
TObject introduces. Many of these methods are used internally by the Borland C++Builder
environment and are not intended for users to call directly. Several others are generally either
overridden in descendent objects and components that have more complex behavior.
Note
While TObject is not technically an abstract class, objects of this type are not normally
instantiated.

TObject methods
TObject Alphabetically

In TObject
~TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TObject

TObject methods
TObject By object

~TObject
AfterConstruction
BeforeDestruction
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TObject

TObject::~TObject
TObject See also
~TObject frees the memory associated with the TObject object. Do not call ~TObject directly.
Instead, use the delete keyword on the object, which causes ~TObject to be invoked
automatically.
virtual __fastcall ~TObject()

TObject::AfterConstruction
TObject
AfterConstruction performs special processing after an object is created.
virtual void __fastcall AfterConstruction();

TObject::BeforeDestruction
TObject
BeforeDestruction performs special processing before an object is destroyed.
virtual void __fastcall BeforeDestruction();

TObject::ClassInfo
TObject See also
ClassInfo returns a pointer to the runtime type information (RTTI) table for the object type.
static void * __fastcall ClassInfo(TClass cls);
void * __fastcall ClassInfo();
Description
Use ClassInfo to access the RTTI table that contains information about the object type, its
ancestor type, and all of its published properties.
RTTI is used extensively for internal use in the Borland C++Builder environment. ClassInfo is
rarely called directly in an application. TObject provides other methods specifically intended to
provide easier access to RTTI information. For more detailed information about the RTTI table in
the TypInfo unit.

TObject::ClassName
TObject See also Example
ClassName returns a string containing the name of the actual type of the object instance that is
referenced by a variable, rather than the type of the variable.
static ShortString __fastcall ClassName(TClass cls);
ShortString __fastcall ClassName();
Description
Use ClassName to find the actual type of an object in the format of a string, such as when
passing a string as a parameter to another routine. For example, a variable of an ancestor type
can refer to an instance of any descendent type. In this case, ClassName returns a string
indicating the actual type of the object, rather than a string containing the type of the declared
variable.
ClassName provides information on objects across modules so it is especially useful for
exception-handling.
When reporting exception-handling errors on a particular object ClassName is used by the on
statement does a string comparison of classes.
If ClassName is called without the cls parameter (the second syntax form), ClassType is used.

TObject::ClassNameIs
TObject See also
ClassNameIs determines whether an object is of a specific type.
static bool __fastcall ClassNameIs(TClass cls, const AnsiString string)
;

bool __fastcall ClassNameIs(const AnsiString string);
Description
Use ClassNameIs when writing conditional code based upon an object’s typeor to query
objects across modules, or DLLs.
ClassNameIs returns true if the string passed in the Name parameter matches the name of the
class. Otherwise, it returns false.
If ClassNameIs is called without the cls parameter (the second syntax form), ClassType is used.

TObject::ClassParent
TObject See also Example
ClassParent returns the type of the immediate ancestor of a class.
static TClass __fastcall ClassParent(TClass cls);
TClass __fastcall ClassParent();
Description
ClassParent returns NULL for type TObject because TObject has no parent.
ClassParent is used internally in Borland C++Builder for RTTI, by the is and as operators, and by
the InheritsFrom method. Because it is a class method, it can be used to determine the type of
an class reference.
If ClassParent is called without the cls parameter (the second syntax form), ClassType is used.
Note
Applications should rarely, if ever, call ClassParent directly.

TObject::ClassType
TObject See also Example
ClassType returns a pointer to the runtime type information of an object instance.
TClass __fastcall ClassType();
Description
ClassType dynamically determines the actual type of an object. ClassType is used internally in
Borland C++Builder by the is and as operators. Do not call ClassType directly.

TObject::CleanupInstance
TObject
CleanupInstance performs finalization on long strings and variants within a class.
void __fastcall CleanupInstance();
Description
Do not call CleanupInstance directly. CleanupInstance is called automatically when Free is
called.
CleanupInstance releases all long strings and variants. It set long strings to empty and variants
to Unassigned.

TObject::DefaultHandler
TObject See also
DefaultHandler introduces an interface for processing a message record passed to it.
virtual void __fastcall DefaultHandler(void* Message);
Description
DefaultHandler is called by Dispatch when it cannot find a message handler for a particular
message. DefaultHandler provides message handling for all messages for which an object does
not have specific handlers. Descendent classes of TObject that process messages usually
define DefaultHandler methods according to the type of messages they handle. For example,
TWinControl overrides DefaultHandler to call DefWindowProc.
Calling inherited in a message-handling method results in a call to the ancestor's DefaultHandler
method only if that ancestor does not specify a message method for the particular message
being handled. Otherwise calling inherited results in a call to the specific handler for that type of
message.

TObject::Dispatch
TObject See also
Dispatch calls message-handling methods for the object, based on the contents of the Message
parameter.
virtual void __fastcall Dispatch(void *Message);
Description
Call Dispatch to automatically pass messages to the current event handler for an object.
Dispatch determines whether a message is in the list of message handlers declared for the
object. If the object does not handle the message, Dispatch then examines the message-
handler list of the ancestor type, and continues checking ancestors until it either finds a specific
handler or runs out of ancestors, in which case it calls DefaultHandler.
The Message parameter is untyped for Dispatches. Although any kind of data can be passed to
Dispatch, use a message record such as TMessage or a specific message-record type. The only
assumption Dispatch makes about the data in Message is that the first two bytes contain a
message ID, that is an integer-that determines which message handler Dispatch calls to handle
the message.

TObject::FieldAddress
TObject
FieldAddress returns the address of a published object field.
void * __fastcall FieldAddress(const ShortString &Name);
Description
FieldAddress is used internally by the Borland C++Builder streaming system to access a
published specified field of an object. FieldAddress returns a pointer to the field if it exists. If the
object has no published field by that name, FieldAddress returns NULL.
Users should access and manipulate fields by using properties instead of FieldAddress.

TObject::Free
TObject
Free destroys an object and frees its associated memory, if necessary.
__fastcall Free();
Description
Use Free to destroy an object. Free automatically calls the destructor if the object instance is is
not NULL. Any object instantiated by a call to the constructor should be destroyed by a call to
Free, so that the object an be properly destroyed and the memory released. Free is successful
even if the object is NULL, so if the object was never initialized, for example, calling Free won’t
result in an error.

TObject::FreeInstance
TObject See also
FreeInstance deallocates memory allocated by a previous call to the NewInstance method.
virtual void __fastcall FreeInstance();
Description
All destructors call FreeInstance automatically to deallocate memory that was allocated by
overriding NewInstance.
Do not call FreeInstance directly, however, FreeInstance should be overriden if NewInstance
was overriden to change the way the object’s instance data was allocated.
Like NewInstance, FreeInstance uses the value returned from InstanceSize to deallocate the
object's memory.

TObject::InheritsFrom
TObject See also
InheritsFrom is a class method, it is used to determine the relationship of two object types.
static bool __fastcall InheritsFrom(TClass cls, TClass aClass);
bool __fastcall InheritsFrom(TClass aClass);
Description
Use InheritsFrom to determine if a particular class type is an ancestor of an object. InheritsFrom
returns true if the object type specified in the AClass parameter is an ancestor of the object type
or the type of the object itself. Otherwise, it returns false.
Note
The is and as operators use InheritsFrom in their implementations. The is operator, however,
can only determine the inheritance relationship of an instance. As a class method InheritsFrom
can determine the relationship of class references.
If InheritsFrom is called without the cls parameter (the second syntax form), ClassType is used.

TObject::InitInstance
TObject See also
InitInstance initializes a newly allocated object instance to all zeros and initializes the instance’s
virtual method table pointer.
static TObject * __fastcall InitInstance(TClass cls, void *instance);
Description
Never call InitInstance directly. InitInstance is called automatically by NewInstance when an
object is created. When overriding NewInstance be sure to call InitInstance as the last
statement.
InitInstance is not virtual, so you cannot override it. Initialize any data for an object in the
constructor. Override NewInstance only for special memory allocation requirements, such as
allocating all instances of a class type from a common memory pool.

TObject::InstanceSize
TObject See also
InstanceSize returns the size in bytes of each instance of the object type.
static long __fastcall InstanceSize(TClass cls);
long __fastcall InstanceSize();
Description
Use InstanceSize to determine how many bytes of memory are required for a class’s instance
data. Borland C++Builder uses InstanceSize internally for methods that allocate and deallocate
memory. InstanceSize is not a virtual method, so it cannot be overridden. Methods that use
InstanceSize can be overriden.
If InstanceSize is called without the cls parameter (the second syntax form), ClassType is used.

TObject::MethodAddress
TObject See also
Returns the address of a published method.
static void * __fastcall MethodAddress(TClass cls, const ShortString
&Name);

void * __fastcall MethodAddress(const ShortString &Name);
Description
MethodAddress is used internally in Borland C++Builder by the streaming system.
MethodAddress is used to convert a method name, specified by Name, to a pointer containing
the method address when reading in from a stream. Do not call MethodAddress directly.
If Name does not specify a published method for the object, MethodAddress returns NULL.
If MethodAddress is called without the cls parameter (the second syntax form), ClassType is
used.

TObject::MethodName
TObject See also
MethodName returns a string containing the name of the method located at Address.
static ShortString __fastcall MethodName(TClass cls, void *Address);
ShortString __fastcall MethodName(void *Address);
Description
MethodName is used internally in Borland C++Builder by the streaming system. MethodName is
used to convert a pointer containing the method address to a string containing the method name
when writing event properties to a stream. It is essentially the counterpart to MethodAddress. Do
not call it directly.
If Address does not point to a published method of the object, MethodName returns an empty
string.
If MethodName is called without the cls parameter (the second syntax form), ClassType is used.

TObject::NewInstance
TObject See also
NewInstance allocates memory for each instance of an object type and returns a pointer to that
new instance.
virtual TObject* __fastcall NewInstance(TClass cls);
Description
All constructors call NewInstance automatically. NewInstance calls InstanceSize to determine
how much memory to allocate from the heap to contain a particular instance. Do not call
NewInstance directly.
Overriding NewInstance to change the memory allocation for an object type, might necessitate
overriding FreeInstance to deallocate that same memory. For example, when allocating a large
number of identical objects that all need to be in memory at the same time, one could allocate a
large block of memory for the entire group, then override NewInstance to use part of that larger
block for each instance. When overriding NewInstance call InitInstance, and not inherited, as the
last statement.
A descendent class can override NewInstance to change the way that particular class allocates
its memory.
Note
By default NewInstance calls InitInstance.

TObject::TObject
TObject See also
TObject constructs an object and initializes its data before the object is first used.
__fastcall TObject();
Description
TObject constructs a properly initialized instance of an object. The purpose, size and behavior of
the objects in Borland C++Builder can differ greatly. TObject does nothing special; that is, it does
not initialize any data. Memory allocation is, however, handled automatically when TObject is
called.

Hierarchy

TObject example
TObject

TOleClientSite
Hierarchy Methods See also
TOleClientSite is an object that encapsulates the IOleClientSite interface.
Header
vcl/olectrls.hpp
Description
Use TOleClientSite to work with an OLE object.
For more information about the IOleClientSite interface, search the OLE.HLP file for
IOleClientSite.

TOleClientSite methods
TOleClientSite Alphabetically

In TOleClientSite
~TOleClientSite
AddRef
GetContainer
GetMoniker
OnShowWindow
QueryInterface
Release
RequestNewObjectLayout
SaveObject
ShowObject
TOleClientSite

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TOleClientSite methods
TOleClientSite By object

~TOleClientSite
AddRef
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
GetContainer
GetMoniker
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
OnShowWindow
QueryInterface
Release
RequestNewObjectLayout
SaveObject
ShowObject
TOleClientSite

TOleClientSite::~TOleClientSite
TOleClientSite
~TOleClientSite frees the memory associated with the TOleClientSite object. Do not call ~
TOleClientSite directly. Instead, use the delete keyword on the object, which causes ~
TOleClientSite to be invoked automatically.
__fastcall virtual ~TOleClientSite(void);

TOleClientSite::AddRef
TOleClientSite See also
AddRef increments the reference counter for the TOleClientSite object.
virtual long __stdcall AddRef(void);
Description
Use AddRef to increment the reference count for the TOleClientSite object. The object will not be
destroyed until its reference count is zero.
AddRef returns the new reference count.

TOleClientSite::GetContainer
TOleClientSite See also
GetContainer retrieves the OLE container that contains the OLE object.
virtual long __stdcall GetContainer(Ole2::IOleContainer* &container);
Description
Use GetContainer to get the OLE container that contains the OLE object.
container is a variable in which the OLE container will be stored.
GetContainer returns one of the following values:
Value Meaning

S_OK The container was successfully retrieved.
OLE_E_NOT_SUPPORTED The client site is an OLE 1 container.
E_NOINTERFACE The container does not implement the IOleContainer interface.

TOleClientSite::GetMoniker
TOleClientSite See also
GetMoniker retrieves the moniker for the OLE object.
virtual long __stdcall GetMoniker(long dwAssign, long dwWhichMoniker,
Ole2::IMoniker* &mk);

Description
Use GetMoniker to get the moniker for the OLE object. For information about monikers, search
the OLE.HLP file for Monikers.
dwAssign specifies how the moniker is assigned. dwAssign can be one of the
OLEGETMONIKER enumeration values. For more information, search the OLE.HLP file for
OLEGETMONIKER.
dwWhichMoniker specifies which moniker is assigned. dwWhichMoniker can be one of the
OLEWHICHMK enumeration values. For more information, search the OLE.HLP file for
OLEWHICHMK.
mk is the variable in which the moniker will be stored.
GetMoniker returns one of the following values:
Value Meaning

S_OK The moniker was retrieved successfully.
E_FAIL An unspecified error has occurred.
E_UNEXPECTED A serious, unexpected error has occurred.
E_NOTIMPL The container cannot assign monikers to objects. This return value occurs

when the container is an OLE 1 container.

TOleClientSite::OnShowWindow
TOleClientSite See also
OnShowWindow is called when the object in the OLE client site is becoming visible or invisible.
virtual long __stdcall OnShowWindow(DWORD fShow);
Description
Override OnShowWindow to perform special processing when the OLE object is becoming
visible or invisible. Typically, the container responds by drawing or removing hatching or
shading.
OnShowWindow is not called by an object that is activated in place because the object has no
window that is separate from the container.
fShow specifies whether the object’s window is open (true) or closed (false).
OnShowWindow should return S_OK if hatching or shading has been successfully added or
removed from the OLE site. Otherwise, OnShowWindow should return S_FALSE.

TOleClientSite::QueryInterface
TOleClientSite
QueryInterface retrieves an interface from the OLE object.
virtual long __stdcall QueryInterface(const GUID &iid, void *obj);
Description
Use QueryInterface to retrieve an interface from the OLE object.
iid specifies the IID for the interface. An IID is a specialized GUID structure containing an
interface identifier. For more information, search the OLE.HLP file for GUID.
obj is the variable in which the interface will be stored.
QueryInterface returns S_OK if the object supports the interface; otherwise, QueryInterface
returns S_FALSE.
For more information about QueryInterface, search the OLE.HLP file for QueryInterface.

TOleClientSite::Release
TOleClientSite See also
Release decrements the reference count for the TOleClientSite object.
virtual long __stdcall Release(void);
Description
Use Release to decrement the reference count for the TOleClientSite object. The object will be
destroyed when the reference count is zero.
Release returns the new reference count.

TOleClientSite::RequestNewObjectLayout
TOleClientSite
RequestNewObjectLayout notifies the container to provide more or less space for the OLE
object.
virtual long __stdcall RequestNewObjectLayout(void);
Description
Use RequestNewObjectLayout to notify the container to provide more or less space for the OLE
object.
RequestNewObjectLayout returns S_OK if successful; otherwise, RequestNewObjectLayout
returns E_NOTIMPL.

TOleClientSite::SaveObject
TOleClientSite See also
SaveObject saves the OLE object.
virtual long __stdcall SaveObject(void);
Description
Use SaveObject to save the OLE object.
SaveObject returns S_OK if the object was saved; otherwise, SaveObject returns E_FAIL.

TOleClientSite::ShowObject
TOleClientSite See also
ShowObject notifies the container to make the OLE object visible.
virtual long __stdcall ShowObject(void);
Description
Use ShowObject to notify the container to make the OLE object visible.
ShowObject returns S_OK if the container has attempted to make the object visible; otherwise
ShowObject returns OLE_E_NOT_SUPPORTED, indicating that the container is an OLE 1
container.

TOleClientSite::TOleClientSite
TOleClientSite See also
TOleClientSite creates a new instance of the TOleClientSite object.
__fastcall TOleClientSite(TOleControl* Control);
Description
Use TOleClientSite to create a new instance of the TOleClientSite object.
Control is the OLE control associated with the OLE client site.

Hierarchy

TObject

IUnknown
IOleClientSite

TOleClientSite example
TOleClientSite

TOleControlSite
Hierarchy Methods See also
TOleControlSite is an object that encapsulates the IOleControlSite interface.
Header
vcl/olectrls.hpp
Description
Use TOleControlSite to work with an OLE control.
For more information about the IOleControlSite interface, search the Microsoft world-wide web
pages at http://www.microsoft.com, or search the latest Microsoft Developer Network CD.

TOleControlSite methods
TOleControlSite Alphabetically

In TOleControlSite
~TOleControlSite
AddRef
GetExtendedControl
LockInPlaceActive
OnControlInfoChanged
OnFocus
QueryInterface
Release
ShowPropertyFrame
TOleControlSite
TransformCoords
TranslateAccelerator

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TOleControlSite methods
TOleControlSite By object

~TOleControlSite
AddRef
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
GetExtendedControl
InheritsFrom
InitInstance
InstanceSize
LockInPlaceActive
MethodAddress
MethodName
NewInstance
OnControlInfoChanged
OnFocus
QueryInterface
Release
ShowPropertyFrame
TOleControlSite
TransformCoords
TranslateAccelerator

TOleControlSite::~TOleControlSite
TOleControlSite
~TOleControlSite frees the memory associated with the TOleControlSite object. Do not call ~
TOleControlSite directly. Instead, use the delete keyword on the object, which causes ~
TOleControlSite to be invoked automatically.
__fastcall virtual ~TOleControlSite(void);

TOleControlSite::AddRef
TOleControlSite See also
AddRef increments the reference count for the TOleControlSite object.
virtual long __stdcall AddRef(void);
Description
Use AddRef to increment the reference count for the TOleControlSite object. The object will not
be destroyed until its reference count is zero.
AddRef returns the new reference count.

TOleControlSite::GetExtendedControl
TOleControlSite
GetExtendedControl retrieves the interface for the container’s Extended Control Object.
virtual long __stdcall GetExtendedControl(Ole2::IDispatch* &disp);
Description
Use GetExtendedControl to retrieve the interface of the container’s Extended Control Object.
For information about the Extended Control Object, search the Microsoft world-wide web pages
at http://www.microsoft.com, or search the latest Microsoft Developer Network CD.

TOleControlSite::LockInPlaceActive
TOleControlSite
LockInPlaceActive keeps the OLE control active.
virtual long __stdcall LockInPlaceActive(DWORD fLock);
Description
Use LockInPlaceActive to keep the OLE control active during events that would otherwise
deactivate the OLE control.

TOleControlSite::OnControlInfoChanged
TOleControlSite See also
OnControlInfoChanged is called when the MiscStatus bits associated with the OLE control
change.
virtual long __stdcall OnControlInfoChanged(void);
Description
Override OnControlInfoChanged to perform special processing when the MiscStatus bits
associated with the OLE control change. For information about the MiscStatus bits, search the
Microsoft world-wide web pages at http://www.microsoft.com, or search the latest Microsoft
Developer Network CD.
By default, OnControlInfoChanged returns E_NOTIMPL, indicating that the
OnControlInfoChanged event is not handled.

TOleControlSite::OnFocus
TOleControlSite See also
OnFocus is called when focus is set to the OLE control.
virtual long __stdcall OnFocus(DWORD fGotFocus);
Description
Override OnFocus to perform special processing when focus is set to the control in the OLE
control site.
By default, OnFocus returns E_NOTIMPL, indicating that the OnFocus event is not handled by
the control site.

TOleControlSite::QueryInterface
TOleControlSite
QueryInterface retrieves an interface from the OLE control.
virtual long __stdcall QueryInterface(const GUID &iid, void *obj);
Description
Use QueryInterface to retrieve an interface from the OLE control.
iid specifies the IID for the interface. An IID is a specialized GUID structure containing an
interface identifier. For more information, search the OLE.HLP file for GUID.
obj is the variable in which the interface will be stored.
QueryInterface returns S_OK if the object supports the interface; otherwise, QueryInterface
returns S_FALSE.
For more information about QueryInterface, search the OLE.HLP file for QueryInterface.

TOleControlSite::Release
TOleControlSite See also
Release decrements the reference count for the TOleControlSite object.
virtual long __stdcall Release(void);
Description
Use Release to decrement the reference count for the TOleControlSite object. The object will be
destroyed when the reference count is zero.
Release returns the new reference count.

TOleControlSite::ShowPropertyFrame
TOleControlSite See also
ShowPropertyFrame notifies the control to display its property frame window.
virtual long __stdcall ShowPropertyFrame(void);
Description
Use ShowPropertyFrame to notify the control to display its property frame window.
If ShowPropertyFrame returns E_NOTIMPL (the default value), the container should display its
own property frame instead.

TOleControlSite::TOleControlSite
TOleControlSite See also
TOleControlSite creates a new instance of the TOleControlSite object.
__fastcall TOleControlSite(TOleControl* Control);
Description
Use TOleControlSite to create a new instance of the TOleControlSite object.
Control is the OLE control associated with the OLE control site.

TOleControlSite::TransformCoords
TOleControlSite See also
TransformCoords transforms a point from the container’s coordinate model to the OLE
control’s coordinate model.
virtual long __stdcall TransformCoords(POINT &ptlHimetric, POINTF
&ptfContainer, long flags);

Description
Use TransformCoords to transform a point from the container’s coordinate model to the
control’s coordinate model.

TOleControlSite::TranslateAccelerator
TOleControlSite See also
TranslateAccelerator translates accelerator keystrokes intended for the container.
virtual long __stdcall TranslateAccelerator(Windows::PMsg msg, long
grfModifiers);

Description
Use TranslateAccelerator to translate accelerator keystrokes intended for the container.
msg is a MSG structure containing the keystroke message.
grfModifiers contains the command identifier corresponding to the keystroke in the container’s
accelerator table. Containers should use this value instead of translating again.
TranslateAccelerator returns one of the following values:
Value Meaning

S_OK The keystroke was used.
S_FALSE The keystroke was not used.
E_INVALIDARG One or more arguments were invalid.
E_UNEXPECTED An unexpected error occurred.

Hierarchy

TObject

IUnknown
IOleControlSite

TOleControlSite example
TOleControlSite

TOleContainer
Hierarchy Properties Methods Events
The TOleContainer component lets you embed or link OLE objects in your C++Builder
application. TOleContainer handles many of the complexities of OLE 2.0 for you. Letting the user
choose an OLE object to insert is as simple as calling the InsertObjectDialog method. Call the
CreateObject or CreateObjectFromFile methods to create an embedded OLE object; use the
CreateLinkToFile method to create a linked OLE object.
Header
vcl/olectnrs.hpp
TOleContainer automatically handles menu merging -- the process of combining the container
form's menu with that of an in-place activated OLE object's server application. The menu items'
GroupIndex property settings control how menus are merged. Those main menu items with
GroupIndex values of 0, 2, and 4 remain; TOleContainer merges the server application's menus
and replaces the main menu items with GroupIndex values of 1, 3, and 5 (if they exist). So, for
example, if you had an MDI form with a traditional main menu, you'd set the menus' GroupIndex
properties as follows:
Menu Group Index Setting

File 0
Edit 1
Object 2
Window 4
Help 5
The File, Object, and Window menus would remain but the Edit and Help menus would be
replaced by those of the server application.
Note that there's no menu with a GroupIndex of 3; that's not a problem.
OLE objects that are activated in-place add their servers' toolbars directly into your application's
window. Normally, any panels you use for toolbars are replaced by the OLE object's server's
toolbars. You can prevent this by setting a panel's
Locked property to true. When Locked is true, TOleContainer won't remove the panel to make
room for the server's toolbars.
Note that your application's toolbars must be in panels that aligned to a side of your form (that is,
their Align property set to alTop, alBottom, alLeft, or alRight).
If you're using a TOleContainer in an SDI application (your main form's FormStyle property is
fsNormal rather than fsMDIForm), you should place the TOleContainer component inside a
panel whose Align property is set to alClient. TOleContainer replaces an SDI form's toolbars as
described above, and using a panel automatically adjusts the amount of space available to the
OLE container.

TOleContainer properties
TOleContainer Alphabetically Legend

In TOleContainer
AllowInPlace
AutoActivate
AutoVerbMenu
BorderStyle

CanPaste
CopyOnSave
Iconic

Linked
Modified

NewInserted
ObjectVerbs
OleClassName
OleObject
OleObjectInterface
PrimaryVerb

SizeMode
SourceDoc
State
StorageInterface

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
Caption
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Height
Hint
Left
Name
Parent
ParentColor
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TOleContainer properties
TOleContainer By object Legend

Align
AllowInPlace
AutoActivate
AutoVerbMenu
BorderStyle
BoundsRect

Brush
CanPaste

Caption
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
CopyOnSave
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
Enabled

Handle
Height
HelpContext
Hint
Iconic
Left

Linked
Modified
Name

NewInserted
ObjectVerbs
OleClassName
OleObjectInterface
OleObject
Owner

ParentColor
ParentCtl3D
ParentShowHint
Parent
PopupMenu

PrimaryVerb
ShowHint

Showing
SizeMode

SourceDoc
State
StorageInterface

TabOrder
TabStop
Tag
Top

Visible
Width

TOleContainer::AllowInPlace
TOleContainer
Determines whether an OLE object can be activated in-place.
__property bool AllowInPlace;

If AllowInPlace is true and Iconic is false, the OLE object will be activated in-place. Otherwise, it
will be activated in a separate window. The default value is true.

TOleContainer::AutoActivate
TOleContainer
The AutoActivate property determines how an object in an OLE container can be activated.
__property TAutoActivate AutoActivate;

The AutoActivate property can have one of the following values:
Values Meaning

aaManual The user can't activate the object. You can activate the OLE object in
code by calling DoVerb(ovShow).

aaGetFocus The OLE object is activated whenever the OLE container gets the focus
(by clicking on it with the mouse or pressing Tab to move the focus to it).

aaDoubleClick (Default) The OLE object is activated by doubleclicking it or pressing
Enter while the container has the focus.

TOleContainer::AutoVerbMenu
TOleContainer
Determines whether TOleContainer automatically creates a popup menu containing the OLE
object's verbs.
__property bool AutoVerbMenu;

If AutoVerbMenu is true (the default), TOleContainer replaces any existing PopupMenu property.
If AutoVerbMenu is false, no popup menu is automatically created.

TOleContainer::BorderStyle
TOleContainer Example
The BorderStyle property determines whether these components have a border.
__property Forms::TBorderStyle BorderStyle;

The BorderStyle property has one of the following values:
Value Meaning

bsNone No visible border
bsSingle Single-line border
If you set the AutoSize property of an edit box or hot-key to true, the edit box or hot-key resizes
automatically when the font size of the text changes. You must set the value of the BorderStyle
property bsSingle, or else AutoSize has no effect.

TOleContainer::CanPaste
TOleContainer
__property bool CanPaste;

TOleContainer::CopyOnSave
TOleContainer
Determines whether the SaveToFile and SaveToStream methods writes a temporary OLE object
storage, compressing redundant data and saving space.
__property bool CopyOnSave;

Set CopyOnSave to false when the container holds very large embedded objects and there
might not be enough memory to make the temporary copy. The default value is true.

TOleContainer::Iconic
TOleContainer
Determines how the OLE object is displayed. If Iconic is true, it's displayed as an icon; if false,
it's displayed as it would be in the server application.
__property bool Iconic;

TOleContainer::Linked
TOleContainer
Indicates whether the data in the Windows clipboard is suitable for pasting as an embedded
object.
__property bool Linked;

Indicates whether the OLE object is linked. If true, the OLE object is linked; if false, it's
embedded. An OLE object must already be loaded in the container before accessing the Linked
property.

TOleContainer::Modified
TOleContainer Example
Indicates that the OLE object has been modified (including being deleted or replaced by another
OLE object).
__property bool Modified;

You can set Modified to false and later check it to see if the OLE object has been modified. If
there is no OLE object loaded into the container, Modified returns false.

TOleContainer::NewInserted
TOleContainer
Indicates whether the OLE object was newly created (via a call to InsertObjectDialog), rather
than pasted in or created as a link to a file.
__property bool NewInserted;

If there is no OLE object loaded into the container, NewInserted returns false. If NewInserted is
true after a call to InsertObjectDialog, you can call DoVerb(ovShow) to let the user edit the
object.

TOleContainer::ObjectVerbs
TOleContainer
Returns a string list containing the names of the verbs the OLE object supports.
__property Classes::TStrings* ObjectVerbs;

The verb names can have embedded ampersand ('&') characters to indicate shortcut keys. An
OLE object must already be loaded in the container before accessing the ObjectVerbs property.

TOleContainer::OleClassName
TOleContainer
Returns the class name of the OLE object. An OLE object must already be loaded in the
container before accessing the OleClassName property.
__property System::AnsiString OleClassName;

TOleContainer::OleObject
TOleContainer
For TOleContainer (runtime and readonly) the OleObject property returns an OLE Automation
object for the OLE object.
__property System::Variant OleObject;
If the OLE object doesn't support OLE Automation, an exception is raised. An OLE object must
already be loaded in the container before accessing the OleObject property.

TOleContainer::OleObjectInterface
TOleContainer
Returns the IOleObject interface for the OLE object, which is useful for lowlevel access to the
OLE API.
__property Ole2::IOleObject* OleObjectInterface;

If there is no OLE object loaded into the container, OleObjectInterface returns NULL.

TOleContainer::PrimaryVerb
TOleContainer
Returns the index of the primary (default) verb for the OLE object. You can use the index in a
call to the DoVerb method.
__property int PrimaryVerb;

You can also use the index with the ObjectVerbs property to display the name of the primary
verb. An OLE object must already be loaded in the container before accessing the OleObject
property.

TOleContainer::SizeMode
TOleContainer
Determines how the OLE object will be sized within the container. See TSizeMode for possible
values.
__property TSizeMode SizeMode;

TOleContainer::SourceDoc
TOleContainer
Returns the name of the source document for a linked OLE object.
__property System::AnsiString SourceDoc;
An OLE object must already be loaded in the container before accessing the SourceDoc
property. If the OLE object isn't linked, SourceDoc returns an empty string.

TOleContainer::State
TOleContainer Example
Returns the state of the OLE object.
__property TObjectState State;

The TObjectState enumerated type defines the possible values for TOleContainer's State
property, as defined in the table that follows.
Values Meaning

osEmpty There is no OLE object in the container.
osLoaded There is an OLE object in the container, but its server application isn't

currently running.
osRunning The OLE object's server is running.
osOpen The OLE object is open in a separate window.
osInPlaceActive The OLE object is activated in-place, but hasn't yet merged its menus or

toolbars. This is an intermediate state; the State property will shift to
osUIActive as soon as the menus and toolbars have been merged.

osUIActive The OLE object is activated in-place and menus and toolbars have been
merged

TOleContainer::StorageInterface
TOleContainer
Returns the IStorage interface for the OLE object, which is useful for lowlevel access to the OLE
API.
__property Ole2::IStorage* StorageInterface;

If there is no OLE object loaded into the container, StorageInterface returns NULL.

TOleContainer events
TOleContainer Alphabetically Legend

In TOleContainer
OnActivate
OnDeactivate
OnObjectMove
OnResize

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TOleContainer events
TOleContainer By object Legend

OnActivate
OnDeactivate
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnObjectMove
OnResize
OnStartDrag

TOleContainer::OnActivate
TOleContainer
Occurs when the container is activated.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnActivate;

TOleContainer::OnDeactivate
TOleContainer
Occurs when the container is deactivated.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnDeactivate;

OnDragDrop
Occurs when the container is a target of a drag-and-drop operation.
__property OnDragDrop;

OnDragOver
Occurs when an object is dragged over the container.
__property OnDragOver;

OnEndDrag
Occurs when the container is done being dragged.
__property OnEndDrag;

OnEnter
Occurs when the Enter key is pressed while the container has focus.
__property OnEnter;

OnExit
Occurs when the container is closed.
__property OnExit;

OnKeyDown
Occurs when a key is down while the container has focus.
__property OnKeyDown;

OnKeyPress
Occurs when a key is pressed while the container has focus.
__property OnKeyPress;

OnKeyUp
Occurs when a key is released while the container has focus.
__property OnKeyUp;

OnMouseDown
Occurs when a mouse button is pressed while the container has focus.
__property OnMouseDown;

OnMouseMove
Occurs when the mouse is moved while the container has focus.
__property OnMouseMove;

OnMouseUp
Occurs when a mouse button is released while the container has focus.
__property OnMouseUp;

TOleContainer::OnObjectMove
TOleContainer
Occurs when an object inside the container is moved.
typedef void __fastcall (__closure *TObjectMoveEvent)(TOleContainer*
OleContainer, const Windows::TRect &Bounds);

__property TObjectMoveEvent OnObjectMove;

TOleContainer::OnResize
TOleContainer
Occurs when the container is resized.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnResize;

OnStartDrag
Occurs when the container starts being dragged.
__property OnStartDrag;

TOleContainer methods
TOleContainer Alphabetically

In TOleContainer
~TOleContainer
ChangeIconDialog
Close
CreateLinkToFile
CreateObject
CreateObjectFromFile
CreateObjectFromInfo
DestroyObject
DoVerb
GetIconMetaPict
InsertObjectDialog
LoadFromFile
LoadFromStream
ObjectPropertiesDialog
Paste
PasteSpecialDialog
Run
SaveToFile
SaveToStream
TOleContainer
UpdateObject
UpdateVerbs

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen

DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TOleContainer methods
TOleContainer By object

~TOleContainer
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ChangeIconDialog
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
Close
ContainsControl
ControlAtPos
CreateLinkToFile
CreateObjectFromFile
CreateObjectFromInfo
CreateObject
DefaultHandler
DestroyComponents
Destroying
DestroyObject
DisableAlign
Dispatch
DoVerb
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetIconMetaPict
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance

InsertComponent
InsertControl
InsertObjectDialog
InstanceSize
Invalidate
LoadFromFile
LoadFromStream
MethodAddress
MethodName
NewInstance
ObjectPropertiesDialog
PaintTo
PasteSpecialDialog
Paste
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
Run
SaveToFile
SaveToStream
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TOleContainer
UpdateControlState
UpdateObject
Update
UpdateVerbs

TOleContainer::~TOleContainer
TOleContainer
~TCustomRichEdit frees the memory associated with the TCustomRichEdit object. Do not call ~
TCustomRichEdit directly. Instead, use the delete keyword on the object, which causes ~
TCustomRichEdit to be invoked automatically.
__fastcall virtual ~TOleContainer(void);

TOleContainer::ChangeIconDialog
TOleContainer
Executes the Change Icon OLE dialog box, which lets the user choose a different icon (from .
ICO, .DLL, and .EXE files) to use when displaying the OLE object as an icon.
bool __fastcall ChangeIconDialog(void);

An OLE object must already be loaded in the container before calling ChangeIconDialog.
ChangeIconDialog returns true if the dialog box was successfully display and the user chose the
OK button or false otherwise. You can force the container to show the OLE object as an icon by
setting Iconic to true.

TOleContainer::Close
TOleContainer
Deactivates the OLE object and terminates its server application, but doesn't remove it from the
container.
void __fastcall Close(void);

Any changes the user made to the OLE object are automatically saved. There must be an OLE
object in the container before calling Close. After calling Close, the container's State property is
osLoaded.

Copy
Copies the OLE object to the Windows Clipboard.
void __fastcall Copy(void);

There must be an OLE object in the container before calling Copy.

TOleContainer::CreateLinkToFile
TOleContainer
Creates a linked OLE object from the contents of the given file.
void __fastcall CreateLinkToFile(const System::AnsiString FileName,
bool Iconic);

Iconic indicates whether the object is shown as an icon (true) or displayed as it would be in the
server application (false). If there's already an OLE object in the container, it's destroyed and any
changes the user made to it are discarded.

TOleContainer::CreateObject
TOleContainer
Creates an embedded OLE object given its class name (also known as programmatic identifier).
void __fastcall CreateObject(const System::AnsiString OleClassName,
bool Iconic);

Iconic indicates whether the object is shown as an icon (true) or displayed as it would be in the
server application (false). If there's already an OLE object in the container, it's destroyed and any
changes the user made to it are discarded.

TOleContainer::CreateObjectFromFile
TOleContainer
Creates an embedded OLE object from the contents of the given file.
void __fastcall CreateObjectFromFile(const System::AnsiString FileName,
bool Iconic);

Iconic indicates whether the object is shown as an icon (true) or displayed as it would be in the
server application (false). If there's already an OLE object in the container, it's destroyed and any
changes the user made to it are discarded.

TOleContainer::CreateObjectFromInfo
TOleContainer
Creates an OLE object based on the specifications in a TCreateInfo structure.
void __fastcall CreateObjectFromInfo(const TCreateInfo &CreateInfo);

See TCreateInfo and TCreateType for details on TCreateInfo's fields. If there's already an OLE
object in the container, it's destroyed and any changes the user made to it are discarded. The
CreateLinkToFile, CreateObject, and CreateObjectFromFile methods are online calls for the
most common types of OLE objects, instead of filling out the TCreateInfo structure.

TOleContainer::DestroyObject
TOleContainer
Destroys the container's OLE object, discarding any changes the user made to it.
void __fastcall DestroyObject(void);

TOleContainer::DoVerb
TOleContainer
Requests the OLE object to perform some action.
void __fastcall DoVerb(int Verb);

OLE defines several verbs, such as ovShow (to display the OLE object) and ovPrimary (the
default action, usually to activate the OLE object). OLE objects can define their own custom
verbs. You can use the ObjectVerbs property to get a list of those custom verbs.

TOleContainer::GetIconMetaPict
TOleContainer
Returns the global memory handle of a metafile containing the OLE object's icon.
int __fastcall GetIconMetaPict(void);

There must be an OLE object in the container before calling GetIconMetaPict. Use the
DestroyMetaPict procedure to destroy the handle.

TOleContainer::InsertObjectDialog
TOleContainer
Executes the Insert Object OLE dialog box, which lets the user create an OLE object.
bool __fastcall InsertObjectDialog(void);

The OLE object can be embedded or linked. InsertObjectDialog returns true if the dialog box was
successfully display and the user chose the OK button or false otherwise. If the user chose OK
and there's already an OLE object in the container, it's destroyed and any changes the user
made to it are discarded.

TOleContainer::LoadFromFile
TOleContainer
Loads an OLE object from the specified file.
void __fastcall LoadFromFile(const System::AnsiString FileName);

If there's already an OLE object in the container, it's destroyed and any changes the user made
to it are discarded. If OldStreamFormat is false, LoadFromFile only loads files saved with
Borland C++Builder 2.0's TOleContainer component.

TOleContainer::LoadFromStream
TOleContainer
Loads an OLE object from the specified stream.
void __fastcall LoadFromStream(Classes::TStream* Stream);

If there's already an OLE object in the container, it's destroyed and any changes the user made
to it are discarded.

TOleContainer::ObjectPropertiesDialog
TOleContainer
Displays the OLE Object Properties property sheet, which lets the user see and edit various
properties of the OLE object.
bool __fastcall ObjectPropertiesDialog(void);

Any changes the user makes in the property sheet is automatically made to the OLE object. An
OLE object must already be in the container before calling ObjectPropertiesDialog.
ObjectPropertiesDialog returns true if the property sheet was successfully display and the user
chose the OK button or false otherwise.

TOleContainer::Paste
TOleContainer
Pastes the contents of the Windows Clipboard as an embedded object.
void __fastcall Paste(void);

If there's already an OLE object in the container, it's destroyed and any changes the user made
to it are discarded.

TOleContainer::PasteSpecialDialog
TOleContainer
Executes the Paste Special OLE dialog to give the user more control over how the contents of
the Windows clipboard are pasted into the container.
bool __fastcall PasteSpecialDialog(void);

The Paste Special dialog box lets the user select the format of the data, whether it should be
embedded or linked, and whether to display the OLE object should be displayed as an icon (and
if so, to choose a different icon). PasteSpecialDialog returns true if the dialog box was
successfully display and the user chose the OK button or false otherwise. If the user chose the
OK button and there's already an OLE object in the container, it's destroyed and any changes
the user made to it are discarded.

TOleContainer::Run
TOleContainer
Runs the OLE object's server application, but doesn't open or active the OLE object itself.
void __fastcall Run(void);

Once the server application is running, opening and activating the OLE object happens much
more quickly. An OLE object must already be loaded in the container before calling Run.

TOleContainer::SaveToFile
TOleContainer
Saves the OLE object to the specified file.
void __fastcall SaveToFile(const System::AnsiString FileName);

An OLE object must already be loaded in the container before calling SaveToFile. If
CopyOnSave is true, SaveToFile writes a temporary OLE object storage, compressing
redundant data and saving space.

TOleContainer::SaveToStream
TOleContainer
Saves the OLE object to the specified stream.
void __fastcall SaveToStream(Classes::TStream* Stream);

An OLE object must already be loaded in the container before calling SaveToStream. If
CopyOnSave is true, SaveToStream writes a temporary OLE object storage, compressing
redundant data and saving space.

TOleContainer::TOleContainer
TOleContainer
TOleContainer creates a new TOleContainer object.
__fastcall virtual TOleContainer(Classes::TComponent* AOwner);

TOleContainer::UpdateObject
TOleContainer
Updates the OLE object.
void __fastcall UpdateObject(void);

Linked OLE objects and embedded objects that contain linked OLE objects get out of date when
the source of the link is updated. UpdateObject rereads the source to ensure that the OLE object
has current data. If there is no OLE object loaded into the container, UpdateObject has no effect.

TOleContainer::UpdateVerbs
TOleContainer
Refreshes the list of verbs the OLE object responds to.
void __fastcall UpdateVerbs(void);

TOleContainer automatically calls UpdateVerbs when you first access the ObjectVerbs property,
but some OLE objects change their verbs as they perform some actions. The Media Clip OLE
object, for example, changes its “Play” verb to “Stop” while running. An OLE object must
already be loaded in the container before calling UpdateVerbs.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl

TOleContainer example
TOleContainer

TOleControl
Hierarchy Properties Methods See also
TOleControl is the base class from which OCX controls are derived.
Header
vcl/olectrls.hpp
Description
TOleControl is derived from TWinControl and handles the interactions with OLE necessary for
using OCX controls in the Borland C++Builder environment. It is unlikely that you will ever need
to derive a component from this class.

TOleControl properties
TOleControl Alphabetically Legend

In TOleControl
OleObject

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TOleControl properties
TOleControl By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
Left
Name

OleObject
Owner

Parent
ShowHint

Showing
TabOrder
TabStop

Tag
Top
Visible
Width

TOleControl::OleObject
TOleControl
OleObject is the OCX control associated with the TOleControl object.
__property System::Variant OleObject;

TOleControl methods
TOleControl Alphabetically

In TOleControl
~TOleControl
BrowseProperties
DoObjectVerb
GetEnumPropDesc
GetHelpContext
GetObjectVerbs
GetPropDisplayString
GetPropDisplayStrings
IsCustomProperty
SetBounds
SetPropDisplayString
ShowAboutBox
TOleControl

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack

SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TOleControl methods
TOleControl By object

~TOleControl
Assign
BeginDrag
BringToFront
Broadcast
BrowseProperties
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DoObjectVerb
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetEnumPropDesc
GetHelpContext
GetObjectVerbs
GetParentComponent
GetPropDisplayStrings
GetPropDisplayString
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl

InstanceSize
Invalidate
IsCustomProperty
MethodAddress
MethodName
NewInstance
PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetPropDisplayString
SetTextBuf
ShowAboutBox
Show
TOleControl
UpdateControlState
Update

TOleControl::~TOleControl
TOleControl See also
~TOleControl frees the memory associated with the TOleControl object. Do not call ~
TOleControl directly. Instead, use the delete keyword on the object, which causes ~TOleControl
to be invoked automatically.
__fastcall virtual ~TOleControl(void);

TOleControl::BrowseProperties
TOleControl
BrowseProperties notifies the OCX control to display its properties dialog box.
void __fastcall BrowseProperties(void);
Description
Use BrowseProperties to notify the OCX control to display its properties dialog box. The
properties dialog box contains property pages for the OCX control.

TOleControl::DoObjectVerb
TOleControl
DoObjectVerb notifies the OCX control to perform one of its actions.
void __fastcall DoObjectVerb(int Verb);
Description
Use DoObjectVerb to notify the OCX control to perform one of its actions.
Verb is an integer that corresponds to the action.
For more information about verbs, search the OLE.HLP file or the latest Microsoft Developer
Network CD.

TOleControl::GetEnumPropDesc
TOleControl
GetEnumPropDesc returns descriptions of the OCX control’s properties.
TEnumPropDesc* __fastcall GetEnumPropDesc(int DispID);
Description
Use GetEnumPropDesc to return descriptions of the OCX control’s properties.
GetEnumPropDesc returns the descriptions in a TEnumPropDesc object. For information about
the TEnumPropDesc object, refer to the OLECTRLS.PAS file.

TOleControl::GetHelpContext
TOleControl
GetHelpContext retrieves the Help context of a member of the OCX control.
bool __fastcall GetHelpContext(System::AnsiString Member, int
&HelpCtx, System::AnsiString &HelpFile);

Description
Use GetHelpContext to retrieve the Help context of a member of the OCX control.
Member is the name of a property, method, or event of the OCX control. To retrieve the help
context of the OCX control itself, set Member to NULL.
HelpCtx is a variable in which the Help context identifier of Member is to be stored.
HelpFile is a variable in which the name of the Help file containing HelpCtx is to be stored.
The information about the OCX control is retrieved from its ITypeInfo interfaces. For more
information, search the OLE.HLP file for ITypeInfo.
GetHelpContext returns false if Member is not found; otherwise, GetHelpContext returns true.

TOleControl::GetObjectVerbs
TOleControl
GetObjectVerbs retrieves the names of the verbs implemented by the OCX control.
void __fastcall GetObjectVerbs(Classes::TStrings* List);
Description
Use GetObjectVerbs to retrieve the names of the verbs implemented by the OCX control.
List is where the names of the verbs are to be stored.

TOleControl::GetPropDisplayString
TOleControl See also
GetPropDisplayString returns the display string for an interface for the OCX control.
System::AnsiString __fastcall GetPropDisplayString(int DispID);
Description
GetPropDisplayString returns the display string for an interface for the OCX control.
DispID is the identifier for the interface. For more information, search the OLE.HLP file for
DISPID.
For more information about GetPropDisplayString, search the latest Microsoft Developer
Network CD for GetDisplayStrings.

TOleControl::GetPropDisplayStrings
TOleControl See also
GetPropDisplayStrings returns the display strings for an interface for the OCX control.
void __fastcall GetPropDisplayStrings(int DispID, Classes::TStrings*
List);

Description
GetPropDisplayString returns the display strings for an interface for the OCX control.
DispID is the identifier for the interface. For more information, search the OLE.HLP file for
DISPID.
List is where the strings are to be stored.
For more information about GetPropDisplayStrings, search the latest Microsoft Developer
Network CD for GetDisplayStrings.

TOleControl::IsCustomProperty
TOleControl
IsCustomProperty indicates whether an interface for the OCX control is a custom property.
bool __fastcall IsCustomProperty(int DispID);
Description
Use IsCustomProperty to determine whether an interface for the OCX control is a custom
property.
DispID is the identifier for the interface. For more information, search the OLE.HLP file for
DISPID.
IsCustomProperty returns true if an interface is a custom property; otherwise, IsCustomProperty
returns false.

TOleControl::SetBounds
TOleControl Example
SetBounds sets the boundaries of the OCX control.
virtual void __fastcall SetBounds(int ALeft, int ATop, int AWidth, int
AHeight);

Description
Use SetBounds to set the boundaries of the OCX control.
ALeft, ATop, AWidth, and AHeight are the x-coordinate of the upper-left corner, the y-coordinate
of the upper-left corner, the width, and the height of the OCX control.

TOleControl::SetPropDisplayString
TOleControl See also
SetPropDisplayString sets the display string for an interface for the OCX control.
void __fastcall SetPropDisplayString(int DispID, const System::
AnsiString Value);

Description
Use SetPropDisplayString to set the display string for an interface for the OCX control.
DispID is the identifier for the interface. For more information, search the OLE.HLP file for
DISPID.
Value is the new display string for the interface.

TOleControl::ShowAboutBox
TOleControl
ShowAboutBox notifies the OCX control to display its About box.
void __fastcall ShowAboutBox(void);
Description
Use ShowAboutBox to notify the OCX control to display its About box.

TOleControl::TOleControl
TOleControl See also
TOleControl creates a new instance of the TOleControl object.
__fastcall virtual TOleControl(Classes::TComponent* AOwner);
Description
Use TOleControl to create a new instance of the TOleControl object. TOleControl calls the
constructor of its parent object and creates and initializes internal objects.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TOleControl example
TOleControl

TOleFormObject
Hierarchy Methods See also
TOleFormObject is a base class for custom OLE objects.
Header
vcl/forms.hpp
Description
Use TOleFormObject as a base class for custom OLE objects.
TOleFormObject consists of nothing more than two protected, virtual, abstract methods:
OnDestroy and OnResize.
TOleForm is the only object in the Visual Components Library that is derived from
TOleFormObject.

TOleFormObject methods
TOleFormObject Alphabetically

In TOleFormObject
~TOleFormObject
TOleFormObject

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TOleFormObject methods
TOleFormObject By object

~TOleFormObject
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TOleFormObject

TOleFormObject::~TOleFormObject
TOleFormObject
~TOleFormObject frees the memory associated with the TOleFormObject object. Do not call ~
TOleFormObject directly. Instead, use the delete keyword on the object, which causes ~
TOleFormObject to be invoked automatically.
__fastcall virtual ~TOleFormObject(void);

TOleFormObject::TOleFormObject
TOleFormObject
TOleFormObject creates a new TOleFormObject object.
__fastcall TOleFormObject(void);

Hierarchy

TObject

TOleFormObject example
TOleFormObject

TOleForm
Hierarchy Methods
TOleForm is an object that provides OLE support for a TForm object.
Header
vcl/olectnrs.hpp
Description
Use TOleForm in constructors and methods that require TOleForm objects to be passed as
parameters.
The implementation of the TOleForm object is used internally by the Visual Components Library.

TOleForm methods
TOleForm Alphabetically

In TOleForm
~TOleForm
TOleForm

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TOleForm methods
TOleForm By object

~TOleForm
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TOleForm

TOleForm::~TOleForm
TOleForm See also
~TOleForm frees the memory associated with the TOleForm object. Do not call ~TOleForm
directly. Instead, use the delete keyword on the object, which causes ~TOleForm to be invoked
automatically.
__fastcall virtual ~TOleForm(void);
Description
~TOleForm frees private objects allocated and used by this instance of the TOleForm object.

TOleForm::TOleForm
TOleForm See also
TOleForm creates a new instance of the TOleForm object.
__fastcall TOleForm(Forms::TForm* Form);
Description
Use TOleForm to create a new instance of the TOleForm object.
Form is the form upon which to base the new TOleForm object.

Hierarchy

TObject

TOleFormObject

TOleForm example
TOleForm

TOleInPlaceFrame
Hierarchy Methods See also
TOleInPlaceFrame is an object that encapsulates the IOleInPlaceFrame interface.
Header
vcl/olectrls.hpp
Description
Use TOleInPlaceFrame to work with the container’s frame window.
For more information about the IOleInPlaceFrame interface, search the OLE.HLP file for
IOleInPlaceFrame.

TOleInPlaceFrame methods
TOleInPlaceFrame Alphabetically

In TOleInPlaceFrame
~TOleInPlaceFrame
AddRef
ContextSensitiveHelp
EnableModeless
GetBorder
GetWindow
InsertMenus
QueryInterface
Release
RemoveMenus
RequestBorderSpace
SetActiveObject
SetBorderSpace
SetMenu
SetStatusText
TOleInPlaceFrame
TranslateAccelerator

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TOleInPlaceFrame methods
TOleInPlaceFrame By object

~TOleInPlaceFrame
AddRef
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ContextSensitiveHelp
DefaultHandler
Dispatch
EnableModeless
FieldAddress
FreeInstance
Free
GetBorder
GetWindow
InheritsFrom
InitInstance
InsertMenus
InstanceSize
MethodAddress
MethodName
NewInstance
QueryInterface
Release
RemoveMenus
RequestBorderSpace
SetActiveObject
SetBorderSpace
SetMenu
SetStatusText
TOleInPlaceFrame
TranslateAccelerator

TOleInPlaceFrame::~TOleInPlaceFrame
TOleInPlaceFrame
~TOleInPlaceFrame frees the memory associated with the TOleInPlaceFrame object. Do not call
~TOleInPlaceFrame directly. Instead, use the delete keyword on the object, which causes ~
TOleInPlaceFrame to be invoked automatically.
__fastcall virtual ~TOleInPlaceFrame(void);

TOleInPlaceFrame::AddRef
TOleInPlaceFrame See also
AddRef increments the reference count for the TOleInPlaceFrame object.
virtual long __stdcall AddRef(void);
Description
Use AddRef to increment the reference count for the TOleInPlaceFrame object. The object will
not be destroyed until its reference count is zero.
AddRef returns the new reference count.

TOleInPlaceFrame::ContextSensitiveHelp
TOleInPlaceFrame See also
ContextSensitiveHelp specifies whether context-sensitive Help mode should be entered when
the active OLE object is activated in place.
virtual long __stdcall ContextSensitiveHelp(DWORD fEnterMode);
Description
Set fEnterMode to true if Help mode should be entered when the active OLE object is activated
in place; otherwise, set fEnterMode to false.
ContextSensitiveHelp returns one of the following values:
Value Meaning

S_OK The Help mode was entered or exited successfully.
E_INVALIDARG The argument was invalid.
E_OUTOFMEMORY Out of memory.
E_UNEXPECTED An unexpected error occurred.

TOleInPlaceFrame::EnableModeless
TOleInPlaceFrame
EnableModeless enables or disables the frame’s modeless dialog boxes.
virtual long __stdcall EnableModeless(DWORD fEnable);
Description
Set fEnable to true to enable the frame’s modeless dialog boxes; otherwise, set fEnable to
false.
EnableModeless returns one of the following values:
Value Meaning

S_OK The modeless dialog boxes were enabled or disabled successfully.
E_UNEXPECTED An unexpected error occurred.

TOleInPlaceFrame::GetBorder
TOleInPlaceFrame
GetBorder retrieves the rectangular area in which active OLE object can put toolbars when
activated in place.
virtual long __stdcall GetBorder(Windows::TRect &rectBorder);
Description
Use GetBorder to retrieve the rectangular area in which the active OLE object can put toolbars
when activated in place.
rectBorder is the variable in which the area will be stored.
GetBorder can return one of the following values:
Value Meaning

S_OK The rectangle was successfully retrieved.
S_NOTOOLSPACE The control cannot install toolbars in this window.
E_INVALIDARG The argument was invalid.
E_OUTOFMEMORY Out of memory.
E_UNEXPECTED An unexpected error occurred.

TOleInPlaceFrame::GetWindow
TOleInPlaceFrame
GetWindow returns the container’s window handle.
virtual long __stdcall GetWindow(HWND &wnd);
Description
Use GetWindow to return the container’s window handle.
GetWindow returns one of the following values:
Value Meaning

S_OK The window handle was retrieved successfully.
E_FAIL There is no window handle associated with the container.
E_INVALIDARG The argument was invalid.
E_OUTOFMEMORY Out of memory.
E_UNEXPECTED An unexpected error occurred.

TOleInPlaceFrame::InsertMenus
TOleInPlaceFrame See also
InsertMenus allows the container to insert its menu groups into the composite menu that is used
when the active OLE object is activated in place.
virtual long __stdcall InsertMenus(HMENU hmenuShared,
OLEMENUGROUPWIDTHS &menuWidths);

Description
Use InsertMenus to allow the container to insert its menu groups into the composite menu.
hmenuShared is the handle to an empty menu that is to be used as the composite menu.
menuWidths will contain an OLEMENUGROUPWIDTHS structure (an array of six LONG values)
that reflects the number of menu elements the container provided in the File, View, and Window
menu groups.

TOleInPlaceFrame::QueryInterface
TOleInPlaceFrame See also
QueryInterface retrieves an interface for the active OLE object.
virtual long __stdcall QueryInterface(const GUID &iid, void *obj);
Description
Use QueryInterface to retrieve an interface for the active OLE object.
iid specifies the IID for the interface. An IID is a specialized GUID structure containing an
interface identifier. For more information, search the OLE.HLP file for GUID.
obj is the variable in which the interface will be stored.
QueryInterface returns S_OK if the OLE object supports the interface; otherwise, QueryInterface
returns S_FALSE.
For more information about QueryInterface, search the OLE.HLP file for QueryInterface.

TOleInPlaceFrame::Release
TOleInPlaceFrame See also
Release decrements the reference count for the TOleInPlaceFrame object.
virtual long __stdcall Release(void);
Description
Use Release to decrement the reference count for the TOleInPlaceFrame object. The object will
be destroyed when the reference count is zero.
Release returns the new reference count.

TOleInPlaceFrame::RemoveMenus
TOleInPlaceFrame See also
RemoveMenus notifies the container to remove its menu elements from the composite menu
that is used when the active OLE object is activated in place.
virtual long __stdcall RemoveMenus(HMENU hmenuShared);
Description
Use RemoveMenus to notify the container to remove its menu elements from the composite
menu.
hmenuShared is the Handle to the composite menu. (The handle to the composite menu was
specified in a previous call to the InsertMenus method.)

TOleInPlaceFrame::RequestBorderSpace
TOleInPlaceFrame See also
RequestBorderSpace requests space from the container for tools to be installed when the active
OLE object is activated in place.
virtual long __stdcall RequestBorderSpace(const Windows::TRect
&borderwidths);

Description
Use RequestBorderSpace to request space from the container for tools to be installed in the
frame window.
borderwidths is the amount of space to request
RequestBorderSpace returns one of the following values:
Value Meaning

S_OK The requested space was allocated.
S_NOTOOLSPACE The control cannot install toolbars in this window.
E_INVALIDARG The argument was invalid.
E_UNEXPECTED An unexpected error occurred.

TOleInPlaceFrame::SetActiveObject
TOleInPlaceFrame
SetActiveObject sets the active OLE object.
virtual long __stdcall SetActiveObject(Ole2::IOleInPlaceActiveObject*
activeObject, wchar_t * pszObjName);

Description
Use SetActiveObject to set the active OLE object. The TOleInPlaceFrame methods apply to the
active OLE object.
activeObject is the IOleInPlaceActive interface for the active OLE object. For information about
the IOleInPlaceActive interface, search the OLE.HLP file.
pszObjName is the name of the active OLE object. The container might use the name when
composing its window title. Set pszObjName to NULL to prevent the container from changing its
window title.
SetActiveObject returns one of the following values:
Value Meaning

S_OK The method was called successfully.
E_INVALIDARG The argument was invalid.
E_UNEXPECTED An unexpected error occurred.

TOleInPlaceFrame::SetBorderSpace
TOleInPlaceFrame See also
SetBorderSpace allocates space for the border that was requested in a previous call to the
RequestBorderSpace method.
virtual long __stdcall SetBorderSpace(Windows::PRect pborderwidths);
Description
Use SetBorderSpace to allocate space for the border that was requested in a previous call to the
RequestBorderSpace method.
pborderwidths is the requested width of the tools. If the control does not need any space, set
PRect to NULL.
SetBorderSpace returns one of the following values:
Value Meaning

OLE_E_INVALIDRECTThe control cannot install toolbars in this window.
S_OK The requested space was allocated.
E_INVALIDARG The allocation does not lie within the specifications retrieved by the

RequestBorderSpace method.
E_UNEXPECTED An unexpected error occurred.

TOleInPlaceFrame::SetMenu
TOleInPlaceFrame See also
SetMenu installs the composite menu in the frame when the active OLE object is activated in
place.
virtual long __stdcall SetMenu(HMENU hmenuShared, HMENU holemenu, HWND
hwndActiveObject);

Description
Use SetMenu to install the composite menu in the frame when the active OLE object is activated
in place.
hmenuShared is the composite menu that has been constructed with calls to the InsertMenus
method and the TMenu::Create method.
SetMenu returns one of the following values:
Value Meaning

S_OK The method was called successfully.
E_INVALIDARG The argument was invalid.
E_UNEXPECTED An unexpected error occurred.

TOleInPlaceFrame::SetStatusText
TOleInPlaceFrame See also
SetStatusText displays text about the active control in the frame’s status bar.
virtual long __stdcall SetStatusText(wchar_t * pszStatusText);
Description
Use SetStatusText to display text about the active control in the frame’s status bar.
pszStatusText is the text to display.
SetStatusText returns one of the following values:
Value Meaning

S_OK The text was displayed.
S_TRUNCATED Some text was displayed but it was too long and truncated.
E_INVALIDARG One or more arguments were invalid.
E_UNEXPECTED An unexpected error occurred.
S_FALSE The text could not be displayed.

TOleInPlaceFrame::TOleInPlaceFrame
TOleInPlaceFrame See also
TOleInPlaceFrame creates a new instance of the TOleInPlaceFrame object.
__fastcall TOleInPlaceFrame(TOleControl* Control);
Description
Use TOleInPlaceFrame to create a new instance of the TOleInPlaceFrame object.
Control is the active OLE object.

TOleInPlaceFrame::TranslateAccelerator
TOleInPlaceFrame
TranslateAccelerator translates accelerator keystrokes intended for the container.
virtual long __stdcall TranslateAccelerator(MSG &msg, unsigned short
wID);

Description
Use TranslateAccelerator to translate accelerator keystrokes intended for the container.
msg is a MSG structure containing the keystroke message.
wID contains the command identifier corresponding to the keystroke in the container’s
accelerator table. Containers should use this value instead of translating again.
TranslateAccelerator returns one of the following values:
Value Meaning

S_FALSE The keystroke was not used.
S_OK The keystroke was used.
E_INVALIDARG One or more arguments were invalid.
E_OUTOFMEMORY Out of memory.
E_UNEXPECTED An unexpected error occurred.

Hierarchy

TObject

IUnknown
IOleWindow
IOleInPlaceUIWindow
IOleInPlaceFrame

TOleInPlaceFrame example
TOleInPlaceFrame

TOleInPlaceSite
Hierarchy Methods See also
TOleInPlaceSite is an object that encapsulates the IOleInPlaceSite interface.
Header
vcl/olectrls.hpp
Description
Use TOleInPlaceSite to manage in-place OLE objects. For more information about the
IOleInPlaceSite interface, search the OLE.HLP file.

TOleInPlaceSite methods
TOleInPlaceSite Alphabetically

In TOleInPlaceSite
~TOleInPlaceSite
AddRef
CanInPlaceActivate
ContextSensitiveHelp
DeactivateAndUndo
DiscardUndoState
GetWindow
GetWindowContext
OnInPlaceActivate
OnInPlaceDeactivate
OnPosRectChange
OnUIActivate
OnUIDeactivate
QueryInterface
Release
Scroll
TOleInPlaceSite

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TOleInPlaceSite methods
TOleInPlaceSite By object

~TOleInPlaceSite
AddRef
CanInPlaceActivate
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ContextSensitiveHelp
DeactivateAndUndo
DefaultHandler
DiscardUndoState
Dispatch
FieldAddress
FreeInstance
Free
GetWindowContext
GetWindow
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
OnInPlaceActivate
OnInPlaceDeactivate
OnPosRectChange
OnUIActivate
OnUIDeactivate
QueryInterface
Release
Scroll
TOleInPlaceSite

TOleInPlaceSite::~TOleInPlaceSite
TOleInPlaceSite
~TOleInPlaceSite frees the memory associated with the TOleInPlaceSite object. Do not call ~
TOleInPlaceSite directly. Instead, use the delete keyword on the object, which causes ~
TOleInPlaceSite to be invoked automatically.
__fastcall virtual ~TOleInPlaceSite(void);

TOleInPlaceSite::AddRef
TOleInPlaceSite See also
AddRef increments the reference count for the TOleInPlaceSite object.
virtual long __stdcall AddRef(void);
Description
Use AddRef to increment the reference count for the TOleInPlaceSite object. The object will not
be destroyed until its reference count is zero.
AddRef returns the new reference count.

TOleInPlaceSite::CanInPlaceActivate
TOleInPlaceSite
CanInPlaceActivate specifies whether the container can activate the in-place OLE object.
virtual long __stdcall CanInPlaceActivate(void);
Description
Use CanInPlaceActivate to specify whether the container can activate the in-place OLE object.
CanInPlaceActivate returns one of the following values:
Value Meaning

S_OK The container should allow in-place activation for the OLE object.
E_FALSE The container should not allow in-place activation for the OLE object.
E_INVALIDARG The argument was invalid.
E_UNEXPECTED An unexpected error occurred.
CanInPlaceActivate returns S_OK under the following conditions:
• The site’s ComponentState property does not contain csDesigning.
• The site’s Visible and AllowInPlace properties are true.

TOleInPlaceSite::ContextSensitiveHelp
TOleInPlaceSite See also
ContextSensitiveHelp specifies whether context-sensitive Help mode should be entered when
the in-place OLE object is activated.
virtual long __stdcall ContextSensitiveHelp(DWORD fEnterMode);
Description
Set fEnterMode to true if Help mode should be entered when the in-place OLE object is
activated; otherwise, set fEnterMode to false.
ContextSensitiveHelp returns one of the following values:
Value Meaning

S_OK The Help mode was entered or exited successfully.
E_INVALIDARG The argument was invalid.
E_OUTOFMEMORY Out of memory.
E_UNEXPECTED An unexpected error occurred.

TOleInPlaceSite::DeactivateAndUndo
TOleInPlaceSite
DeactivateAndUndo causes the container to deactivate the in-place OLE object and revert to its
own saved undo state.
virtual long __stdcall DeactivateAndUndo(void);
Description
Use DeactivateAndUndo to cause the container to deactivate the in-place OLE object and revert
to its own saved undo state.
DeactivateAndUndo returns one of the following values:
Value Meaning

S_OK The method was executed successfully.
E_UNEXPECTED An unexpected error occurred.

TOleInPlaceSite::DiscardUndoState
TOleInPlaceSite
DiscardUndoState notifies the container that the in-place OLE object no longer has an undo
state.
virtual long __stdcall DiscardUndoState(void);
Description
Use DiscardUndoState to notify the container that the in-place OLE object no longer has an
undo state. Upon receiving this notification, the container should not call the IOleInPlaceObject::
ReActivateAndUndo function. For information about the IOleInPlaceObject interface, search the
OLE.HLP file.
DiscardUndoState returns one of the following values:
Value Meaning

S_OK The method was executed successfully.
E_UNEXPECTED An unexpected error occurred.

TOleInPlaceSite::GetWindow
TOleInPlaceSite
GetWindow retrieves the handle to the container’s window.
virtual long __stdcall GetWindow(HWND &wnd);
Description
Use GetWindow to retrieve the handle to the container’s window.
GetWindow returns one of the following values:
Value Meaning

S_OK The window handle was retrieved successfully.
E_FAIL There is no window handle associated with the container.
E_INVALIDARG The argument was invalid.
E_OUTOFMEMORY Out of memory.
E_UNEXPECTED An unexpected error occurred.

TOleInPlaceSite::GetWindowContext
TOleInPlaceSite
GetWindowContext retrieves information about how and where the in-place OLE object should
be placed in its parent window.
virtual long __stdcall GetWindowContext(Ole2::IOleInPlaceFrame* &frame,
Ole2::IOleInPlaceUIWindow* &doc, Windows::TRect &rcPosRect, Windows:
:TRect &rcClipRect, OLEINPLACEFRAMEINFO &frameInfo);

Description
Use GetWindowContext to retrieve information about how and where the in-place OLE object
should be placed in its parent window.
frame is a variable in which the frame interface will be stored.
doc is a variable in which the document window interface will be stored.
rcPosRect is a variable in which the position of the OLE object within its parent window will be
stored.
rcClipRect is a variable in which the outer position of the OLE object within its parent window will
be stored.
frameInfo is a variable in which the container stores information about accelerators.
For more information about these parameters, search the OLE.HLP file for GetWindowContext.
GetWindowContext returns one of the following values:
Value Meaning

S_OK The method was executed successfully.
E_INVALIDARG An argument was invalid.
E_UNEXPECTED An unexpected error occurred.

TOleInPlaceSite::OnInPlaceActivate
TOleInPlaceSite See also
OnInPlaceActivate notifies the container that the in-place OLE object is being activated.
virtual long __stdcall OnInPlaceActivate(void);
Description
Override OnInPlaceActivate to perform special processing when the in-place OLE object is
activated.
OnInPlaceActivate must return one of the following values:
Value Meaning

S_OK The container allows the in-place activation.
E_UNEXPECTED An unexpected error occurred.
By default, OnInPlaceActivate updates the internal objects of the container that represent the
active in-place OLE object, and then returns S_OK.

TOleInPlaceSite::OnInPlaceDeactivate
TOleInPlaceSite See also
OnInPlaceDeactivate notifies the container that the in-place OLE object has been deactivated.
virtual long __stdcall OnInPlaceDeactivate(void);
Description
Override OnInPlaceDeactivate to perform special processing when the in-place OLE object has
been deactivated.
OnInPlaceDeactivate must return one of the following values:
Value Meaning

S_OK The method notified the container successfully.
E_UNEXPECTED An unexpected error occurred.
By default, OnInPlaceDeactivate releases the internal objects used by the container to represent
the active in-place OLE object and returns S_OK.

TOleInPlaceSite::OnPosRectChange
TOleInPlaceSite
OnPosRectChange notifies the container that the in-place OLE object has changed size or
position.
virtual long __stdcall OnPosRectChange(const Windows::TRect &rcPosRect)
;

Description
Override OnPosRectChange to perform special processing when the in-place OLE object
changes size or position.
rcPosRect is the position of the in-place OLE object in the client coordinates of its parent
window.
OnPosRectChange must return one of the following values:
Value Meaning

S_OK The method was executed successfully.
E_INVALIDARG The argument was invalid.
E_UNEXPECTED An unexpected error occurred.
By default, OnPosRectChange updates how the container displays the OLE object.

TOleInPlaceSite::OnUIActivate
TOleInPlaceSite See also
OnUIActivate notifies the container that user interface for the in-place OLE object is about to be
activated.
virtual long __stdcall OnUIActivate(void);
Description
Override OnUIActivate to perform special processing when the user interface for the in-place
OLE object is about to be activated.
OnUIActivate must return one of the following values:
Value Meaning

S_OK The container allows the in-place activation.
E_UNEXPECTED An unexpected error occurred.
By default, OnUIActivate causes the container to incorporate the user interface for the in-place
OLE object, and then returns S_OK.

TOleInPlaceSite::OnUIDeactivate
TOleInPlaceSite See also
OnUIDeactivate notifies the container that user interface for the in-place OLE object has been
deactivated.
virtual long __stdcall OnUIDeactivate(DWORD fUndoable);
Description
Override OnUIDeactivate to perform special processing when the user interface for the in-place
OLE object has been deactivated.
OnUIActivate must return one of the following values:
Value Meaning

S_OK The container allows the in-place activation.
E_UNEXPECTED An unexpected error occurred.
By default, OnUIDeactivate causes the container to incorporate the user interface for the in-
place OLE object, and then returns S_OK.

TOleInPlaceSite::QueryInterface
TOleInPlaceSite
QueryInterface retrieves an interface for the in-place OLE object.
virtual long __stdcall QueryInterface(const GUID &iid, void *obj);
Description
Use QueryInterface to retrieve an interface for the in-place OLE object.
iid specifies the IID for the interface. An IID is a specialized GUID structure containing an
interface identifier. For more information, search the OLE.HLP file for GUID.
obj is the variable in which the interface will be stored.
QueryInterface returns S_OK if the OLE object supports the interface; otherwise, QueryInterface
returns S_FALSE.
For more information about QueryInterface, search the OLE.HLP file for QueryInterface.

TOleInPlaceSite::Release
TOleInPlaceSite See also
Release decrements the reference count for the TOleInPlaceSite object.
virtual long __stdcall Release(void);
Description
Use Release to decrement the reference count for the TOleInPlaceSite object. The object will be
destroyed when the reference count is zero.
Release returns the new reference count.

TOleInPlaceSite::Scroll
TOleInPlaceSite
Scroll notifies the container to scroll the view of the OLE object.
virtual long __stdcall Scroll(const POINT &scrollExtent);
Description
Use Scroll to notify the container to scroll the view of the OLE object.
scrollExtent is the number of pixels to scroll in the X and Y directions.
ScrollExtent returns one of the following values:
Value Meaning

S_OK The method was executed successfully.
E_INVALIDARG The argument was invalid.
E_UNEXPECTED An unexpected error occurred.

TOleInPlaceSite::TOleInPlaceSite
TOleInPlaceSite See also
TOleInPlaceSite creates a new instance of the TOleInPlaceSite object.
__fastcall TOleInPlaceSite(TOleControl* Control);
Description
Use TOleInPlaceSite to create a new instance of the TOleInPlaceSite object.
Container is the OLE object’s container.

Hierarchy

TObject

IUnknown
IOleWindow
IOleInPlaceSite

TOleInPlaceSite example
TOleInPlaceSite

TOpenDialog
Hierarchy Properties Methods See also
TOpenDialog generates a file-selection dialog.
Header
vcl/dialogs.hpp
Description
TOpenDialog displays a Windows dialog box for selecting and opening files. The dialog does not
appear at runtime until it is activated by a call to the Execute method. When the user clicks
Open, the dialog closes and the selected file or files are stored in the Files property.

TOpenDialog properties
TOpenDialog Alphabetically Legend

In TOpenDialog
DefaultExt
FileEditStyle
FileName

Files
Filter
FilterIndex
HistoryList
InitialDir
Options
Title

Derived from TCommonDialog
Ctl3D
HelpContext

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TOpenDialog properties
TOpenDialog By object Legend

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

Ctl3D
DefaultExt
DesignInfo
FileEditStyle
FileName

Files
FilterIndex
Filter
HelpContext
HistoryList
InitialDir
Name
Options

Owner
Tag
Title

TOpenDialog::DefaultExt
TOpenDialog Example
Specifies a default file extension.
__property System::AnsiString DefaultExt;
Description
DefaultExt specifies a file extension that is appended automatically to the selected file name,
unless the selected file name already includes a registered extension. If the user selects a file
name with an extension that is unregistered, DefaultExt is appended to the unregistered
extension.
Extensions longer than three characters are not supported. Do not include the period (.) that
divides the file name and its extension.

TOpenDialog::FileEditStyle
TOpenDialog
Specifies the style of the box in which the user specifies a filename.
__property TFileEditStyle FileEditStyle;
Description
FileEditStyle can have one of the following TFileEditStyle values:
Value Meaning

fsEdit Edit box.
fsComboBox Combo box.

TOpenDialog::FileName
TOpenDialog See also Example
Returns the name and directory path of the last file selected.
__property System::AnsiString FileName;
Description
The FileName property returns the name and complete directory path of the most recently
selected file. To make a file name appear by default in the dialog’s edit box, assign a value to
FileName in the Object Inspector or in program code.

TOpenDialog::Files
TOpenDialog See also
Returns a list of the selected file names.
__property Classes::TStrings* Files;
Description
Files is a TStrings instance that contains each selected file name with its full directory path. (To
let users select multiple file names, set the ofAllowMultiSelect flag in Options.)

TOpenDialog::Filter
TOpenDialog See also
Determines the file masks (filters) available in the dialog.
__property System::AnsiString Filter;
Description
The file-selection dialog includes a drop-down list of file types under the edit box. When the user
picks a file type from the list, only files of the selected type are displayed in the dialog.
To configure file masks at design time, click on the ellipsis marks (...) to the right of the Filter
property in the Object Inspector. This opens the Filter editor. In the left column of the Filter
editor, under Filter Name, type a brief description of each file type that will be available at
runtime. In the right column, under Filter, type the file mask corresponding to each description.
For example, the description “Text files” might appear to the left of the mask “*.TXT”, and the
description “C++ source files” might appear to the left of the mask “*.CPP”. Because the
description appears in the drop-down list at runtime, it is often helpful to show the mask explicitly
in the description (for example, “Text files (*.txt)”).
To create file masks in program code, assign a value to the Filter property that consists of a
description and a mask separated by a vertical bar (pipe) character. Do not include spaces
around the vertical bar. For example,
OpenDialog1->Filter = "Text files (*.txt)|*.TXT";
Multiple filters should be separated by vertical bars. For example,
OpenDialog1->Filter = "Text files (*.txt)|*.TXT|C++ files (*.cpp)|*.
CPP";

To include multiple masks in a single filter, separate the masks with semicolons. This works both
in the Object Inspector and in program code. For example,
OpenDialog1->Filter = "C++ files|*.CPP;*.H";
If no value is assigned to Filter, the dialog displays all file types.

TOpenDialog::FilterIndex
TOpenDialog See also
Determines which filter is selected by default when the dialog opens.
__property int FilterIndex;
Description
FilterIndex determines which of the file types in Filter is selected by default when the dialog
opens. Set FilterIndex to 1 to choose the first file type in the list as the default, or set FilterIndex
to 2 to choose the second file type as the default, and so forth. If the value of FilterIndex is out or
range, the first file type listed in Filter is the default.

TOpenDialog::HistoryList
TOpenDialog
Specifies the names of files that have already been opened.
__property Classes::TStrings* HistoryList;

TOpenDialog::InitialDir
TOpenDialog
Determines the current directory when the dialog opens.
__property System::AnsiString InitialDir;
Description
InitialDir determines the default directory displayed in the file-selection dialog when it opens. For
example, to point the dialog at the WINDOWS\SYSTEM directory, set the value of InitialDir to C:
\WINDOWS\SYSTEM.
If no value is assigned to InitialDir, or if the specified directory does not exist, the dialog opens
with the current working directory displayed.

TOpenDialog::Options
TOpenDialog See also
Determines the appearance and behavior of the file-selection dialog.
__property TOpenOptions Options;
Description
Use the Options property to customize the appearance and functionality of the dialog. The
possible values of Options are
Value Meaning

ofAllowMultiSelect Allows users to select more than one file in the dialog.
ofCreatePrompt Generates a warning message if the user tries to select a nonexistent file,

asking whether to create a new file with the specified name.
ofExtensionDifferent This flag is turned on at runtime whenever the selected filename has an

extension that differs from DefaultExt. If you use this flag an application,
remember to reset it.

ofFileMustExist Generates an error message if the user tries to select a nonexistent file.
ofHideReadOnly Removes the Open As Read Only check box from the dialog.
ofNoChangeDir After the user clicks OK, resets the current directory to whatever it was

before the file-selection dialog opened.
ofNoDereferenceLinksDisables dereferencing of Windows shortcuts. If the user selects a

shortcut, assigns to FileName the path and file name of the shortcut itself
(the .LNK file), rather than the file linked to the shortcut.

ofNoLongNames Displays 8.3-character file names only.
ofNoNetworkButton Removes the Network button (which opens a Map Network Drive dialog)

from the file-selection dialog. Applies only if the ofOldStyleDialog flag is
on.

ofNoReadOnlyReturn Generates an error message if the user tries to select a read-only file.
ofNoTestFileCreate Disables checking for network file protection and inaccessibility of disk

drives. Applies only when the user tries to save a file in a create-no-
modify shared network directory.

ofNoValidate Disables checking for invalid characters in file names. Allows selection of
file names with invalid characters.

ofOldStyleDialog Creates the older style of file-selection dialog.
ofOverwritePrompt Generates a warning message if the user tries to select a file name that is

already in use, asking whether to overwrite the existing file. (Use with
TSaveDialog and TSavePictureDialog.)

ofPathMustExist Generates an error message if the user tries to select a file name with a
nonexistent directory path.

ofReadOnly Selects the Open As Read Only check box by default when the dialog
opens.

ofShareAware Ignores sharing errors and allows files to be selected even when sharing
violations occur.

ofShowHelp Displays a Help button in the dialog.
By default, all options flags are off.

TOpenDialog::Title
TOpenDialog
Specifies the text in the dialog’s title bar.
__property System::AnsiString Title;
Description
Use Title to specify the text that appears in the file-selection dialog’s title bar. If no value is
assigned to Title, the dialog has the title “Open”.

TOpenDialog methods
TOpenDialog Alphabetically

In TOpenDialog
~TOpenDialog
Execute
GetFilePath
TOpenDialog

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TOpenDialog methods
TOpenDialog By object

~TOpenDialog
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
Dispatch
Execute
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetFilePath
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
TOpenDialog

TOpenDialog::~TOpenDialog
TOpenDialog See also
~TOpenDialog frees the memory associated with the TOpenDialog object. Do not call ~
TOpenDialog directly. Instead, use the delete keyword on the object, which causes ~
TOpenDialog to be invoked automatically.
__fastcall virtual ~TOpenDialog(void);

TOpenDialog::Execute
TOpenDialog
Displays the file-selection dialog.
virtual bool __fastcall Execute(void);
Description
Execute opens the file-selection dialog, returning true when the user selects a file and clicks
Open.

TOpenDialog::GetFilePath
TOpenDialog
Returns the path of the currently selected file as a Pascal-style string.
Description
GetFilePath is available only when the dialog is open.

TOpenDialog::TOpenDialog
TOpenDialog See also
Creates and initializes a TOpenDialog instance.
__fastcall virtual TOpenDialog(Classes::TComponent* AOwner);
Description
The TOpenDialog method generates a TOpenDialog instance, but the new dialog does not
appear on the form at runtime until the Execute method is called.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent
TCommonDialog

TOpenDialog example
TOpenDialog

TOutline
Hierarchy Properties Methods Events See also
TOutline is a multilevel outline that displays the values of TOutlineNode objects.
Header
vcl/outline.hpp
Description
Use an outline to visually organize information in a hierarchical tree. Each item in an outline is
contained in a TOutlineNode object. Outline controls allow an application to manage a hierarchy
of outline nodes, including the ability to control the appearance and layout of those nodes and
the ability to expand or collapse branches of the outline tree.
TOutline implements the generic behavior introduced in TCustomOutline. TOutline publishes
many of the properties and events inherited from TCustomOutline, but does not introduce any
new behavior.

TOutline properties
TOutline Alphabetically Legend

Derived from TCustomOutline
ItemCount

ItemHeight
Items

ItemSeparator
Lines
Options
OutlineStyle
PictureClosed
PictureLeaf
PictureMinus
PictureOpen
PicturePlus
SelectedItem
Style

Derived from TCustomGrid
BorderStyle
Row
ScrollBars

Derived from TCustomControl
Canvas

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible

Width
Derived from TComponent

ComponentCount
ComponentIndex

Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TOutline properties
TOutline By object Legend

Align
BorderStyle
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
Enabled
Font

Handle
Height
HelpContext
Hint

ItemCount
ItemHeight
ItemSeparator

Items
Left
Lines
Name
Options
OutlineStyle

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PictureClosed
PictureLeaf
PictureMinus
PictureOpen
PicturePlus
PopupMenu
Row
ScrollBars
SelectedItem
ShowHint

Showing
Style
TabOrder
TabStop
Tag
Top

Visible
Width

TOutline events
TOutline Alphabetically Legend

Derived from TCustomOutline
OnCollapse
OnDrawItem
OnExpand

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TOutline events
TOutline By object Legend

OnClick
OnCollapse
OnDblClick
OnDragDrop
OnDragOver
OnDrawItem
OnEndDrag
OnEnter
OnExit
OnExpand
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TOutline methods
TOutline Alphabetically

Derived from TCustomOutline
~TCustomOutline
Add
AddChild
AddChildObject
AddObject
BeginUpdate
Clear
Delete
EndUpdate
FullCollapse
FullExpand
GetDataItem
GetItem
GetNodeDisplayWidth
GetTextItem
GetVisibleNode
Insert
InsertObject
LoadFromFile
LoadFromStream
SaveToFile
SaveToStream
SetUpdateState
TCustomOutline

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag

BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TOutline methods
TOutline By object

~TCustomOutline
AddChildObject
AddChild
AddObject
Add
Assign
BeginDrag
BeginUpdate
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
Delete
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
EndUpdate
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
FullCollapse
FullExpand
GetDataItem
GetItem
GetNodeDisplayWidth
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextItem
GetTextLen
GetVisibleNode

HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InsertObject
Insert
InstanceSize
Invalidate
LoadFromFile
LoadFromStream
MethodAddress
MethodName
NewInstance
PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
SaveToFile
SaveToStream
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
SetUpdateState
Show
TCustomOutline
UpdateControlState
Update

~TOutline
~TOutline frees the memory associated with the TOutline object. Do not call ~TOutline directly.
Instead, use the delete keyword on the object, which causes ~TOutline to be invoked
automatically.
__fastcall virtual ~TOutline(void);

TOutline
TOutline creates a new TOutline object.
__fastcall virtual TOutline(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl
TCustomGrid
TCustomOutline

TOutline example
TOutline

OutlineError
Hierarchy Methods See also
OutlineError is a special exception class for invalid outline-node indexes.
Header
vcl/outline.hpp
Description
OutlineError is raised when an application cannot access a specified outline node. In most
cases, this occurs because the index used is invalid.
Note
OutlineError is raised internally to abort look-ups of outline components. Because it does not
descend from Exception, it never appears at runtime—even if the Break on Exception debugging
option is turned on. Thus it is a useful tool for aborting deep recursions.

OutlineError methods
OutlineError Alphabetically

In OutlineError
~OutlineError
OutlineError

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

OutlineError methods
OutlineError By object

~OutlineError
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
OutlineError

OutlineError::~OutlineError
OutlineError
~OutlineError frees the memory associated with the OutlineError object. Do not call ~
OutlineError directly. Instead, use the delete keyword on the object, which causes ~OutlineError
to be invoked automatically.
__fastcall virtual ~OutlineError(void);

OutlineError::OutlineError
OutlineError
OutlineError creates a new OutlineError object.
__fastcall OutlineError(void);

Hierarchy

TObject

OutlineError example
OutlineError

TOutlineNode
Hierarchy Properties Methods See also
TOutlineNode represents a node in a TCustomOutline object.
Header
vcl/outline.hpp
Description
Use TOutlineNode to describe a node in an outline. Each outline node appears as a line, or row,
of the outline. An outline node can have from 0 to 16368 subnodes, which are subordinate to the
parent node in the outline structure.

TOutlineNode properties
TOutlineNode Alphabetically Legend

In TOutlineNode
Data
Expanded

FullPath
HasItems
Index
IsVisible

Level
Parent

Text
TopItem

TOutlineNode properties
TOutlineNode By object Legend

Data
Expanded

FullPath
HasItems
Index
IsVisible

Level
Parent

Text
TopItem

TOutlineNode::Data
TOutlineNode See also
Data is a pointer to application-specific data associated with the node.
__property void * Data;
Description
Use Data to associate an arbitrary value with a node in an outline. For example, if the outline
represents the table of contents to an electronic document, Data could point to an object that
provides jump information for accessing the section of the document named by the node.
The Data property is usually described by the Text property, which is displayed in the rendered
image of the node.

TOutlineNode::Expanded
TOutlineNode See also
Expanded determines whether descendants of the outline node are displayed.
__property bool Expanded;
Description
Set Expanded to true to display all subnodes of a node. When an outline node is expanded, its
descendants are displayed and, depending on the OutlineStyle property of the outline in which
the node is contained, the minus picture or open picture is displayed.
Set Expanded to false to collapse the node. When an outline node is collapsed, its descendants
are hidden and, depending on the OutlineStyle property of the outline in which the node is
contained, the plus picture or closed picture is displayed.
Expanded is not meaningful for nodes that have no descendants.

TOutlineNode::FullPath
TOutlineNode See also
FullPath is a text description of an outline node, made up of its text and the text of all ancestor
nodes in the outline.
__property System::AnsiString FullPath;
Description
Read FullPath to obtain a description of the entire branch of the outline leading to the outline
node. FullPath consists of the values of the Text properties of all outline items, starting with the
text of the node at the first level and traversing the outline down to the outline node. The text for
each node in the path is separated by the string specified as the ItemSeparator property of the
outline.

TOutlineNode::HasItems
TOutlineNode See also
HasItem indicates whether the outline node has any subnodes.
__property bool HasItems;
Description
Read HasItem to determine whether the outline node is a leaf node. Depending on the
OutlineStyle property of the outline that contains the node, leaf nodes may appear with the leaf
bitmap. If the node is not a leaf, subnodes appear below and indented from the node when it is
expanded.
HasItem returns true if the node has any descendants, even if the node is collapsed and the
descendants are not visible. HasItem returns false if the node is a leaf node.

TOutlineNode::Index
TOutlineNode See also
Index uniquely locates the node in the Items array maintained by the outline.
__property long Index;
Description
Read Index to determine the row of the outline where the node appears. The first node has an
Index value of 1, and subsequent nodes are indexed sequentially. If a node has subnodes, the
Index value of the parent node is one less than the Index value of its first descendant.

When nodes in the outline are added, moved, or deleted, the values of the Index properties of all
subsequent nodes must be recalculated to be valid. Sometimes, the recalculation of indexes is
deferred until all changes to the nodes are complete. To ensure that the value of Index is valid,
call the SetUpdateState method of the outline that contains the node.

TOutlineNode::IsVisible
TOutlineNode See also
IsVisible indicates whether the outline node is visible in the outline.
__property bool IsVisible;
Description
Read IsVisible to determine whether the node is part of the current image of the outline. A node
is visible if it is on level 1 or if all its parents are expanded.
Note
Do not confuse IsVisible with the Visible property of TControl objects. Outline nodes are not controls,
but merely helper objects that describe nodes for an outline control. IsVisible indicates whether a node is
visible because its parents are expanded or collapsed. It does not provide information about whether the
node has been scrolled out of view, or even if the outline is not visible.

TOutlineNode::Level
TOutlineNode See also
Level indicates the level of indentation of an node within the outline.
__property Cardinal Level;
Description
The value of Level is 1 for nodes that directly descend from the root of the outline. (the top level)
. The value of Level is 2 for their children, and so on.

TOutlineNode::Parent
TOutlineNode See also Example
Parent identifies the immediate ancestor of the node.
__property TOutlineNode* Parent;
Description
Read Parent to find the parent of an outline node. A parent node is one level higher and contains
the child node as a subnode.

TOutlineNode::Text
TOutlineNode See also Example
Text is the string that identifies the outline node.
__property System::AnsiString Text;
Description
Use Text to determine the string that is displayed in the outline to represent the node.

TOutlineNode::TopItem
TOutlineNode See also Example
TopItem identifies which outline node is the topmost ancestor of a node.
__property long TopItem;
Description
Read TopItem to determine the first node in the branch of the outline tree that contains the
outline node. The TopItem property specifies the Index value of the level 1 ancestor of the
outline node. For a node on level 1, TopItem has the same value as the Index property.

TOutlineNode methods
TOutlineNode Alphabetically

In TOutlineNode
~TOutlineNode
ChangeLevelBy
Collapse
Expand
FullExpand
GetDisplayWidth
GetFirstChild
GetLastChild
GetNextChild
GetPrevChild
MoveTo
TOutlineNode

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TOutlineNode methods
TOutlineNode By object

~TOutlineNode
Assign
ChangeLevelBy
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Collapse
DefaultHandler
Dispatch
Expand
FieldAddress
FreeInstance
Free
FullExpand
GetDisplayWidth
GetFirstChild
GetLastChild
GetNextChild
GetPrevChild
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
MoveTo
NewInstance
TOutlineNode

TOutlineNode::~TOutlineNode
TOutlineNode
~TOutlineNode frees the memory associated with the TOutlineNode object. Do not call ~
TOutlineNode directly. Instead, use the delete keyword on the object, which causes ~
TOutlineNode to be invoked automatically.
__fastcall virtual ~TOutlineNode(void);

TOutlineNode::ChangeLevelBy
TOutlineNode See also
ChangeLevelBy changes the level of an outline node.
void __fastcall ChangeLevelBy(TChangeRange Value);
Description
Call ChangeLevelBy to move a node up or down a branch in the outline. Specify a Value
parameter value of -1 to move up (toward the root) one level. Specify a Value parameter value of
1 to move down (away from the root) one level.
When moving up one level, an item becomes the next sibling of its former parent. When moving
down one level, an item becomes the last child of its former prior sibling.
Nodes at the first level can not be moved up, as they have have no parent. The first node in the
outline can not be moved down either, as it has no prior sibling.
Note
Before calling ChangeLevelBy, be sure that the node has the appropriate number of parents or
that the appropriate prior siblings exist.

TOutlineNode::Collapse
TOutlineNode See also
Collapse collapses an outline item.
void __fastcall Collapse(void);
Description
Collapse sets the Expanded property to false. When an outline node is collapsed, its
descendants are hidden and, depending on the OutlineStyle property of the outline in which the
node is contained, the plus picture or closed picture is displayed.
Collapse does nothing to nodes that have no descendants.

TOutlineNode::Expand
TOutlineNode See also
Expand expands an outline item.
void __fastcall Expand(void);
Description
Expand sets the Expanded property to true. When an outline node is expanded, its descendants
are displayed and, depending on the OutlineStyle property of the outline in which the node is
contained, the minus picture or open picture is displayed.
Expand does nothing to nodes that have no descendants.
Note
Expand only ensures that the immediate children of a node are visible. To expand all
descendants of a node, use the FullExpand method.

TOutlineNode::FullExpand
TOutlineNode See also
FullExpand expands an outline node and all its descendants.
void __fastcall FullExpand(void);
Description
Use FullExpand to expand all the nodes in the subtree of the outline rooted at the outline node.
FullExpand sets the Expanded property of the node and all its descendants to true.

TOutlineNode::GetDisplayWidth
TOutlineNode See also
GetDisplayWidth returns the distance, in pixels, from the left edge of the outline to the right edge
of the outline node.
int __fastcall GetDisplayWidth(void);
Description
Call GetDisplayWidth to determine the length of the line in the outline that contains the outline
node. GetDisplayWidth adjusts for the lines and bitmaps specified by the OutlineStyle property of
the outline.

TOutlineNode::GetFirstChild
TOutlineNode See also
GetFirstChild returns the Index value of the first subnode.
long __fastcall getFirstChild(void);
Description
Call GetFirstChild to locate the first subnode of a node when traversing the outline tree. If the
node has no descendants, GetFirstChild returns -1.

TOutlineNode::GetLastChild
TOutlineNode See also
GetLastChild returns the Index value of the last subnode.
long __fastcall GetLastChild(void);
Description
Call GetLastChild to locate the last subnode of a node. If the node has no descendants,
GetLastChild returns -1.

TOutlineNode::GetNextChild
TOutlineNode See also
GetNextChild returns the Index value of the next child of an outline node.
long __fastcall GetNextChild(long Value);
Description
Call GetNextChild to obtain the index of the next immediate descendant of a node, following the
child node with the index given by the Value parameter. If the child node indicated by Value has
no next sibling, or if the child node indicated by Value is not an immediate descendant of the
outline node, GetNextChild returns -1.
Index values reflect a depth-first traversal of the outline. Thus, the next sibling of the child node
indicated by Value is not simply one more than Value, unless the child node has no
descendants. GetNextChild allows a breadth first traversal of the outline.

TOutlineNode::GetPrevChild
TOutlineNode See also
GetPrevChild returns the Index value of the previous child of an outline node.
long __fastcall GetPrevChild(long Value);
Description
Call GetPrevChild to obtain the index of the previous immediate descendant of a node,
preceding the child node with the index given by the Value parameter. If the child node indicated
by Value has no prior sibling, or if the child node indicated by Value is not an immediate
descendant of the outline node, GetPrevChild returns -1.
Index values reflect a depth-first traversal of the outline. Thus, the previous sibling of the child
node indicated by Value is not simply one less than Value, unless that previous sibling has no
descendants.

TOutlineNode::MoveTo
TOutlineNode See also
MoveTo moves an outline node from one location within the outline to another.
void __fastcall MoveTo(long Destination, TAttachMode AttachMode);
Description
Call MoveTo to reposition the node to the position indicated by the Destination parameter.
Destination is the Index value of another outline node. The AttachMode parameter specifies how
to attach the moved node to the destination position. These are the possible values of
AttachMode:

oaAdd The node is attached as if added with the outline’s Add method. The
moved node becomes the last sibling of the node specified by the
Destination parameter and shares the same parent as the Destination
node.

oaAddChild The node is attached as if added with the outline’s AddChild method.
The moved node becomes the last child of the node specified by the
Destination parameter.

oaInsert The node is attached as if inserted with the outline’s Insert method. The
moved node replaces the Destination node in the outline, while the
Destination node and all other following items are moved down one row.

Note
To change only the level of a node, use the ChangeLevelBy method.

TOutlineNode::TOutlineNode
TOutlineNode
TOutlineNode creates a new TOutlineNode object.
__fastcall TOutlineNode(TCustomOutline* AOwner);

Accessibility
Read-only

Hierarchy

TObject

TPersistent

TOutlineNode example
TOutlineNode

TPageControl
Hierarchy Properties Methods Events
The TPageControl component is a page set which is used to make a multiple page dialog box. It
displays multiple overlapping pages which are TTabSheet objects, and replaces the
TTabbedNotebook component. The user selects a page by clicking the page’s tab that appears
at the top of the control.
Header
vcl/comctrls.hpp
Description
To create a new page in a TPageControl at design time, right-click the TPageControl and
choose New Page. Each page in a page control is a tab sheet object. You can access a
particular page in the page control by either clicking on its tab or by setting the ActivePage
property. The PageIndex property of the tab sheet control contains the index of the page in the
page control.
By default, a tab control displays only one row of tabs. If not all tabs can be shown at once, the
tab control displays an up-down control so that the user can scroll additional tabs into view. Use
the MultiLine property to display multiple rows of tabs, if necessary, so that all tabs are visible at
once.
The TPageControl component is an indirect descendent of TWinControl. In addition to the
following properties, methods, and events, this component also has the properties, methods, and
events that apply to all windowed controls.

TPageControl properties
TPageControl Alphabetically Legend

In TPageControl
ActivePage

PageCount
Pages

Derived from TCustomTabControl
MultiLine
TabHeight
TabWidth

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name

Parent
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TPageControl properties
TPageControl By object Legend

ActivePage
Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
DragCursor
DragMode
Enabled
Font

Handle
Height
HelpContext
Hint
Left
MultiLine
Name

Owner
PageCount
Pages

ParentFont
ParentShowHint
Parent
PopupMenu
ShowHint

Showing
TabHeight
TabOrder
TabStop
TabWidth
Tag
Top
Visible
Width

TPageControl::ActivePage
TPageControl
Specifies the active page and brings it to the foreground in the sequence of overlapping pages.
__property TTabSheet* ActivePage;
Description
Each page is a TTabSheet object. To activate a particular page either select its tab or set the
ActivePage property. To select pages whose tabs are not visible use the FindNextPage or
SelectNextPage methods. Only one page can be active at a time.

TPageControl::PageCount
TPageControl See also
Contains the number of pages in a TPageControl.
__property int PageCount;
Description
Each page is a TTabSheet object.

TPageControl::Pages
TPageControl See also
An indexed property of the pages in a TPageControl.
__property TTabSheet* Pages[int Index];
Description
Each page is a TTabSheet object. Use Pages to access a TTabSheet object specified by its
index value.

TPageControl events
TPageControl Alphabetically Legend

Derived from TCustomTabControl
OnChange
OnChanging

Derived from TWinControl
OnEnter
OnExit

Derived from TControl
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TPageControl events
TPageControl By object Legend

OnChange
OnChanging
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TPageControl methods
TPageControl Alphabetically

In TPageControl
~TPageControl
FindNextPage
SelectNextPage
TPageControl

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent

HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TPageControl methods
TPageControl By object

~TPageControl
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
FindNextPage
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo

Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SelectNextPage
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TPageControl
UpdateControlState
Update

TPageControl::~TPageControl
TPageControl See also
~TPageControl frees the memory associated with the TPageControl object. Do not call ~
TPageControl directly. Instead, use the delete keyword on the object, which causes ~
TPageControl to be invoked automatically.
__fastcall virtual ~TPageControl(void);

TPageControl::FindNextPage
TPageControl See also Example
Returns the next page in the TPageControl before or after CurPage depending on the value of
GoForward.
TTabSheet* __fastcall FindNextPage(TTabSheet* CurPage, bool GoForward,
bool CheckTabVisible);

Description
Each page is a TTabSheet object. To select the next page at design-time, right click the
TPageControl and choose Next Page.
When CheckTabVisible is true, FindNextPage returns the next page with a TabVisible property
set to true; if CheckTabVisible is false, FindNextPage returns the next page, including pages
with TabVisible set to false. FindNextPage is useful in accessing a tab sheet that does not have
a visible tab.
It the GoForward parameter is true, FindNextPage will find the next page in the page control
after CurPage; if GoForward is false, FindNextPage will find the next page previous to CurPage.

TPageControl::SelectNextPage
TPageControl See also
Allows the user to select the next page previous to or after the ActivePage in the TPageControl.
void __fastcall SelectNextPage(bool GoForward);
Description
The SelectNextPage method allows the user to select the next page previous to or after the
ActivePage in the TPageControl. If the GoForward parameter is true, FindNextPage will find the
next page in the page control after ActivePage; if GoForward is false, FindNextPage will find the
page previous to ActivePage. SelectNextPage will only find pages with their TabVisible property
set to true.
To select a page at design-time, right-click the TPageControl and choose Previous Page or Next
Page.

TPageControl::TPageControl
TPageControl See also
Constructs the TPageControl component.
__fastcall virtual TPageControl(Classes::TComponent* AOwner);
Description
TPageControl calls the inherited TPageControl method, sets the ControlStyle to csDoubleClicks,
and creates a TList object to hold the pages of the control.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomTabControl

TPageControl example
TPageControl

TPaintBox
Hierarchy Properties Methods Events
TPaintBox provides a TCanvas object within a rectangular area on a form, preventing drawing
outside of the boundaries of the rectangular area.
Header
vcl/extctrls.hpp
Description
Use the OnPaint event handler to draw on the paint box’s Canvas, the drawing surface of the
paint box The Color and Font properties are used to initialize the TCanvas for the OnPaint event
handler. The Brush.Color property of the TCanvas is set to the value of the Color property.
Use the OnPaint event of the form itself to draw on the entire form. If you want to confine your
drawing to rectangular area, you’ll find a paint box convenient.
You can align a paint box with the Align property so that it remains in its relative position on the
form, even when the user resizes the form.

TPaintBox properties
TPaintBox Alphabetically Legend

Derived from TGraphicControl
Canvas

Derived from TControl
Align
BoundsRect
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TPaintBox properties
TPaintBox By object Legend

Align
BoundsRect

Canvas
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

ControlState
ControlStyle

Cursor
DesignInfo
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name

Owner
ParentColor
ParentFont
ParentShowHint

Parent
PopupMenu
ShowHint
Tag
Top
Visible
Width

TPaintBox events
TPaintBox Alphabetically Legend

In TPaintBox
OnPaint

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TPaintBox events
TPaintBox By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnPaint
OnStartDrag

TPaintBox::OnPaint
TPaintBox
The OnPaint event occurs when Windows requires paint box to paint, such as when the form or
paint box receives focus or initially becomes visible.
__property Classes::TNotifyEvent OnPaint;
Description
Use this event to draw on the canvas of the paint box.
Write an OnPaint event handler to draw on the canvas of the paint box.

TPaintBox methods
TPaintBox Alphabetically Legend

In TPaintBox
~TPaintBox

Paint
TPaintBox

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Invalidate
Perform
Refresh
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
Update

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize

MethodAddress
MethodName
NewInstance

TPaintBox methods
TPaintBox By object Legend

~TPaintBox
Assign
BeginDrag
BringToFront
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
DefaultHandler
DestroyComponents
Destroying
Dispatch
DragDrop
Dragging
EndDrag
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
GetTextBuf
GetTextLen
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance

Paint
Perform
Refresh
RemoveComponent
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
TPaintBox
Update

TPaintBox::~TPaintBox
TPaintBox
~TPaintBox frees the memory associated with the TPaintBox object. Do not call ~TPaintBox
directly. Instead, use the delete keyword on the object, which causes ~TPaintBox to be invoked
automatically.
__fastcall virtual ~TPaintBox(void);

TPaintBox::TPaintBox
TPaintBox
Creates an instance of a TPaintBox object for an application
__fastcall virtual TPaintBox(Classes::TComponent* AOwner);
Description
Call TPaintBox to instantiate a TPaintBox object at runtime. During design, TPaintBox is called
automatically.
TPaintBox allocates memory and sets the default values for the instance of the TPaintBox
object.

TPaintBox::Paint
TPaintBox

Description
virtual void __fastcall Paint(void);
TPaintBox responds to WM_PAINT messages from Windows by initializing the control's canvas
and calling Paint.

Scope
Published

Accessibility
Read-only

Scope
Protected

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TGraphicControl

TPaintBox example
TPaintBox

TPanel
Hierarchy Properties Methods Events See also
TPanel implements a generic panel control.
Header
vcl/extctrls.hpp
Description
Use the TPanel component to put an empty panel on your form. Panels provide properties for
providing a bevelled border around the control, as well as methods to help manage the
placement of child controls embedded in the panel.
TPanel implements the generic behavior introduced in TCustomPanel. TPanel publishes many
of the properties inherited from TCustomPanel, but does not introduce any new behavior.

TPanel properties
TPanel Alphabetically Legend

Derived from TCustomPanel
Alignment
BevelInner
BevelOuter
BevelWidth
BorderStyle
BorderWidth
Locked

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
Caption
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TPanel properties
TPanel By object Legend

Alignment
Align
BevelInner
BevelOuter
BevelWidth
BorderStyle
BorderWidth
BoundsRect

Brush
Caption
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
Enabled
Font

Handle
Height
HelpContext
Hint
Left
Locked
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Visible
Width

TPanel events
TPanel Alphabetically Legend

Derived from TCustomPanel
OnResize

Derived from TWinControl
OnEnter
OnExit

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TPanel events
TPanel By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnMouseDown
OnMouseMove
OnMouseUp
OnResize
OnStartDrag

TPanel methods
TPanel Alphabetically

In TPanel
~TPanel
TPanel

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TPanel methods
TPanel By object

~TPanel
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TPanel
UpdateControlState
Update

TPanel::~TPanel
TPanel
~TPanel frees the memory associated with the TPanel object. Do not call ~TPanel directly.
Instead, use the delete keyword on the object, which causes ~TPanel to be invoked
automatically.
__fastcall virtual ~TPanel(void);

TPanel::TPanel
TPanel
TPanel creates a new TPanel object.
__fastcall virtual TPanel(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl
TCustomPanel

TPanel example
TPanel

TParaAttributes
Hierarchy Properties Methods See also
TParaAttributes is a helper object that represents paragraph formatting properties for a rich edit
control.
Header
vcl/comctrls.hpp
Description
TParaAttributes includes a number of properties that describe the formatting characteristics of a
paragraph in a rich text document. TParaAttributes is tailored to allow a descendant of
TCustomRichEdit to read and write formatting characteristics of selected paragraphs. The
properties of a TParaAttributes object are invalid unless it is owned by a descendant of
TCustomRichEdit.

TParaAttributes properties
TParaAttributes Alphabetically

In TParaAttributes
Alignment
FirstIndent
LeftIndent
Numbering
RightIndent
Tab
TabCount

TParaAttributes properties
TParaAttributes By object

Alignment
FirstIndent
LeftIndent
Numbering
RightIndent
TabCount
Tab

TParaAttributes::Alignment
TParaAttributes See also Example
Alignment specifies how text is aligned within a paragraph.
__property Classes::TAlignment Alignment;
Description
Use Alignment to specify the alignment of text within individual paragraphs. Unlike the Alignment
property of a TCustomMemo, which applies to the entire body of text, the Alignment property of
TParaAttributes applies only to the selected paragraphs.
These are the possible values:
Value Meaning

taLeftJustify Align text to the left side of the paragraph.
taCenter Center text horizontally in the paragraph.
taRightJustify Align text to the right side of the paragraph.

TParaAttributes::FirstIndent
TParaAttributes See also
FirstIndent specifies the indent, in pixels, of the first line of the paragraph relative to the left
margin.
__property long FirstIndent;
Description
Use FirstIndent to specify the number of pixels to indent the first line of the paragraph. This
value is completely independent of the value of LeftIndent. Once FirstIndent is set, changes to
LeftIndent change the relative indentation of the first versus subsequent lines in the paragraph.

TParaAttributes::LeftIndent
TParaAttributes See also
LeftIndent specifies the indent, in pixels, of the paragraph relative to the left margin.
__property long LeftIndent;
Description
Use LeftIndent to indent a paragraph from the left margin of the entire body of text. LeftIndent is
useful for making individual paragraphs stand out from the rest of the text.
Note
Adding bullets to a set of paragraphs by using the Numbering property also affects the left
indentation.

TParaAttributes::Numbering
TParaAttributes See also
Numbering specifies whether the paragraph is one of a set of bulleted paragraphs.
__property TNumberingStyle Numbering;
Description
To insert a bullet to the left of the paragraph, and indent the paragraph sufficiently to
accommodate the bullet, set Numbering to nsBullet. If the LeftIndent property is set, bullets will
appear at the indentation indicated by LeftIndent, and the body of the paragraph will be further
indented to accommodate the bullets.
These are the possible values:
Value Meaning

nsNone No numbering on the left.
nsBullet Bullets on the left with sufficient indentation for the bullets.

TParaAttributes::RightIndent
TParaAttributes See also
RightIndent specifies the indent, in pixels, of the paragraph relative to the right margin.
__property long RightIndent;
Description
Use RightIndent to indent a paragraph from the right margin of the entire body of text.
RightIndent is useful for making individual paragraphs stand out from the rest of the text,
especially when Alignment is set to taRightJustify.

TParaAttributes::Tab
TParaAttributes See also
Tab specifies the position, in pixels, of a particular tab stop.
__property long Tab[unsigned char Index];
Description
Tab is an indexed property into an array of absolute tab stop positions. The position of the first
tab stop is Tab[0], the next tab stop is Tab[1], and so on to Tab[TabCount - 1].
When setting Tab, values of Index below TabCount change the positions of existing tab stops.
Values of Index greater than or equal to TabCount increase the number of tab stops in the
paragraph and change the value of TabCount.
Note
Setting Tab does not insert a tab into the text of the paragraph. It sets the positions within the
paragraph where tabs will occur if they are inserted. The actual tab characters are inserted into
the paragraph by using the Tab key.

TParaAttributes::TabCount
TParaAttributes See also
TabCount is the number of tab stops that are defined for the paragraph.
__property int TabCount;
Description
Read TabCount to determine the number of tab stops in the Tab array. Use TabCount with the
Tab property to iterate over all the tab stops defined for the paragraph.

TParaAttributes methods
TParaAttributes Alphabetically

In TParaAttributes
~TParaAttributes
Assign
TParaAttributes

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TParaAttributes methods
TParaAttributes By object

~TParaAttributes
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TParaAttributes

TParaAttributes::~TParaAttributes
TParaAttributes
~TParaAttributes frees the memory associated with the TParaAttributes object. Do not call ~
TParaAttributes directly. Instead, use the delete keyword on the object, which causes ~
TParaAttributes to be invoked automatically.
__fastcall virtual ~TParaAttributes(void);

TParaAttributes::Assign
TParaAttributes See also
Assign sets all of the properties of a TParaAttributes object to match the properties specified in
another TParaAttributes object.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
Use Assign to set the paragraph attributes of the selected paragraph from one rich edit control to
match the attributes of the selected paragraph of another rich edit control. Since the properties
of a TParaAttributes object are only valid when the TParaAttributes exists within a rich edit
control, Assign is only useful for copying attributes between rich edit controls.
Note
Assign only succeeds at runtime when the Source is a TParaAttributes object or an object that
has an AssignTo method that is enabled for a TParaAttributes object. Other source objects will
raise an EConvertError exception.

TParaAttributes::TParaAttributes
TParaAttributes See also
TParaAttributes creates an instance of TParaAttributes.
__fastcall TParaAttributes(TCustomRichEdit* AOwner);
Description
Do not call the constructor for a TParaAttributes object, as the properties of a TParaAttributes
object are not valid outside of a TCustomRichEdit object. TParaAttributes is called from the
constructor of a rich edit control that uses TParaAttributes.

Hierarchy

TObject

TPersistent

TParaAttributes example
TParaAttributes

TParam
Hierarchy Properties Methods See also
TParam represents a field parameter.
Header
vcl/dbtables.hpp
Description
Use the properties of a TParam to set the value of a parameter that represents the value of a
field. Objects that use parameters for the values of fields create TParam objects to represent
those parameters. For example, TParams are used by TQuery objects and TStoredProc objects.
TParam shares many properties with a TField object, as both describe the value of a field in a
dataset. However, a TField object has several properties to describe the field binding, and how
the field is displayed, edited, or calculated that are not needed in a TParam object. Conversely,
TParam includes properties that indicate how the field value is passed as a parameter.

TParam properties
TParam Alphabetically Legend

In TParam
AsBCD
AsBoolean
AsCurrency
AsDate
AsDateTime
AsFloat
AsInteger
AsSmallInt
AsString
AsTime
AsWord
Bound
DataType

IsNull
Name
ParamType
Text
Value

TParam properties
TParam By object Legend

AsBCD
AsBoolean
AsCurrency
AsDateTime
AsDate
AsFloat
AsInteger
AsSmallInt
AsString
AsTime
AsWord
Bound
DataType

IsNull
Name
ParamType
Text
Value

TParam::AsBCD
TParam See also
AsBCD is the value of the parameter when it represents the value of a binary-coded decimal
(BCD) field.
__property System::Currency AsBCD;
Description
Set AsBCD to assign the value for a BCD field to the parameter. AsBCD does not actually take a
BCD value. As BCD field objects use the Currency type to represent the value of BCD fields,
AsBCD takes a Currency value. Setting AsBCD will set the DataType property to ftBCD.
Read the AsBCD property to determine the value that was assigned to the parameter,
represented as a Currency type. The value of the parameter will be converted to a Currency
value if possible.

TParam::AsBoolean
TParam See also
AsBoolean is the value of the parameter when it represents the value of a bool field.
__property bool AsBoolean;
Description
Set AsBoolean to assign the value for a bool field to the parameter. Setting AsBoolean will set
the DataType property to ftBoolean.
Read the AsBoolean property to determine the value that was assigned to the parameter,
represented as a bool. The value of the parameter will be converted to a bool value if possible.

TParam::AsCurrency
TParam See also
AsCurrency is the value of the parameter when it represents the value of a currency field.
__property double AsCurrency;
Description
Set AsCurrency to assign the value for a currency field to the parameter. Setting AsCurrency will
set the DataType property to ftCurrency.
Read the AsCurrency property to determine the value that was assigned to the parameter,
represented as a double. The value of the parameter will be converted to a double value if
possible.
Note
Do not confuse the AsCurrency property with the Currency data type. Currency fields in
database tables store their values as Doubles. The AsBCD property represents the value of the
parameter in the Currency data type.

TParam::AsDate
TParam See also
AsDate is the value of the parameter when it represents the value of a date field.
__property System::TDateTime AsDate;
Description
Set AsDate to assign the value for a date field to the parameter. Setting AsDate will set the
DataType property to ftDate.
Read the AsDate property to determine the value that was assigned to the parameter,
represented as a DateTime. The value of the parameter will be converted to a DateTime value if
possible. If the DataType for the parameter is ftDate, only the date portion of the TDateTime
value is valid.
The TDateTime class is used by date field objects to hold their values. The integral part of a
TDateTime value is the number of days that have passed since 12/30/1899. The fractional part
of a TDateTime value is fraction of a 24-hour day that has elapsed.
Note
Delphi 1.0 calculated the date from year 1 instead of from 1899. To convert from a Delphi 1.0
date, subtract 693594.0. The date format changed to be more compatible with OLE 2.0
Automation.

TParam::AsDateTime
TParam See also
AsDateTime is the value of the parameter when it represents the value of a date-time field.
__property System::TDateTime AsDateTime;
Description
Set AsDate to assign the value for a date-time field to the parameter. Setting AsDateTime will
set the DataType property to ftDateTime.
Read the AsDateTime property to determine the value that was assigned to the parameter,
represented as a DateTime. The value of the parameter will be converted to a DateTime value if
possible.
The TDateTime class is used by date-time field objects to hold their values. The integral part of a
TDateTime value is the number of days that have passed since 12/30/1899. The fractional part
of a TDateTime value is fraction of a 24-hour day that has elapsed.
Note
Delphi 1.0 calculated the date from year 1 instead of from 1899. To convert from a Delphi 1.0
date, subtract 693594.0. The date format changed to be more compatible with OLE 2.0
Automation.

TParam::AsFloat
TParam See also
AsFloat is the value of the parameter when it represents the value of a float field.
__property double AsFloat;
Description
Set AsFloat to assign the value for a float field to the parameter. Setting AsFloat will set the
DataType property to ftFloat.
Read the AsFloat property to determine the value that was assigned to the parameter,
represented as a double. The value of the parameter will be converted to a double value if
possible.

TParam::AsInteger
TParam See also
AsInteger is the value of the parameter when it represents the value of an integer field.
__property long AsInteger;
Description
Set AsInteger to assign the value for an integer field to the parameter. Setting AsInteger will set
the DataType property to ftInteger.
Read the AsInteger property to determine the value that was assigned to the parameter,
represented as a 32-bit integer. The value of the parameter will be converted to a long value if
possible.

TParam::AsSmallInt
TParam See also
AsSmallInt is the value of the parameter when it represents the value of a small integer field.
__property long AsSmallInt;
Description
Set AsSmallInt to assign the value for a small integer field to the parameter. Setting AsSmallInt
will set the DataType property to ftSmallint.
Read the AsSmallInt property to determine the value that was assigned to the parameter,
represented as a 32-bit integer. The value of the parameter will be converted to a long value if
possible.
Note
AsSmallInt works with a 32-bit integer. Small integer field objects store and manipulate their data
as 32-bit integers even though the values in the underlying database are 16-bit integers.

TParam::AsString
TParam See also
AsString is the value of the parameter when it represents the value of a string field.
__property System::AnsiString AsString;
Description
Set AsString to assign the value for a string field to the parameter. Setting AsString will set the
DataType property to ftString.
Read the AsString property to determine the value that was assigned to the parameter,
represented as a string. The value of the parameter will be converted to a string.

TParam::AsTime
TParam See also
AsTime is the value of the parameter when it represents the value of a time field.
__property System::TDateTime AsTime;
Description
Set AsTime to assign the value for a time field to the parameter. Setting AsTime will set the
DataType property to ftTime.
Read the AsTime property to determine the value that was assigned to the parameter,
represented as a DateTime. The value of the parameter will be converted to a DateTime value if
possible. If the DataType for the parameter is ftTime, only the time portion of the TDateTime
value is valid
The TDateTime class is used by time field objects to hold their values. It actually represents
more information than is needed for a time field, which only requires the time portion of the
TDateTime value.
The integral part of a TDateTime value is the number of days that have passed since 12/30/
1899. The fractional part of a TDateTime value is fraction of a 24-hour day that has elapsed.

TParam::AsWord
TParam See also
AsWord is the value of the parameter when it represents the value of a word field.
__property long AsWord;
Description
Set AsWord to assign the value for a word field to the parameter. Setting AsWord will set the
DataType property to ftWord.
Read the AsWord property to determine the value that was assigned to the parameter,
represented as a 32-bit integer. The value of the parameter will be converted to a long value if
possible.
Note
AsWord works with a 32-bit integer. Word field objects store and manipulate their data as 32-bit
integers even though the values in the underlying database are unsigned 16-bit values.

TParam::Bound
TParam See also
Bound indicates whether a value (NULL or otherwise) has been assigned to the parameter.
__property bool Bound;
Description
Read Bound to determine whether a value has been assigned to the parameter. Whenever a
value is assigned to the TParam object, Bound is automatically set to true. Set Bound to false to
undo the setting of a value. The Clear method will replace the value of the parameter with NULL,
but will not set Bound to false. If the Clear method is used to bind the parameter to a NULL
value, Bound must be separately set to true.
TQuery objects and TStoredProc objects use the value of Bound to determine whether or not to
assign a default value for the parameter. If Bound is false, A TQuery object attempts to assign a
value from the dataset indicated by the DataSource property of the query. Similarly, when Bound
is false, a TStoredProc object attempts to supply a value directly from the server.

TParam::DataType
TParam
DataType indicates the type of field whose value the parameter represents.
__property Db::TFieldType DataType;

Description
DataType is set automatically when a value is assigned to the parameter. Do not set DataType
for bound fields, as that may cause the assigned value to be misinterpreted.
Read DataType to discover the type of data that was assigned to the parameter. Each possible
value of datatype corresponds to a type of database field. The possible values are as follows:
Value Description

ftUnkown Unknown or undetermined
ftString Character or string field
ftSmallint 16-bit integer field
ftInteger 32-bit integer field
ftWord 16-bit unsigned integer field
ftBoolean Boolean field
ftFloat Floating-point numeric field
ftCurrency Money field
ftBCD Binary-Coded Decimal field
ftDate Date field
ftTime Time field
ftDateTime Date and time field
ftBytes Fixed number of bytes (binary storage)
ftVarBytes Variable number of bytes (binary storage)
ftAutoInc Auto-incrementing 32-bit integer counter field
ftBlob Binary Large Object field
ftMemo Text memo field
ftGraphic Bitmap field
ftFmtMemo Formatted text memo field
ftParadoxOle Paradox OLE field
ftDBaseOle dBASE OLE field
ftTypedBinary Typed binary field

TParam::IsNull
TParam See also
IsNull indicates whether the value assigned to the parameter is NULL (blank).
__property bool IsNull;
Description
Read IsNull to discover if the value of the parameter is NULL, indicating the value of a blank
field. NULL values can arise in the following ways:
• Assigning the value of another, NULL, parameter.
• Assigning the value of a blank field.
• Calling the Clear method.
Note
NULL parameters are not the same as unbound parameters. Unbound parameters have not had
a value assigned. NULL parameters have a NULL value. NULL parameters may be bound or
unbound.

TParam::Name
TParam See also Example
Name specifies the name of the parameter.
__property System::AnsiString Name;
Description
Use Name to identify a particular parameter within a TParams object. Name is the name of the
parameter, not the name of the field whose value the parameter may represent.

TParam::ParamType
TParam
ParamType indicates the type of the parameter the TParam represents.
__property TParamType ParamType;
Description
Objects that use TParam objects to represent field parameters set ParamType to indicate the
type of use for the parameter. ParamType must be one of the following values:
Value Description

ptUnknown Unknown or undetermined
ptInput Used to input a field value.
ptOutput Used to output a field value.
ptInputOutput Used for both input and output.
ptResult Used as a return value.

TParam::Text
TParam See also Example
Text represents the value of the parameter as a string.
__property System::AnsiString Text;
Description
Set the Text property to assign the value of the parameter to a string without changing the
DataType. Unlike the AsString property, which sets the value to a string and changes the
DataType, setting the text property converts the string to the DataType of the parameter, and
sets the value accordingly. Thus, use AsString to treat the parameter as representing the value
of a string field. Use Text instead when assigning a value that is in string form, when making no
assumptions about the field type. For example, Text is useful for assigning user data that was
input using an edit control.
Reading the Text property is the same as reading the AsString property.

TParam::Value
TParam See also
Value represents the value of the parameter as a Variant.
__property System::Variant Value;
Description
Use Value in generic code that manipulates the values of parameters without needing to know
the field type the parameters represent.

TParam methods
TParam Alphabetically

In TParam
~TParam
Assign
AssignField
AssignFieldValue
Clear
GetData
GetDataSize
SetData
TParam

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TParam methods
TParam By object

~TParam
AssignField
AssignFieldValue
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
GetDataSize
GetData
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
SetData
TParam

TParam::~TParam
TParam See also
~TParam frees the memory associated with the TParam object. Do not call ~TParam directly.
Instead, use the delete keyword on the object, which causes ~TParam to be invoked
automatically.
__fastcall virtual ~TParam(void);
Description
Before freeing the memory associated with the instance of TParam, ~TParam removes the
TParam from the parameter list in which it is contained.

TParam::Assign
TParam See also
Assign copies the Name and Value of another TParam object.
void __fastcall Assign(TParam* Param);
Description
Use Assign to copy from one parameter to another. Assign transfers the value of
• The DataType property
• The Bound property
• The Value property
• The Name property
Assign does not copy the value of the ParamType property, unless it is ptUnknown. Thus,
Assign does not alter the use of a parameter, only the identifier and the value.

TParam::AssignField
TParam See also
AssignField assigns the DataType, Name, and Value properties from a TField object.
void __fastcall AssignField(Db::TField* Field);
Description
Use AssignField to set a parameter to represent a particular TField object. AssignField sets the
Bound property to true.
Unlike AssignFieldValue, AssignField names the parameter after the field object as well as
taking its value.

TParam::AssignFieldValue
TParam See also
AssignFieldValue assigns the DataType and Value properties from a TField object.
void __fastcall AssignFieldValue(Db::TField* Field, const System::
Variant &Value);

Description
Use AssignFieldValue to set a parameter to the value of a particular TField object.
AssignFieldValue sets the Bound property to true.
Unlike AssignField, AssignFieldValue does not name the parameter after the field object as well
as taking its value.

TParam::Clear
TParam See also
Clear sets the Value of the parameter to NULL.
void __fastcall Clear(void);
Description
Use Clear to assign a NULL value to a parameter. Calling Clear neither sets nor clears the
Bound property. When assigning a NULL value to a parameter, set the Bound property as well
as calling Clear.

TParam::GetData
TParam See also
GetData fills the buffer with the Value of the parameter in the native format of a database field of
the appropriate type.
void __fastcall GetData(void * Buffer);
Description
Use GetData to obtain the value of a parameter in the format ready to be written directly to a
record buffer. That format is the format used by physical database fields corresponding to
DataType. Buffer must have enough space to hold the information. Use the GetDataSize method
to determine the necessary size.
The native format for a database field may not be the same as the datatype used by the
corresponding field object. Use the As... properties to get the value in the type used by the
corresponding field object. Use GetData to get the value in the native database format.
For example, when DataType is ftBCD, GetData retrieves the value in binary-coded decimal,
even though the TBCDField object uses Currency to store and manipulate its values. AsBCD
gets the value in the Currency type.

TParam::GetDataSize
TParam See also
GetDataSize returns the number of bytes needed to hold the parameter’s value in the format
used by the corresponding type of database field.
unsigned short __fastcall GetDataSize(void);
Description
Call GetDataSize to determine the number of bytes required to store a parameter’s value in an
actual database record. GetDataSize indicates the buffer size needed before calling the GetData
method. The value returned by GetDataSize depends on the Value and DataType of the
parameter:
DataType Value of DataSize

ftBoolean 2
ftSmallInt 2
ftWord 2
ftAutoInc 4
ftDate 4
ftInteger 4
ftTime 4
ftCurrency 8
ftDateTime 8
ftFloat 8
ftBCD 34
ftString length of the string + 1
ftVarBytes raises an exception
ftBytes raises an exception
ftBlob raises an exception
ftDBaseOle raises an exception
ftFmtMemo raises an exception
ftGraphic raises an exception
ftMemo raises an exception
ftParadoxOle raises an exception
ftTypedBinary raises an exception
ftUnknown raises an exception
Note
The size returned by GetDataSize is the size required for the physical database representation
of the Value. The field object that corresponds to that physical database field may store its data
in another format requiring a different number of bytes.

TParam::SetData
TParam See also
SetData copies a new value for the parameter in physical database format from Buffer.
void __fastcall SetData(void * Buffer);

Use SetData to set the value of a parameter from a buffer that contains data in the physical
database format. The GetData method of a TField object fetches data in the physical database
format. Borland Database England API calls can also provide data in physical database format.

TParam::TParam
TParam See also
TParam creates an instance of TParam and inserts it in a parameter list.
__fastcall TParam(TParams* AParamList, TParamType AParamType);
Description
Call TParam to instantiate a TParam object. TParam objects are usually created by the object
that uses them to represent its field parameters, such as a TQuery object or a TStoredProc proc.
After allocating the memory for an instance of the TParam object, TParam
• Adds the new TParam object to the AParamList.
• Sets the ParamType to AParamType.
• Initializes the DataType to ftUnknown.
• Sets the Bound property to false.

Accessibility
Read-only

Hierarchy

TObject

TParam example
TParam

TParams
Hierarchy Properties Methods See also
The TParams object manages a list of field parameters.
Header
vcl/dbtables.hpp
Description
Use TParams to manage a list of TParam objects for an object that uses field parameters. For
example, TStoredProc objects and TQuery objects use TParams objects to create and access
their parameters.
Use the properties and methods of TParams to:
• Access a specific field parameter.
• Add or delete field parameters from the list.
• Get or set the values of individual field parameters.
• Compare field parameters.
• Iterate through all field parameters.
• Copy a set of field parameters to another parameter list.

TParams properties
TParams Alphabetically Legend

In TParams
Items

ParamValues

TParams properties
TParams By object Legend

Items
ParamValues

TParams::Items
TParams See also
Items contains the individual field parameters of a TParams object.
__property TParam* Items[unsigned short Index];
Description
Use Items to iterate through all the field parameters. Index identifies the index in the range 0 to
Count - 1. Items can reference a particular parameter by its index, but the ParamByName
method is preferred, so as to avoid depending on the order of the parameters.

TParams::ParamValues
TParams See also
ParamValues is a variant array containing the values of individual field parameters that are
specified by name.
__property System::Variant ParamValues[System::AnsiString ParamName];
Description
Use ParamValues to get or set the values of individual field parameters that are identified by
name. ParamName is a string containing the names of the individual field parameters of interest.
If ParamValues is used to access more than one field parameter, the names are separated by
semicolons (;).
Setting ParamValues sets the Value property for each parameter listed in the ParamName
string. Specify the values as Variants, in order, in a variant array.
Getting ParamValues retrieves a variant array of variants, each of which represents the value of
one of the named parameters.
If ParamName includes a name that does not match any of the field parameters in Items, an
exception is raised.

TParams methods
TParams Alphabetically

In TParams
~TParams
AddParam
Assign
AssignValues
Clear
Count
CreateParam
GetParamList
IsEqual
ParamByName
RemoveParam
TParams

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TParams methods
TParams By object

~TParams
AddParam
Assign
AssignValues
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
Count
CreateParam
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
GetParamList
InheritsFrom
InitInstance
InstanceSize
IsEqual
MethodAddress
MethodName
NewInstance
ParamByName
RemoveParam
TParams

TParams::~TParams
TParams See also
~TParams frees the memory associated with the TParams object. Do not call ~TParams directly.
Instead, use the delete keyword on the object, which causes ~TParams to be invoked
automatically.
__fastcall virtual ~TParams(void);
Description
~TParams frees the Items list before calling the destructor of the parent object.

TParams::AddParam
TParams See also
AddParam inserts a new field parameter into the Items list.
void __fastcall AddParam(TParam* Value);
Description
Use AddParam to add an instantiated parameter to the Items list. To create a field parameter as
well as add it to the list, use CreateParam instead.

TParams::Assign
TParams See also
Assign copies a parameter list from another object.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
Use Assign to save and restore a set of parameters or to copy another object's information.
Specify the object from which the parameters are to be copied as the value of Source. If Source
is another TParams object, Assign discards any current parameter information and replaces it
with a copy of the list of field parameters in Source.
Unlike AssignValues, which merely copies the values of the field parameters in the source
object’s list, Assign copies the actual field parameters themselves.

TParams::AssignValues
TParams See also
AssignValues assigns new values to the parameters of the Items property.
void __fastcall AssignValues(TParams* Value);
Description
Use AssignValues to update the values of the field parameters in the Items list to match the
values of the corresponding field parameters in another TParams object. For each entry in Items,
the AssignValues method attempts to find a parameter with the same Name property in Value. If
successful, the parameter information (type and current data) from the Value parameter is
assigned to the Items entry. Entries in Items for which no match is found are left unchanged.

TParams::Clear
TParams See also
Clear deletes all parameter information from the Items property of the TParams object.
void __fastcall Clear(void);
Description
Use Clear to empty the Items list. Call Clear before building a parameter list to ensure that the
list contains only the desired field parameter objects.

TParams::Count
TParams See also
Count returns the number of entries in the Items property of the TParams object.
int __fastcall Count(void);
Description
Use Count to obtain the number of parameter objects managed by this TParams object. Count
can be used when iterating through all the field parameters in the Items list.

TParams::CreateParam
TParams See also
CreateParam creates a new field parameter object and inserts it into the Items list.
TParam* __fastcall CreateParam(Db::TFieldType FldType, const System::
AnsiString ParamName, TParamType ParamType);

Description
Call CreateParam to instantiate a new TParam object and add it to the Items managed by this
TParams object. Specify the field type of the new parameter as the value of FldType, specify the
name of the parameter as the value of ParamName, and specify the type of parameter as the
value of ParamType.

TParams::GetParamList
TParams See also
GetParamList fills in a TList object with the individual TParam objects named by ParamNames.
void __fastcall GetParamList(Classes::TList* List, const System::
AnsiString ParamNames);

Description
Use GetParamList to obtain a subset of the field parameters in the Items list that have been
identified by name. ParamNames is a string giving the names of all field parameters of interest.
Multiple parameter names are separated by semicolons (;).
GetParamList adds the field parameters to List in the order they appear in ParamNames. If
ParamNames includes a name that does not match any of the field parameters in Items, an
exception is raised.

TParams::IsEqual
TParams See also
IsEqual indicates whether two TParams objects have identical Items.
bool __fastcall IsEqual(TParams* Value);
Description
IsEqual returns true if the Items property of the Value parameter exactly matches the Items
property. To match, each Items list must have the same number of field parameters, in the same
order, which match on name, datatype, parameter type, and value.

TParams::ParamByName
TParams See also
ParamByName locates the parameter with a given name.
TParam* __fastcall ParamByName(const System::AnsiString Value);
Description
Use ParamByName method to find a parameter with the name passed in Value. If a match is
found, ParamByName returns the parameter. Otherwise, an exception is raised. Use this method
rather than a direct reference to the Items property to avoid depending on the order of the
entries.
To locate more than one parameter at a time, by name, use the GetParamList method instead.
To get only the value of a named parameter, use the ParamValues property.

TParams::RemoveParam
TParams See also
RemoveParam removes the specified parameter from the Items property of a TParams object.
void __fastcall RemoveParam(TParam* Value);
Description
Use RemoveParam to remove a field parameter from the Items list. RemoveParam will take
Value out of the list but does not free it.

TParams::TParams
TParams See also
TParams creates an instance of TParams.
__fastcall virtual TParams(void);
Description
Call TParams to instantiate a TParams object. Most applications will not need to create a
TParams list, as it is created by the TQuery or TStoredProc object that uses the TParams object.

Accessibility
Read-only

Hierarchy

TObject

TPersistent

TParams example
TParams

TPasswordDialog
Hierarchy Properties Methods Events See also
TPasswordDialog is a dialog box that allows the user to specify passwords for the current
session.
Header
vcl/dbpwdlg.hpp
Description
Use TPasswordDialog to allow the user to specify passwords for the current session. (The
current session is represented by a TSession object.) The passwords are used when the
application opens a Paradox table that requires a password. If a table requires a password that
has not been added to the current session, the user will be prompted for the password.
A TPasswordDialog object is usually created with the PasswordDialog function. However,
TPasswordDialog can also be used as a base object for other types of password dialog boxes.

TPasswordDialog properties
TPasswordDialog Alphabetically Legend

Derived from TForm
Active

ActiveControl
ActiveMDIChild

ActiveOleControl
BorderIcons
BorderStyle

Canvas
ClientHandle

ClientHeight
ClientWidth
Designer
DropTarget
FormStyle
Icon
KeyPreview

MDIChildCount
MDIChildren

Menu
ModalResult
ObjectMenuItem
OleFormObject
PixelsPerInch
Position
PrintScale
Scaled
TileMode
Visible
WindowMenu
WindowState

Derived from TScrollingWinControl
AutoScroll
HorzScrollBar
VertScrollBar

Derived from TWinControl
Brush
ClientOrigin
ControlCount
Controls

Ctl3D
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect

Caption
ClientRect

Color
ControlState
ControlStyle
Cursor
Enabled
Font
Height
Hint
Left

Name
PopupMenu
ShowHint
Top
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TPasswordDialog properties
TPasswordDialog By object Legend

ActiveControl
ActiveMDIChild

ActiveOleControl
Active

Align
AutoScroll
BorderIcons
BorderStyle
BoundsRect

Brush
Canvas

Caption
ClientHandle

ClientHeight
ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
Designer
DesignInfo
DropTarget
Enabled
Font
FormStyle

Handle
Height
HelpContext
Hint
HorzScrollBar
Icon
KeyPreview
Left

MDIChildCount
MDIChildren

Menu
ModalResult
Name
ObjectMenuItem
OleFormObject

Owner
PixelsPerInch
PopupMenu
Position
PrintScale
Scaled
ShowHint

Showing
TabOrder
TabStop
Tag

TileMode
Top
VertScrollBar
Visible
Width
WindowMenu
WindowState

TPasswordDialog events
TPasswordDialog Alphabetically Legend

Derived from TForm
OnActivate
OnClose
OnCloseQuery
OnCreate
OnDeactivate
OnDestroy
OnHide
OnPaint
OnResize
OnShow

Derived from TWinControl
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnMouseDown
OnMouseMove
OnMouseUp

TPasswordDialog events
TPasswordDialog By object Legend

OnActivate
OnClick
OnCloseQuery
OnClose
OnCreate
OnDblClick
OnDeactivate
OnDestroy
OnDragDrop
OnDragOver
OnHide
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnPaint
OnResize
OnShow

TPasswordDialog methods
TPasswordDialog Alphabetically

In TPasswordDialog
~TPasswordDialog
AddButtonClick
EditChange
OKButtonClick
RemoveAllButtonClick
RemoveButtonClick
TPasswordDialog

Derived from TForm
ArrangeIcons
Cascade
Close
CloseQuery
DefocusControl
FocusControl
GetFormImage
Hide
Next
Previous
Print
Release
SendCancelMode
SetFocus
SetFocusedControl
Show
ShowModal
Tile

Derived from TScrollingWinControl
ScrollInView

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
Update

UpdateControlState
Derived from TControl

BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TPasswordDialog methods
TPasswordDialog By object

~TPasswordDialog
AddButtonClick
ArrangeIcons
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
Cascade
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
CloseQuery
Close
ContainsControl
ControlAtPos
DefaultHandler
DefocusControl
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EditChange
EnableAlign
EndDrag
FieldAddress
FindComponent
FocusControl
Focused
FreeInstance
FreeNotification
Free
GetFormImage
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance

InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
Next
OKButtonClick
PaintTo
Perform
Previous
Print
Realign
Refresh
Release
RemoveAllButtonClick
RemoveButtonClick
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
ScrollInView
SendCancelMode
SendToBack
SetBounds
SetFocusedControl
SetFocus
SetTextBuf
ShowModal
Show
Tile
TPasswordDialog
UpdateControlState
Update

TPasswordDialog::~TPasswordDialog
TPasswordDialog
~TPasswordDialog frees the memory associated with the TPasswordDialog object. Do not call ~
TPasswordDialog directly. Instead, use the delete keyword on the object, which causes ~
TPasswordDialog to be invoked automatically.
__fastcall virtual ~TPasswordDialog(void);

TPasswordDialog::AddButtonClick
TPasswordDialog See also
AddButtonClick controls what happens when the Add button is clicked.
void __fastcall AddButtonClick(System::TObject* Sender);
Description
AddButtonClick adds the password in the edit box to the current session by calling the TSession:
:AddPassword method. Then AddButtonClick clears and sets focus to the edit box.
After the AddButtonClick method is called, the OKButton is enabled, regardless of whether the
edit box currently contains a password.

TPasswordDialog::EditChange
TPasswordDialog See also
EditChange controls what happens when the contents of the edit box change.
void __fastcall EditChange(System::TObject* Sender);
Description
EditChange enables or disables the Add, OK, and Remove buttons according to whether the edit
box contains a password. If the edit box contains a password, the buttons are enabled.
Otherwise the buttons are disabled.
Note
If the AddButtonClick method has been called, then the OK button is enabled, regardless of
whether the edit box contains a password.

TPasswordDialog::OKButtonClick
TPasswordDialog See also
OKButtonClick controls what happens when the OK button is clicked.
void __fastcall OKButtonClick(System::TObject* Sender);
Description
OKButtonClick adds the password in the edit box to the current session by calling the TSession:
:AddPassword method.

TPasswordDialog::RemoveAllButtonClick
TPasswordDialog See also
RemoveAllButtonClick removes all passwords from the current session.
void __fastcall RemoveAllButtonClick(System::TObject* Sender);
Description
RemoveAllButtonClick removes all passwords from the current session by calling the TSession::
RemoveAllPasswords method. Then RemoveAllButtonClick sets focus to the edit box.

TPasswordDialog::RemoveButtonClick
TPasswordDialog See also
RemoveButtonClick removes the password in the edit box from the current session.
void __fastcall RemoveButtonClick(System::TObject* Sender);
Description
RemoveButtonClick removes the password in the edit box from the current session by calling the
TSession::RemovePassword method. Then RemoveButtonClick clears and sets focus to the edit
box.

TPasswordDialog::TPasswordDialog
TPasswordDialog
TPasswordDialog creates a new TPasswordDialog object.
__fastcall virtual TPasswordDialog(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TScrollingWinControl
TForm

TPasswordDialog example
TPasswordDialog

TPen
Hierarchy Properties Methods Events See also
TPen is used to draw lines or outline shapes on a canvas.
Header
vcl/graphics.hpp
Description
Use TPen to describe the attributes of a Windows pen when drawing an image to a canvas
(TCanvas). TPen encapsulates the pen properties that are selected into the device context of the
canvas.

TPen properties
TPen Alphabetically Legend

In TPen
Color
Handle
Mode
Style
Width

TPen properties
TPen By object Legend

Color
Handle
Mode
Style
Width

TPen::Color
TPen See also
Color determines the color used to draw lines on the canvas.
__property TColor Color;
Description
Set Color to change the color used to draw lines or outline shapes. These are the possible color
values:
Value Meaning

clBlack Black
clMaroon Maroon
clGreen Green
clOlive Olive green
clNavy Navy blue
clPurple Purple
clTeal Teal
clGray Gray
clSilver Silver
clRed Red
clLime Lime green
clBlue Blue
clFuchsia Fuchsia
clAqua Aqua
clWhite White
clBackground Current color of your Windows background
clActiveCaption Current color of the title bar of the active window
clInactiveCaption Current color of the title bar of inactive windows
clMenu Current background color of menus
clWindow Current background color of windows
clWindowFrame Current color of window frames
clMenuText Current color of text on menus
clWindowText Current color of text in windows
clCaptionText Current color of the text on the title bar of the active window
clActiveBorder Current border color of the active window
clInactiveBorder Current border color of inactive windows
clAppWorkSpace Current color of the application workspace
clHighlight Current background color of selected text
clHightlightText Current color of selected text
clBtnFace Current color of a button face
clBtnShadow Current color of a shadow cast by a button
clGrayText Current color of text that is dimmed
clBtnText Current color of text on a button
clInactiveCaptionText Current color of the text on the title bar of an inactive window
clBtnHighlight Current color of the highlighting on a button
cl3DDkShadow Windows 95 only: Dark shadow for three-dimensional display elements
cl3DLight Windows 95 only: Light color for three-dimensional display elements (for

edges facing the light source)
clInfoText Windows 95 only: Text color for tooltip controls
clInfoBk Windows 95 only: Background color for tooltip controls
The second half of the colors listed here are Windows system colors. The color that appears
depends on the color scheme users are using for Windows. Users can change these colors
using the Control Panel. The actual color that appears will vary from system to system. For
example, the color fuchsia may appear more blue on one system than another.

Note
The way the color is used by the pen depends on the Mode and Style properties.

TPen::Handle
TPen See also Example
Handle is the Windows pen object handle.
__property HPEN Handle;

Description
Use Handle when making a Windows API function call that requires the handle of a pen object.
Handle is the Windows handle currently selected into the device context of the canvas.

TPen::Mode
TPen See also
Mode determines how the pen draws lines on the canvas.
__property TPenMode Mode;
Description
Set Mode to determine how the color of the pen interacts with the color on the canvas. The
effects of Mode are described in the following table:
Mode Pixel color

pmBlack Always black
pmWhite Always white
pmNop Unchanged
pmNot Inverse of canvas background color
pmCopy Pen color specified in Color property
pmNotCopy Inverse of pen color
pmMergePenNot Combination of pen color and inverse of canvas background
pmMaskPenNot Combination of colors common to both pen and inverse of canvas

background.
pmMergeNotPen Combination of canvas background color and inverse of pen color
pmMaskNotPen Combination of colors common to both canvas background and inverse of

pen
pmMerge Combination of pen color and canvas background color
pmNotMerge Inverse of pmMerge: combination of pen color and canvas background

color
pmMask Combination of colors common to both pen and canvas background
pmNotMask Inverse of pmMask: combination of colors common to both pen and

canvas background
pmXor Combination of colors in either pen or canvas background, but not both
pmNotXor Inverse of pmXor: combination of colors in either pen or canvas

background, but not both

TPen::Style
TPen See also
Style determines the style in which the pen draws lines.
__property TPenStyle Style;
Description
Use Style to draw a dotted or dashed line, or to omit the line that appears as a frame around
shapes. These are the possible values of Style:
Style Meaning

psSolid A solid line.
psDash A line made up of a series of dashes
psDot A line made up of a series of dots
psDashDot A line made up of alternating dashes and dots
psDashDotDot A line made up of a serious of dash-dot-dot combinations
psClear No line is drawn (used to omit the line around shapes that draw an outline

using the current pen).
psInsideFrame A solid line, but one that may use a dithered color if Width is greater than

1.
Note
Only the psInsideFrame style will produce a dithered color to match a Color property that is not
in the color table. All others choose the closest color from the Windows color table.
Note
Dotted or dashed pen styles are not available when the Width property is not 1.

TPen::Width
TPen See also Example
Width specifies the maximum width of the pen in pixels.
__property int Width;
Description
Use Width to give the line greater weight. If Width is set to a value less than 1, the pen is given a
Width of 1.
Note
The value of Width influences which values of Style are valid.

TPen events
TPen Alphabetically

Derived from TGraphicsObject
OnChange

TPen events
TPen By object

OnChange

TPen methods
TPen Alphabetically

In TPen
~TPen
Assign
TPen

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TPen methods
TPen By object

~TPen
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TPen

TPen::~TPen
TPen See also
~TPen frees the memory associated with the TPen object. Do not call ~TPen directly. Instead,
use the delete keyword on the object, which causes ~TPen to be invoked automatically.
__fastcall virtual ~TPen(void);

TPen::Assign
TPen See also
Assign assigns the properties of the pen from another TPen object.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
If the Source parameter identifies another TPen object, Assign copies the Color, Width, Style,
and Mode properties of the source pen. Otherwise, the inherited method copies the properties
from any object that can write to a TPen object in its AssignTo method.

TPen::TPen
TPen See also
TPen creates an instance of TPen.
__fastcall TPen(void);
Description
Call TPen to create a TPen object to assign to the pen property of a canvas. The pen for the
canvas is created automatically in the constructor for the TCanvas object.
TPen allocates the resources for the TPen object and initializes the Mode property to pmCopy.

Scope
Published

Hierarchy

TObject

TPersistent
TGraphicsObject

TPen example
TPen

TPersistent
Hierarchy Methods See also
TPersistent is the ancestor for all objects in Borland C++Builder that have assignment and
streaming capabilities.
Header
vcl/classes.hpp
Description
TPersistent encapsulates the fundamental behavior common to all objects that can be assigned
to another object, and that can read and write their properties to and from a stream. For this
purpose TPersistent introduces methods that can be overridden to:
• Define the procedure for loading and storing unpublished data to a stream.
• Provide the means to assign values to properties.
• Provide the means to assign the contents of one object to another.
Do not create instances of TPersistent. Use TPersistent as a base class when declaring objects
that are not components, but that need streaming or assignment capabilities.

TPersistent methods
TPersistent Alphabetically Legend

In TPersistent
~TPersistent
Assign

AssignTo
DefineProperties
TPersistent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TPersistent methods
TPersistent By object Legend

~TPersistent
AssignTo
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DefineProperties
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance

InstanceSize
MethodAddress
MethodName
NewInstance
TPersistent

TPersistent::~TPersistent
TPersistent See also
~TPersistent frees the memory associated with the TPersistent object. Do not call ~TPersistent
directly. Instead, use the delete keyword on the object, which causes ~TPersistent to be invoked
automatically.
__fastcall virtual ~TPersistent(void);

TPersistent::Assign
TPersistent See also
Assign copies one object to another by copying the contents of that object to the other.
virtual void __fastcall Assign(TPersistent* Source);
Description
Override Assign to copy data from one object to another object of the same type. A small
number of Borland C++Builder classes also support assignment to objects of different types; in
all other cases, if two objects are descended from TPersistent but are not of the same type, the
call to Assign raises an EConvertError exception.
The standard form of a call to Assign is
Destination->Assign(Source);
which tells the Destination object to copy the contents of the Source object to itself. In general,
the statement “Destination := Source” is not the same as the statement “Destination.Assign
(Source)”. The statement “Destination := Source” makes Destination reference the same
object as Source, whereas “Destination.Assign(Source)” copies the contents of the object
referenced by Source into the different object referenced by Destination.
Note
The types of some properties are also objects. If these properties have write methods that use
Assign to set the value of the property, then in these cases the statement “Destination :=
Source” is the same as “Destination.Assign(Source)”.
Conversion can happen in either the Assign method or the AssignTo method. The difference is
in who does the work to implement the assignment.
Note also that Source can be NULL.

TPersistent::AssignTo
TPersistent See also
AssignTo provides a generic mechanism for assigning the data associated with an object to
another object.
virtual void __fastcall AssignTo(TPersistent* Dest);
Description
AssignTo is the protected implementation of the public Assign method, By default, the AssignTo
method defined by TPersistent raises an EConvertError exception. Descendent classes can
define an AssignTo method that copies the contents of an object of its class into another object.
AssignTo exists so that knowledge of how to copy data between types does not have to exist in
both participants. For example, given the following code in which A and B are instance variables:
A->Assign(B);
if A knows how to handle B, then it does so and returns. If A doesn’t know how to handle B’s
type, execution will trickle up to TPersistent.Assign, which will call:
B->Assign(A);
If B doesn’t know about A, then an exception is raised.

TPersistent::DefineProperties
TPersistent See also
The DefineProperties method defined by TPersistent does nothing more than provide an
interface for methods that read and write otherwise unpublished data.
virtual void __fastcall DefineProperties(TFiler* Filer);
Description
Descendent objects of TPersistent can override DefineProperties to designate a method for
storing the object’s unpublished data on a stream such as a form file. By default, writing an
object to a stream writes the values of all its published properties, and reading the object in
reads those values and assigns them to the properties. Objects can also specify methods that
read and write data other than published properties by overriding the DefineProperties method.
When overriding DefineProperties, consider including some or all of the following:
• A call to the inherited method
• Calls to the filer object’s DefineProperty method
• Calls to the filer object’s DefineBinaryProperty method
DefineProperties is virtual, so descendent classes can override it as necessary but are not
required to redefine it.

TPersistent::TPersistent
TPersistent See also
TPersistent creates a new TPersistent object.
__fastcall TPersistent(void);

Scope
Protected

Hierarchy

TObject

TPersistent example
TPersistent

TPicture
Hierarchy Properties Methods Events
TPicture contains a bitmap, icon, metafile graphic, or user-defined graphic. The type of graphic
contained by the TPicture is specified in the Graphic property.
Header
vcl/graphics.hpp
Description
If the TPicture contains a bitmap graphic, the Bitmap property specifies the graphic. If the
TPicture contains an icon graphic, the Icon property specifies the graphic. If the TPicture
contains a metafile graphic, the Metafile property specifies the graphic.

TPicture properties
TPicture Alphabetically Legend

In TPicture
Bitmap
Graphic

Height
Icon
Metafile

Width

TPicture properties
TPicture By object Legend

Bitmap
Graphic

Height
Icon
Metafile

Width

TPicture::Bitmap
TPicture See also
Bitmap specifies that the contents of the picture object is a bitmap graphic (.BMP file format).
__property TBitmap* Bitmap;
Description
Use Bitmap to reference the picture object when it contains a bitmap. If Bitmap is referenced
when the picture contains a metafile or icon graphic, the graphic won't be converted. Instead, the
original contents of the picture are discarded and Bitmap returns a new, blank bitmap.

TPicture::Graphic
TPicture See also
Graphic specifies the graphic that the picture contains.
__property TGraphic* Graphic;
Description
The graphic can be a bitmap, icon, or metafile, or user-defined graphic class.

TPicture::Height
TPicture Example
Height specifies the vertical size of the graphic in pixels.
__property int Height;
Description
Use Height to find the vertical size of the graphic image contained in the picture object.

TPicture::Icon
TPicture See also
Specifies the contents of the TPicture object as an icon graphic (.ICO file format).
__property TIcon* Icon = {read=GetIcon, write=SetIcon, nodefault};
Description
If Icon is referenced when the TPicture contains a Bitmap or Metafile graphic, the graphic won't
be converted. Instead, the original contents of the TPicture are discarded and Icon returns a
new, blank icon.

TPicture::Metafile
TPicture See also
Metafile specifies the contents of the picture object as an Enhanced Windows metafile graphic (.
EMF file format).
__property TMetafile* Metafile = {read=GetMetafile, write=SetMetafile,
nodefault};

Description
If Metafile is referenced when the TPicture contains a Bitmap or Icon graphic, the graphic won't
be converted. Instead, the original contents of the TPicture are discarded and Metafile returns a
new, blank metafile.

TPicture::Width
TPicture Example
Width specifies the maximum width of the graphics object in pixels.
__property int Width = {read=GetWidth, nodefault};

TPicture events
TPicture Alphabetically

In TPicture
OnChange

TPicture events
TPicture By object

OnChange

TPicture::OnChange
TPicture
OnChange occurs when the specific graphics item encapsulated by the picture object changes.
__property Classes::TNotifyEvent OnChange = {read=FOnChange, write=
FOnChange};

TPicture methods
TPicture Alphabetically

In TPicture
~TPicture
Assign
LoadFromClipboardFormat
LoadFromFile
RegisterClipboardFormat
RegisterFileFormat
RegisterFileFormatRes
SaveToClipboardFormat
SaveToFile
SupportsClipboardFormat
TPicture

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TPicture methods
TPicture By object

~TPicture
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
LoadFromClipboardFormat
LoadFromFile
MethodAddress
MethodName
NewInstance
RegisterClipboardFormat
RegisterFileFormatRes
RegisterFileFormat
SaveToClipboardFormat
SaveToFile
SupportsClipboardFormat
TPicture

TPicture::~TPicture
TPicture
~TPicture frees the memory associated with the TPicture object. Do not call ~TPicture directly.
Instead, use the delete keyword on the object, which causes ~TPicture to be invoked
automatically.
__fastcall virtual ~TPicture(void);
Description
TPicture frees the graphic image it contains before calling the destructor of its parent object.

TPicture::Assign
TPicture
Assigns an object to a TPicture object.
virtual void __fastcall AssignTo(Classes::TPersistent* Dest);

TPicture::LoadFromClipboardFormat
TPicture
LoadFromClipboardFormat reads the picture from the handle provided in the given Clipboard
format.
void __fastcall LoadFromClipboardFormat(unsigned short AFormat, int
AData, HPALETTE APalette);

Description
If the format is not supported, an exception is generated.

TPicture::LoadFromFile
TPicture
LoadFromFile reads the file specified in FileName and loads the data into the TPicture object.
void __fastcall LoadFromFile(const System::AnsiString Filename);

TPicture::RegisterClipboardFormat
TPicture
RegisterClipboardFormat registers a new TGraphic class for use in the
LoadFromClipboardFormat method.
static void __fastcall RegisterClipboardFormat(const System::
TMetaClass* const vmt, unsigned short AFormat, System::TMetaClass*
AGraphicClass);

TPicture::RegisterFileFormat
TPicture
RegisterFileFormat registers a graphic file format with TPicture that can be used with a Open or
Save dialog box.
static void __fastcall RegisterFileFormat(const System::TMetaClass*
const vmt, const System::AnsiString AExtension, const System::
AnsiString ADescription, System::TMetaClass* AGraphicClass);

Description
The AExtension parameter specifies the three-character DOS file extension to associate with the
graphic class (for example, “BMP” is associated with TBitmap). The ADescription parameter
specifies the description of the graphic to appear in the drop down list of the dialog box (for
example, “Bitmaps” is the description of TBitmap). The AGraphicClass parameter registers the
new graphic class to associate with the file format.

TPicture::RegisterFileFormatRes
TPicture See also
RegisterFileFormatRes registers a new TGraphic class for use in the LoadFromFile method.
static void __fastcall RegisterFileFormatRes(const System::TMetaClass*
const vmt, const System::AnsiString AExtension, int
ADescriptionResID, System::TMetaClass* AGraphicClass);

Description
Specify a string resource ID in the ADescriptionResID parameter.

TPicture::SaveToClipboardFormat
TPicture
SaveToClipboard allocates a global handle and writes the picture in its native Clipboard format
(CF_BITMAP for bitmaps, CF_METAFILE for metafiles, and so on).
void __fastcall SaveToClipboardFormat(unsigned short &AFormat, int
&AData, HPALETTE &APalette);

Description
The Formats property of TClipboard will contain the formats written. SaveToClipboard returns
the number of Clipboard items written to the array pointed to by AFormat and AData. If either
AFormat or AData are NULL, SaveToClipboardFormat returns the number of Clipboard items
that would have been saved.

TPicture::SaveToFile
TPicture
SaveToFile saves a TPicture object to the file specified in FileName.
void __fastcall SaveToFile(const System::AnsiString Filename);

TPicture::SupportsClipboardFormat
TPicture See also
SupportsClipboardFormat indicates if the given Clipboard format is supported by the
LoadFromClipboardFormat method.
static bool __fastcall SupportsClipboardFormat(const System::
TMetaClass* const vmt, unsigned short AFormat);

Description
If the LoadFromClipboardFormat method supports the Clipboard format specified as the value of
AFormat, SupportsClipboardFormat returns true. If the format is not supported, the method
returns false.

TPicture::TPicture
TPicture
TPicture creates a new TPicture object.
__fastcall TPicture(void)

Accessibility
Read-only

Hierarchy

TObject

TPersistent

TPicture example
TPicture

TPopupMenu
Hierarchy Properties Methods Events
The TPopupMenu component encapsulates the properties, methods, and events of a pop-up
menu, the menu available to forms and controls when the user selects the component and clicks
the right mouse button.
Header
vcl/menus.hpp
Description
To make a pop-up menu available, assign a TPopupMenu component to the form’s or
control’s PopupMenu property.
To begin designing a pop-up menu, add a pop-up menu component to your form, and double-
click the component.
The items on the pop-up menu are specified with the Items object, a property of a pop-up menu.
The Items object is of type TMenuItem. Your application can use the Items property to access a
particular item on the menu.
If you want the pop-up menu to appear when the user clicks the right mouse button on the
control to which the pop-up menu is assigned, set the AutoPopup property to true. If you want to
use code to control when a pop-up menu appears, use the Popup method.
Pop-up menus have an OnPopup event handler you can use to specify special processing you
want to occur in your application just before a pop-up menu appears.
TPopupMenu is an indirect descendent of TComponent. In addition to these properties,
methods, and events, this component also has the properties and methods that apply to all
components.

TPopupMenu properties
TPopupMenu Alphabetically Legend

In TPopupMenu
Alignment
AutoPopup
HelpContext
PopupComponent

Derived from TMenu
Handle
Items

WindowHandle
Derived from TComponent

ComponentCount
ComponentIndex

Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TPopupMenu properties
TPopupMenu By object Legend

Alignment
AutoPopup

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

DesignInfo
Handle

HelpContext
Items

Name
Owner

PopupComponent
Tag
WindowHandle

TPopupMenu::Alignment
TPopupMenu See also
Determines where the pop-up menu appears when the user clicks the right mouse button.
__property TPopupAlignment Alignment;
Description
These are the possible values and their meanings:
Value Meaning

paLeft The pop-up menu appears with its top left corner under the mouse
pointer.

paCenter The pop-up menu appears with the top center of the menu under the
mouse pointer.

paRight The pop-up menu appears with its top right corner under the mouse
pointer.

The default value is paLeft.

TPopupMenu::AutoPopup
TPopupMenu See also
Determines if the pop-up menu appears.
__property bool AutoPopup;
Description
The AutoPopup property determines if the pop-up menu appears when the user clicks the right
mouse button on the component that has this menu specified as the value of its PopupMenu
property. If AutoPopup is true, a right click displays the pop-up menu. If AutoPopup is false, the
menu won't appear when the user clicks the right mouse button. The default value is true.
The application key present on keyboards specifically designed for Windows 95 will also show
this menu when pressed.
To display a pop-up menu when AutoPopup is false, you must use the Popup method.

TPopupMenu::HelpContext
TPopupMenu
Provides a context number for an item on a popup-menu for use in calling context-sensitive
online Help.
__property Classes::THelpContext HelpContext;

Description
Each screen in the Help system should have a unique context number. When a component is
selected in the application, pressing F1 displays a Help screen. Which Help screen appears
depends on the value of the HelpContext property.

TPopupMenu::PopupComponent
TPopupMenu See also
Reports the component the user clicked to display the pop-up menu.
virtual void __fastcall Popup(int X, int Y);
Description
The PopupComponent property refers to the component the user clicked on to display the pop-
up menu. If your application has multiple controls that share the same pop-up menu, you can
use PopupComponent to determine which of them displayed the menu.
If you activate a pop-up menu by explicitly calling PopupMenu1.Popup, and you want that pop-
up menu invocation associated with a particular component, you should assign the component to
the pop-up's PopupComponent property before calling Popup.

TPopupMenu events
TPopupMenu Alphabetically Legend

In TPopupMenu
OnPopup

TPopupMenu events
TPopupMenu By object Legend

OnPopup

TPopupMenu::OnPopup
TPopupMenu See also
Occurs whenever a pop-up menu appears.
__property Classes::TNotifyEvent OnPopup;
Description
The pop-up menu appears when the user clicks the right mouse button on the component that
has this menu specified as the value of its PopupMenu property. If AutoPopup is true, a right
click displays the pop-up menu. If AutoPopup is false, the menu won't appear when the user
clicks the right mouse button. The default value is true.
The application key present on keyboards specifically designed for Windows 95 will also show
this menu when pressed.
To display a pop-up menu when AutoPopup is false, you must use the Popup method.

TPopupMenu methods
TPopupMenu Alphabetically

In TPopupMenu
~TPopupMenu
Popup
TPopupMenu

Derived from TMenu
DispatchCommand
DispatchPopup
FindItem
GetHelpContext
IsShortCut

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TPopupMenu methods
TPopupMenu By object

~TPopupMenu
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
DispatchCommand
DispatchPopup
Dispatch
FieldAddress
FindComponent
FindItem
FreeInstance
FreeNotification
Free
GetHelpContext
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsShortCut
MethodAddress
MethodName
NewInstance
Popup
RemoveComponent
TPopupMenu

TPopupMenu::~TPopupMenu
TPopupMenu See also
~TPopupMenu frees the memory associated with the TPopupMenu object. Do not call ~
TPopupMenu directly. Instead, use the delete keyword on the object, which causes ~
TPopupMenu to be invoked automatically.
__fastcall virtual ~TPopupMenu(void);
Description
~TPopupMenu frees the pop-up list before calling the destructor of its parent object.

TPopupMenu::Popup
TPopupMenu See also
Displays a pop-up menu onscreen.
virtual void __fastcall Popup(int X, int Y);
Description
The menu appears at the coordinates indicated by the values (in pixels) of X and Y.

TPopupMenu::TPopupMenu
TPopupMenu See also
Constructs a pop-up menu component.
__fastcall virtual TPopupMenu(Classes::TComponent* AOwner);
Description
TPopupMenu calls the constructor of its parent object, and then sets the initial values for the
popup menu.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TMenu

TPopupMenu example
TPopupMenu

TProgressBar
Hierarchy Properties Methods Events
A TProgressBar component tracks the progress of a procedure within an application.
Header
vcl/comctrls.hpp
Description
As the procedure progresses, the rectangular TProgressBar gradually fills from left to right with
the system highlight color. The Step property determines how much to increment Position each
time it changes.
In addition to these properties, methods, and events, this component also has the properties,
methods, and events that apply to all windowed controls.

TProgressBar properties
TProgressBar Alphabetically Legend

In TProgressBar
Max
Min
Position
Step

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle
Cursor
Enabled
Height
Hint
Left
Name
Parent
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TProgressBar properties
TProgressBar By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
Left
Max
Min
Name

Owner
ParentShowHint

Parent
PopupMenu
Position
ShowHint

Showing
Step
TabOrder
TabStop
Tag
Top
Visible
Width

TProgressBar::Max
TProgressBar See also
Specifies the upper limit of the range of possible positions on a progress bar.
__property TProgressRange Max;
Description
Use Max along with the Min property to establish the range of possible positions a progress bar.

TProgressBar::Min
TProgressBar See also
Specifies the lower limit of the range of possible positions on a progress bar.
__property TProgressRange Min;
Description
Use Max along with the Min property to establish the range of possible positions a progress bar.

TProgressBar::Position
TProgressBar See also Example
Determines the current position of the progress bar.
__property TProgressRange Position;
Description
The range of values for Position are between Min and Max.

TProgressBar::Step
TProgressBar See also
Specifies the amount that the Position increases with the StepIt method.
__property TProgressRange Step;
Description
Specify a Step value before calling the StepIt method.

TProgressBar events
TProgressBar Alphabetically Legend

Derived from TWinControl
OnEnter
OnExit

Derived from TControl
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TProgressBar events
TProgressBar By object Legend

OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TProgressBar methods
TProgressBar Alphabetically

In TProgressBar
~TProgressBar
StepBy
StepIt
TProgressBar

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent

HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TProgressBar methods
TProgressBar By object

~TProgressBar
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
StepBy
StepIt
TProgressBar
UpdateControlState
Update

TProgressBar::~TProgressBar
TProgressBar
~TProgressBar frees the memory associated with the TProgressBar object. Do not call ~
TProgressBar directly. Instead, use the delete keyword on the object, which causes ~
TProgressBar to be invoked automatically.
__fastcall virtual ~TProgressBar(void);Position property, Step
property, StepBy method

TProgressBar::StepBy
TProgressBar See also
Modifies the Position of the progress bar
void __fastcall StepBy(TProgressRange Delta);
Description
Specify the amount you want the Position to change as the value of the Delta parameter.

TProgressBar::StepIt
TProgressBar
Modifies Position by the amount specified by the Step property.
void __fastcall StepIt(void);
Description
Call the StepIt method to advance the position of the progress bar. Each time StepIt is called,
the Position value increases by the number of pixels specified with the Step property value.

TProgressBar::TProgressBar
TProgressBar
Constructs a progress bar component.
__fastcall virtual TProgressBar(Classes::TComponent* AOwner);
Description
TProgressBar calls the constructor of its parent object, then sets the initial values for the
progress bar.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TProgressBar example
TProgressBar

TPrintDialog
Hierarchy Properties Methods See also
TPrintDialog generates a Print dialog.
Header
vcl/dialogs.hpp
Description
The TPrintDialog component displays a standard Windows dialog box for sending jobs to a
printer. The dialog does not appear at runtime until it is activated by a call to the Execute
method.

TPrintDialog properties
TPrintDialog Alphabetically Legend

In TPrintDialog
Collate
Copies
FromPage
MaxPage
MinPage
Options
PrintRange
PrintToFile
ToPage

Derived from TCommonDialog
Ctl3D
HelpContext

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TPrintDialog properties
TPrintDialog By object Legend

Collate
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

Copies
Ctl3D
DesignInfo
FromPage
HelpContext
MaxPage
MinPage
Name
Options

Owner
PrintRange
PrintToFile
Tag
ToPage

TPrintDialog::Collate
TPrintDialog See also
Indicates whether the Collate check box is selected.
__property bool Collate;
Description
Collate is true whenever the Collate check box is selected in the Print dialog. To make the dialog
open with the check box selected, set Collate to true in the Object Inspector or in program code.

TPrintDialog::Copies
TPrintDialog See also
Indicates the number copies selected in the Print dialog.
__property int Copies;
If Copies is 0 or 1, the dialog will have 1 in the Number of Copies field. To make the dialog open
with 2 or more copies selected, set the value of Copies in the Object Inspector or in program
code.

TPrintDialog::FromPage
TPrintDialog See also
Indicates the page on which the print job is to begin.
__property int FromPage;
Description
The FromPage property corresponds to the From field in the Print dialog.

TPrintDialog::MaxPage
TPrintDialog See also
Determines the greatest page number the user can enter when specifying pages to print.
__property int MaxPage;
Description
If the user tries to enter a number greater than MaxPage, a error message appears.
Note
The user can specify page numbers only if the poPageNums flag is set in Options. If
poPageNums is on, MaxPage must be set to a value greater than MinPage or the Print dialog
will not open.

TPrintDialog::MinPage
TPrintDialog See also
Determines the smallest page number the user can enter when specifying pages to print.
__property int MinPage;
Description
If the user tries to enter a number smaller than MinPage, a error message appears.
Note
The user can specify page numbers only if the poPageNums flag is set in Options. If
poPageNums is on, MaxPage must be set to a value greater than MinPage or the Print dialog
will not open.

TPrintDialog::Options
TPrintDialog See also
Determines the appearance and behavior of the Print dialog.
__property TPrintDialogOptions Options;
Description
The possible values of Options are
Value Meaning

poDisablePrintToFile Disables (grays) the Print To File Check box. (Applicable only if the
poPrintToFile flag is set.)

poHelp Displays a Help button in the dialog. May not work in some versions of
Windows 95.

poPageNums Enables the Pages radio button, allowing the user to specify a page
range.

poPrintToFile Displays a Print To File check box in the dialog.
poSelection Enables the Selection radio button, allowing the user to print selected

(highlighted) text.
poWarning Generates a warning message if the user tries to send a job to an

uninstalled printer.
By default, all options flags are off.

TPrintDialog::PrintRange
TPrintDialog See also
Indicates the type of print range selected in the dialog.
__property TPrintRange PrintRange;
Description
The value of PrintRange corresponds the All, Selection, and Pages (From/To) radio buttons in
the Print dialog:
Value Meaning

prAllPages The All radio button is selected.
prSelection The Selection radio button is selected.
prPageNums The Pages radio button is selected.
To determine which radio button is selected by default when the dialog opens, set the value of
PrintRange in the Object Inspector or in program code.
Note
To enable the Pages radio button, set the poPageNums flag in Options. To enable the Selection
radio button, set the poSelection flag in Options and set MaxPage to a value greater than
MinPage.

TPrintDialog::PrintToFile
TPrintDialog See also
Indicates whether the Print To File check box is selected.
__property bool PrintToFile;
Description
PrintToFile is true whenever the Print To File check box is selected in the dialog. To make the
dialog open with the check box selected, set PrintToFile to true in the Object Inspector or in
program code.
Note
To make the Print To File check box appear in the dialog, set the poPrintToFile flag in Options.
To disable (gray) the Print To File check box, set the poDisablePrintToFile flag.

TPrintDialog::ToPage
TPrintDialog See also
Indicates the page on which the print job is to end.
__property int ToPage;
Description
The ToPage property corresponds to the To field in the Print dialog.

TPrintDialog methods
TPrintDialog Alphabetically

In TPrintDialog
~TPrintDialog
Execute
TPrintDialog

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TPrintDialog methods
TPrintDialog By object

~TPrintDialog
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
Dispatch
Execute
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
TPrintDialog

TPrintDialog::~TPrintDialog
TPrintDialog
~TPrintDialog frees the memory associated with the TPrintDialog object. Do not call ~
TPrintDialog directly. Instead, use the delete keyword on the object, which causes ~
TPrintDialog to be invoked automatically.
__fastcall virtual ~TPrintDialog(void);

TPrintDialog::Execute
TPrintDialog
Displays the Print dialog box.
bool __fastcall Execute(void);
Description
Execute opens the Print dialog, returning true when the user clicks Print.

TPrintDialog::TPrintDialog
TPrintDialog
TPrintDialog creates a new TPrintDialog object.
__fastcall virtual TPrintDialog(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent
TCommonDialog

TPrintDialog example
TPrintDialog

TPrinter
Hierarchy Properties Methods See also
TPrinter encapsulates the printer interface of Windows.
Header
vcl/printers.hpp
Description
TPrinter is automatically instantiated within the Printers header as the Printer variable. Use this
variable to use the printer and include PRINTERS.HPP in your project.
To determine how the printed image of the form appears use the PrintScale property of a TForm
component.
A print job is started whenever any rendering is done through the printers canvas. This job will
stay open until EndDoc is called. The title displayed in the Print Manager (and on network
header pages) is determined by the Title property. To start a print job, call the BeginDoc method.
To end a print job that is sent successfully to the printer, call the EndDoc method. If a problem
occurs and you need to terminate a print job that was not sent to the printer successfully, call the
Abort method.

TPrinter properties
TPrinter Alphabetically Legend

In TPrinter
Aborted
Canvas
Capabilities

Copies
Fonts
Handle

Orientation
PageHeight
PageNumber
PageWidth

PrinterIndex
Printers
Printing

Title

TPrinter properties
TPrinter By object Legend

Aborted
Canvas
Capabilities

Copies
Fonts
Handle

Orientation
PageHeight
PageNumber
PageWidth

PrinterIndex
Printers
Printing

Title

TPrinter::Aborted
TPrinter See also
Aborted determines if the user aborted the print job, thereby calling the Abort method.
__property bool Aborted;
Description
If Aborted is true, the print job was aborted. If it is false, the user did not abort the print job.

TPrinter::Canvas
TPrinter See also
Canvas represents the surface of the currently printing page.
__property Graphics::TCanvas* Canvas;
Description
Canvas represents the printing surface of a page. Use the Brush, Font, and Pen properties of
the Canvas object to determine how drawing or text appears on the page.
Note
Some printers do not support graphics. Therefore, the Draw, StretchDraw, or CopyRect methods
might fail on these printers.

TPrinter::Capabilities
TPrinter
Capabilities contains the current settings of a printer device driver.
__property TPrinterCapabilities Capabilities;
Description
Capabilities contains the capabilities for the printer, indicating the orientation, number of copies,
and whether or not collated is selected.

TPrinter::Copies
TPrinter
Copies returns the number of copies printed.
__property int Copies;
Description
Copies returns information from the device mode that is set to select the number of copies
printed.

TPrinter::Fonts
TPrinter
Fonts holds a list of fonts supported by the current printer.
__property Classes::TStrings* Fonts;
Description
Use Fonts to get a list of the fonts supported by the printer. The list contains TrueType fonts
even if the printer doesn’t support them natively because the Windows Graphics Device
Interface (GDI) can draw TrueType fonts accurately when a print job uses them.

TPrinter::Handle
TPrinter
Handle provides access to the handle of the printer object.
__property HDC Handle;
Description
Use Handle to gain access to the handle of the printer object.

TPrinter::Orientation
TPrinter
Orientation determines if the print job prints vertically or horizontally on a page.
__property TPrinterOrientation Orientation;
Description
Use Orientation to determine if a print job prints in landscape or portrait.
TPrinterOrientation is the type of the Orientation property. These are the possible values for
TPrinterOrientation:
Value Meaning

poPortrait The print job prints vertically on the page.
poLandscape The print job prints horizontally on the page.

TPrinter::PageHeight
TPrinter See also
PageHeight contains the height of the currently printing page in pixels.
__property int PageHeight;
Description
Use PageHeight to find the height in pixels of the currently printing page.

TPrinter::PageNumber
TPrinter See also
PageNumber contains current page number being printed.
__property int PageNumber;
Description
Use PageNumber to find the page number of the currently printing page. PageNumber is
incremented when ever the NewPage method is called.
Note
This property can also be incremented when a Text variable is written, a CR is encountered on
the last line of the page.

TPrinter::PageWidth
TPrinter See also
PageWidth contains the value of width of the currently printing page in pixels.
__property int PageWidth;
Description
Use PageWidth to find the width in pixels of the currently printing page.

TPrinter::PrinterIndex
TPrinter See also
PrinterIndex specifies which printer listed in the Printers property is the currently selected printer.
__property int PrinterIndex;
Description
The value of the PrinterIndex property is the currently selected printer. If this value is changed
EndDoc is called automatically.To select the default printer, set the value of PrinterIndex to –1.
The list of installed printers is found in the Printers property. The list of fonts supported by the
current printer is found in the Fonts property.

TPrinter::Printers
TPrinter See also
Printers contains a list of all printers installed in Windows.
__property Classes::TStrings* Printers;
Description
The list of installed printers is found in the Printers property. The value of the PrinterIndex
property is the currently selected printer. The list of fonts supported by the current printer is
found in the Fonts property.

TPrinter::Printing
TPrinter See also
Printing indicates whether a print job is printing.
__property bool Printing;
Description
Use Printing to determine if a job is printing.
Printing is true when the application has called the BeginDoc method, but the EndDoc method
(or the Abort method) hasn’t yet been called.

TPrinter::Title
TPrinter
Title determines the text that appears listed in the Print Manager and on network header pages.
__property System::AnsiString Title;
Description
Title is used by Windows in the Print Manager and for network title pages.

TPrinter methods
TPrinter Alphabetically

In TPrinter
~TPrinter
Abort
BeginDoc
EndDoc
GetPrinter
NewPage
SetPrinter
TPrinter

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TPrinter methods
TPrinter By object

~TPrinter
Abort
BeginDoc
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
EndDoc
FieldAddress
FreeInstance
Free
GetPrinter
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
NewPage
SetPrinter
TPrinter

TPrinter::~TPrinter
TPrinter See also
~TPrinter frees the memory associated with the TPrinter object. Do not call ~TPrinter directly.
Instead, use the delete keyword on the object, which causes ~TPrinter to be invoked
automatically.
__fastcall virtual ~TPrinter(void);
Description
~TPrinter checks to make sure that any currently printing job ends, then it frees resources such
as the handle, fonts, canvas and so on, closes the printer and calls destructor of its parent
object.

TPrinter::Abort
TPrinter See also
Abort terminates the printing of a print job, dropping all unprinted data.
void __fastcall Abort(void);
Description
Use Abort to terminate the print job before it completes; otherwise, use the EndDoc method.
When Abort is called, the device is then set for the next print job.

TPrinter::BeginDoc
TPrinter See also
BeginDoc sends a print job to the printer.
void __fastcall BeginDoc(void);
Description
If the print job is sent successfully, the application should call EndDoc to end the print job. The
print job won’t actually start printing until EndDoc is called.

TPrinter::EndDoc
TPrinter See also
EndDoc ends the current print job and closes the text file variable.
void __fastcall EndDoc(void);
Description
EndDoc terminates the print job (and closes the currently open Text). The print job will being
printing on the printer after a call to EndDoc.
After the application calls EndDoc, the printer begins printing. Use EndDoc after successfully
sending a print job to the printer. If the print job isn’t successful, use the Abort method.

TPrinter::GetPrinter
TPrinter See also
GetPrinter retrieves the current printer.
void __fastcall GetPrinter(char * ADevice, char * ADriver, char *
APort, int &ADeviceMode);

Description
It is not necessary to directly call GetPrinter. Instead, access the printer in the Printers property
array. For more information, see the CreateDC function in the Win32 Developer’s Reference
(WIN32.HLP).

TPrinter::NewPage
TPrinter See also
NewPage Starts a new page and increments the PageNumber property.
void __fastcall NewPage(void);
Description
NewPage forces the current print job to begin printing on a new page in the printer.
NewPage increments the value of the PageNumber property. It also resets the value of the Pen
property of the Canvas back to (0, 0).

TPrinter::SetPrinter
TPrinter See also
SetPrinter specifies a printer as the current printer.
void __fastcall SetPrinter(char * ADevice, char * ADriver, char *
APort, int ADeviceMode);

Description
Do not call SetPrinter directly. Instead, access the printer with the Printers property array. For
more information, see the Windows API CreateDC function.

TPrinter::TPrinter
TPrinter See also
TPrinter instantiates a printer.
__fastcall TPrinter(void);
Description
TPrinter is called automatically to instantiate a printer as the Printer variable. TPrinter allocates
memory for a printer, and calls the constructor of its parent object. Then it sets the correct driver,
device and port.

Accessibility
Read-only

Hierarchy

TObject

TPrinter example
TPrinter

TPrinterSetupDialog
Hierarchy Properties Methods See also
TPrinterSetupDialog generates a Print Setup dialog for configuring printers.
Header
vcl/dialogs.hpp
Description
TPrinterSetupDialog displays a standard Windows dialog box for configuring printers. The dialog
does not appear at runtime until it is activated by a call to the Execute method.

TPrinterSetupDialog properties
TPrinterSetupDialog Alphabetically Legend

Derived from TCommonDialog
Ctl3D
HelpContext

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TPrinterSetupDialog properties
TPrinterSetupDialog By object Legend

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

Ctl3D
DesignInfo
HelpContext
Name

Owner
Tag

TPrinterSetupDialog methods
TPrinterSetupDialog Alphabetically

In TPrinterSetupDialog
~TPrinterSetupDialog
Execute
TPrinterSetupDialog

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TPrinterSetupDialog methods
TPrinterSetupDialog By object

~TPrinterSetupDialog
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
Dispatch
Execute
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
TPrinterSetupDialog

TPrinterSetupDialog::~TPrinterSetupDialog
TPrinterSetupDialog
~TPrinterSetupDialog frees the memory associated with the TPrinterSetupDialog object. Do not
call ~TPrinterSetupDialog directly. Instead, use the delete keyword on the object, which causes
~TPrinterSetupDialog to be invoked automatically.
__fastcall virtual ~TPrinterSetupDialog(void);

TPrinterSetupDialog::Execute
TPrinterSetupDialog
Displays the printer configuration dialog box.
void __fastcall Execute(void);
Description
Execute opens the Print Setup dialog, returning true when the user clicks OK.

TPrinterSetupDialog::TPrinterSetupDialog
TPrinterSetupDialog
TPrinterSetupDialog creates a new TPrinterSetupDialog object.
__fastcall virtual TPrinterSetupDialog(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent
TCommonDialog

TPrinterSetupDialog example
TPrinterSetupDialog

TQuery
Hierarchy Properties Methods Events See also
TQuery encapsulates a dataset with a result set that is based on an SQL statement.
Header
vcl/dbtables.hpp
Description
Use TQuery to access a database using SQL statements. Query components can be used with
remote database servers such as Sybase, SQL Server, Oracle, Informix, DB2, and InterBase,
with Paradox, dBASE, Access, and FoxPro, and with ODBC-compliant databases.
Query components are useful because they can
• Access more than one table at a time (called a “join” in SQL).
• Automatically access a subset of rows and columns in its underlying table(s), rather than

always returning all rows and columns.
Note
TQuery is of particular importance to the development of scalable database applications. If there
is any chance that an application built to run against local databases will be scaled to a remote
SQL database server in the future, use TQuery components from the start to ensure easier
scaling later.

TQuery properties
TQuery Alphabetically Legend

In TQuery
Constrained
DataSource

Local
ParamCheck

ParamCount
Params
Prepared
RequestLive

RowsAffected
SQL
SQLBinary

StmtHandle
Text

UniDirectional
Derived from TDBDataSet

DBHandle
DBLocale
DBSession

SessionName
UpdateMode

Derived from TDataSet
Active
AutoCalcFields

BOF
Bookmark

DefaultFields
Designer
EOF
FieldCount

FieldDefs
Fields
FieldValues

Found
Modified
State

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TQuery properties
TQuery By object Legend

Active
AutoCalcFields

BOF
Bookmark

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

Constrained
DataSource

DBHandle
DBLocale
DBSession
DefaultFields
Designer

DesignInfo
EOF
FieldCount

FieldDefs
Fields
FieldValues

Found
Local
Modified
Owner

ParamCheck
ParamCount

Params
Prepared
RequestLive

RowsAffected
SessionName
SQLBinary
SQL

State
StmtHandle

Tag
Text

UniDirectional
UpdateMode

TQuery::Constrained
TQuery See also
Indicates whether or not updates and inserts that do not conform to the result set generated by a
SELECT statement are permitted for Paradox and dBASE tables
__property bool Constrained;
Description
Use Constrained to determine whether or not UPDATE and INSERT statements can be used to
modify a Paradox or dBASE table underlying a result set when the UPDATE or INSERT
statements contain one or more values that do not comply with the WHERE clause conditions of
the SELECT statement that generated the result set. Constrained only applies to live result sets.
If Constrained is false (the default), updates and inserts are permitted regardless of the SELECT
statement criteria. If true, updates and inserts are not permitted if they violate the criteria of the
SELECT statement that generated the result set.
For example, if Constrained is true and a query component’s SQL property is
SELECT * FROM CUSTOMERS
WHERE (CUSTNO > 1400 AND CUSTNO < 1500)
then the following UPDATE statement would not be allowed:
UPDATE CUSTOMERS
SET COMPANY = “Deep Diver”
WHERE CUSTNO = 1567

TQuery::DataSource
TQuery See also
Specifies the data source component from which to extract current field values to use to bind
otherwise unassigned parameters in the query’s SQL statement.
__property Db::TDataSource* DataSource;
Description
Set the DataSource property to the name of a data source component from which to extract
current field values to use to bind otherwise unassigned parameters in the SQL statement in this
component’s SQL property. DataSource must point to another dataset; it cannot point to this
query component.
The dataset specified in DataSource must be created, populated, and opened before attempting
to bind parameters. Parameters are bound by calling the query’s Prepare method prior to
executing the query.
Tip
DataSource is especially of use when creating a master-detail relationship between tables using
a linked query. It is also of use to guarantee binding for parameters that are not already set in
the Params property or through a call to the ParamByName method.
If the SQL statement used by a query does not contain parameters, or all parameters are bound
by the application using the Params property or the ParamByName method, DataSource need
not be assigned.

TQuery::Local
TQuery See also
Indicates whether a query references one or more Paradox or dBASE tables rather than SQL
tables on a remote server.
__property bool Local;
Description
Check Local to determine if a query accesses one or more Paradox or dBASE tables rather than
SQL tables. If Local is true, then the query only accesses dBASE or Paradox. Otherwise Local is
false. Local is set automatically when an application calls the query’s Prepare method prior to
executing the query.
Some query component settings, such as Constrained, are only meaningful for queries against
Paradox and dBASE tables. Others are only meaningful for queries against remote SQL servers.
Local can provide useful information for branching logic in code based on the type of database
accessed. It can also be used to determine whether or not the BDE parsed a query using its
local query engine rather than passing SQL statements directly to a remote server.

TQuery::ParamCheck
TQuery See also
Specifies whether the parameter list for a query is regenerated if the SQL property changes at
runtime.
__property bool ParamCheck;
Description
Set ParamCheck to specify whether or not the Params property is cleared and regenerated if an
application modifies the query’s SQL property at runtime. By default ParamCheck is true,
meaning that the Params property is automatically regenerated at runtime. When ParamCheck
is true, the proper number of parameters is guaranteed to be generated for the current SQL
statement.
An application that does not use parameterized queries may choose to set ParamCheck to false,
but otherwise ParamCheck should be true.

TQuery::ParamCount
TQuery See also
Indicates the current number of parameters for the query.
__property unsigned short ParamCount;
Description
Check ParamCount to determine how many parameters are in the Params property. If the
ParamCheck property is true, ParamCount always corresponds to the number of actual
parameters in the SQL statement for the query.
An application can add or delete parameters to the Params property. Such additions and
deletions are automatically reflected in ParamCount.

TQuery::Params
TQuery See also
Contains the parameters for a query’s SQL statement.
__property TParams* Params;
Description
Access Params at runtime to view and set parameter names, values, and data types
dynamically (at design time use the Query Parameters editor to set parameter information).
Params is a zero-based array of parameter records. Index specifies the array element to access.
Note
An easier way to set and retrieve parameter values when the name of each parameter is known
is to call ParamByName. ParamByName cannot, however, be used to change a parameter’s
data type or name.

TQuery::Prepared
TQuery See also
Determines whether or not a query is prepared for execution.
__property bool Prepared;
Description
Examine Prepared to determine if a query is already prepared for execution. If Prepared is true,
the query is prepared, and if Prepared is false, the query is not prepared. While a query need not
be prepared before execution, execution performance is enhanced if the query is prepared
beforehand, particularly if it is a parameterized query that is executed more than once using the
same parameter values.
Note
An application can change the current setting of Prepared to prepare or unprepare a query. If
Prepared is true, setting it to false calls the Unprepare method to unprepare the query. If
Prepared is false, setting it to true calls the Prepare method to prepare the query. Generally,
however, it is better programming practice to call Prepare and Unprepare directly. These
methods automatically update the Prepared property.

TQuery::RequestLive
TQuery See also
Specifies whether an application expects to receive a live result set from the Borland Database
Engine (BDE) when the query executes.
__property bool RequestLive;
Description
Set RequestLive to specify whether or not the BDE should attempt to return a live result set to
the application. RequestLive is false by default, meaning that a query returns a read-only result
set.
Set RequestLive to true to request a live result set. Setting RequestLive to true does not
guarantee that a live result set is returned by the BDE. It only guarantees that the BDE attempts
to return a live result set. The BDE returns a live result set only if the SELECT syntax of the
query conforms to the syntax requirements for a live result set.
If RequestLive is true, but the syntax does not conform to the requirements, the BDE returns a
read-only result set for Paradox or dBASE, or an error return code for remote servers.

TQuery::RowsAffected
TQuery See also
Returns the number of rows operated upon by the latest query execution.
__property int RowsAffected;
Description
Check RowsAffected to determine how many rows were updated or deleted by the last query
operation. If RowsAffected is -1, the query did not update or delete any rows.

TQuery::SQL
TQuery See also
Contains the text of the SQL statement to execute for the query.
__property Classes::TStrings* SQL;
Description
Use SQL to provide the SQL statement that a query component executes when its ExecSQL or
Open methods are called. At design time the SQL property can be edited by invoking the String
List editor in the Object Inspector.
Note
Borland C++Builder Client/Server developers can also invoke the Visual Query Builder to create
an SQL statement for execution.
The SQL property can be used to access
• Paradox or dBASE tables, using local SQL. The allowable syntax is a subset of ANSI-

standard SQL and includes SELECT, INSERT, UPDATE, and DELETE statements.
• Databases on the Local InterBase Server, using standard SQL-92 and specific InterBase

extensions to SQL syntax. For information on syntax and limitations, see the InterBase
Language Reference.

• Databases on remote database servers (Borland C++Builder Client/Server only) using the
appropriate SQL Links driver. Any standard statement in the server's SQL dialect is allowed.
For information on SQL syntax and limitations, see the server documentation.

The SQL statement provided to SQL may contain replaceable parameters, following standard
SQL-92 syntax conventions. Parameters are created and stored in the Params property.
To provide an SQL statement at runtime:
1 Call Close to shut down the query if it is currently active.
2 Call Clear to empty the SQL property.
3 Call Add to specify the new text, or call LoadFromFile to assign the text in an SQL script file to

the SQL property.
4 Use the ParamByName method to set up any parameters for the query, if it uses them.
5 Call Prepare to ready the query for execution.
6 Call ExecSQL or Open to execute the query.
Note
The SQL property may contain only one complete SQL statement at a time. In general, multiple
“batch” statements are not allowed unless a particular server supports them.

TQuery::SQLBinary
TQuery See also
Points to the binary data stream that represents an SQL query statement or result set.
__property char * SQLBinary;
Description
Do not access SQLBinary. It is an internal binary data stream used by the query component to
communicate directly with the Borland Database Engine. To access or set the SQL statement
that this query component executes, use the SQL property. To access or set the parameters
used in a parameterized SQL statement, use the Params property.

TQuery::StmtHandle
TQuery
Identifies the Borland Database Engine (BDE) statement handle for the query.
__property Bde::hDBIStmt StmtHandle;
Description
Retrieve StmtHandle if an application makes a direct call to the BDE, bypassing the methods of
TQuery. Some BDE API calls require a statement handle as a parameter. Under all other
circumstances an application does not need to access this property.

TQuery::Text
TQuery See also Example
Points to the actual text of the SQL query passed to the Borland Database Engine (BDE).
__property System::AnsiString Text;
Description
Text is a read-only property that can be examined to determine the actual contents of SQL
statement passed to the BDE. For parameterized queries, Text contains the SQL statement with
its parameter value substitutions.
In general there should be no need to examine the Text property. To access or change the SQL
statement for the query, use the SQL property. To examine or modify parameters, use the
Params property.

TQuery::UniDirectional
TQuery
Determines whether or not Borland Database Engine (BDE) bidirectional cursors are enabled for
a query’s result set.
__property bool UniDirectional;
Description
Set UniDirectional to control whether or not a BDE cursor can move forward and backward
through a result set. By default UniDirectional is false, enabling forward and backward
navigation.
Note
Traditionally SQL cursors are unidirectional. They can travel only forward through a dataset. The
BDE, however, permits bidirectional travel by caching records. If an application does not need
bidirectional access to records in a result set, set UniDirectional to true. When UniDirectional is
true, an application requires less memory and performance is improved.

TQuery events
TQuery Alphabetically Legend

Derived from TDataSet
AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
OnCalcFields
OnDeleteError
OnEditError
OnFilterRecord
OnNewRecord
OnPostError

TQuery events
TQuery By object Legend

AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
OnCalcFields
OnDeleteError
OnEditError
OnFilterRecord
OnNewRecord
OnPostError

TQuery methods
TQuery Alphabetically

In TQuery
~TQuery
ExecSQL
ParamByName
Prepare
TQuery
UnPrepare

Derived from TDBDataSet
CheckOpen

Derived from TDataSet
ActiveBuffer
Append
AppendRecord
CheckBrowseMode
ClearFields
Close
ControlsDisabled
CursorPosChanged
Delete
DisableControls
Edit
EnableControls
FieldByName
FindField
FindFirst
FindLast
FindNext
FindPrior
First
FreeBookmark
GetBookmark
GetFieldList
GetFieldNames
GotoBookmark
Insert
InsertRecord
IsLinkedTo
Last
MoveBy
Next
Open
Post
Prior
Refresh
Resync
SetFields
UpdateCursorPos
UpdateRecord

Derived from TComponent
DestroyComponents

Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TQuery methods
TQuery By object

~TQuery
ActiveBuffer
AppendRecord
Append
Assign
CheckBrowseMode
CheckOpen
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClearFields
Close
ControlsDisabled
CursorPosChanged
DefaultHandler
Delete
DestroyComponents
Destroying
DisableControls
Dispatch
Edit
EnableControls
ExecSQL
FieldAddress
FieldByName
FindComponent
FindField
FindFirst
FindLast
FindNext
FindPrior
First
FreeBookmark
FreeInstance
FreeNotification
Free
GetBookmark
GetFieldList
GetFieldNames
GetParentComponent
GotoBookmark
HasParent
InheritsFrom
InitInstance
InsertComponent
InsertRecord

Insert
InstanceSize
IsLinkedTo
Last
MethodAddress
MethodName
MoveBy
NewInstance
Next
Open
ParamByName
Post
Prepare
Prior
Refresh
RemoveComponent
Resync
SetFields
TQuery
UnPrepare
UpdateCursorPos
UpdateRecord

TQuery::~TQuery
TQuery See also
~TQuery frees the memory associated with the TQuery object. Do not call ~TQuery directly.
Instead, use the delete keyword on the object, which causes ~TQuery to be invoked
automatically.
__fastcall virtual ~TQuery(void);
Description
~TQuery disconnects from the server, frees the SQL statement list, the parameter list, and the
data link and SQL binary storage area, and then calls the destructor of its parent object.

TQuery::ExecSQL
TQuery See also
Executes the SQL statement for the query.
void __fastcall ExecSQL(void);
Description
Call ExecSQL to execute the INSERT, UPDATE, or DELETE statement currently assigned to the
SQL property. ExecSQL is also used to execute data definition statements.
Note
For SELECT statements, call Open instead of ExecSQL.
ExecSQL prepares the statement in SQL property for execution if it has not already been
prepared. To speed performance, an application should ordinarily call Prepare before calling
ExecSQL for the first time.

TQuery::ParamByName
TQuery See also
Accesses parameter information based on a specified parameter name.
TParam* __fastcall ParamByName(const System::AnsiString Value);
Description
Call ParamByName to set or use parameter information for a specific parameter based on its
name. Value is the name of the parameter for which to retrieve information. ParamByName is
used to set an parameter’s value at runtime. For example, the following statement retrieves the
current value of a parameter called “Contact” into an edit box:
Edit1->Text = Query1->ParamsByName("Contact")->AsString;

TQuery::Prepare
TQuery See also
Sends a query to the Borland Database Engine (BDE) and the server for optimization prior to
execution.
void __fastcall Prepare(void);
Description
Call Prepare to have the BDE and a remote database server allocate resources for the query
and to perform additional optimizations. Calling Prepare before executing a query improves
application performance.
Note
Borland C++Builder automatically prepares a query if it is executed without first being prepared.
Preparing a query consumes some database resources, so it is good practice for an application
to unprepare a query once it is done using it. The UnPrepare method unprepares a query.
Note
When you change the text of a query at runtime, the query is automatically closed and
unprepared.

TQuery::TQuery
TQuery See also
Creates an instance of a query component.
__fastcall virtual TQuery(Classes::TComponent* AOwner);
Description
Call TQuery to instantiate a query declared in an application. TQuery calls the constructor of its
parent object, creates an empty SQL statement list, an empty parameter list, sets the OnChange
event handler for the SQL statement list, establishes a data link, sets the RequestLive property
to false, sets the ParamCheck property to true, and sets the RowsAffected property to -1.

TQuery::UnPrepare
TQuery See also
Frees the resources allocated for a previously prepared query.
void __fastcall UnPrepare(void);
Description
Call UnPrepare to free the resources allocated for a previously prepared query on the server and
client sides.
Note
An application must call UnPrepare prior to changing any parameter information for a previously
prepared query. When a query is unprepared, all current parameter information is lost.
Preparing a query consumes some database resources, so it is good practice for an application
to unprepare a query once it is done using it. The UnPrepare method unprepares a query.
Note
When you change the text of a query at runtime, the query is automatically closed and
unprepared.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TDataSet
TDBDataSet

TQuery example
TQuery

TRadioButton
Hierarchy Properties Methods Events
The TRadioButton component is a Windows radio button. Use radio buttons to present a set of
mutually exclusive options to the user—that is, only one radio button in a set can be selected at
any time. When the user selects a radio button, the previously selected radio button becomes
unselected.
Header
vcl/stdctrls.hpp
Description
Radio buttons are frequently grouped in a group box (TGroupBox). Add the group box to the
form first, then choose the radio buttons from the Component palette and put them in the group
box.
The text associated with the radio button that identifies its purpose is the value of the Caption
property.
When the user selects a radio button, the value of the Checked property changes. Also, the
OnClick event occurs. If you check a radio button, all other radio buttons in the same group
become unchecked. By default, all radio buttons that are directly contained by the same
windowed control container, such as a TForm, TGroupBox, or TPanel, are grouped. For
example, two radio buttons on a form can be checked at the time only if they are contained in
separate containers, such as two different group boxes.

TRadioButton properties
TRadioButton Alphabetically Legend

In TRadioButton
Alignment
Checked

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect

Caption
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TRadioButton properties
TRadioButton By object Legend

Alignment
Align
BoundsRect

Brush
Caption
Checked
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
Enabled
Font

Handle
Height
HelpContext
Hint
Left
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Visible
Width

TRadioButton::Alignment
TRadioButton See also Example
Determines the alignment of the caption relative to the radio button.
__property Classes::TLeftRight Alignment;
Description
For radio buttons, the control's caption is always left-aligned within the text area.
These are the possible values:
Value Meaning

taLeftJustify The caption appears to the left of the radio button.
taRightJustify The caption appears to the right of the radio button.

TRadioButton::Checked
TRadioButton Example
Determines whether an option is selected.
__property bool Checked;
Description
These are the possible values:
Value Meaning

true A black circle appears in the radio button, indicating that the option is
selected.

false No black circle appears in the radio button, indicating the option is not
selected.

TRadioButton events
TRadioButton Alphabetically Legend

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TRadioButton events
TRadioButton By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TRadioButton methods
TRadioButton Alphabetically

In TRadioButton
~TRadioButton
TRadioButton

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TRadioButton methods
TRadioButton By object

~TRadioButton
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TRadioButton
UpdateControlState
Update

TRadioButton::~TRadioButton
TRadioButton
~TRadioButton frees the memory associated with the TRadioButton object. Do not call ~
TRadioButton directly. Instead, use the delete keyword on the object, which causes ~TRadioButton to
be invoked automatically.
__fastcall virtual ~TRadioButton(void);Alignment property, ControlStyle property, Height
property, Width property

TRadioButton::TRadioButton
TRadioButton
Constructs a radio button component.
__fastcall virtual TRadioButton(Classes::TComponent* AOwner);
Description
TRadioButton calls the constructor of its parent object and then sets the initial values for the
radio button, such as the Width and Height property values to 113 pixels and 17 pixels,
respectively, the ControlStyle set to csSetCaption and csDoubleClicks, and the Alignment
property value to taLeftJustify.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TButtonControl

TRadioButton example
TRadioButton

TRadioGroup
Hierarchy Properties Methods Events See also
TRadioGroup represents a group of radio buttons that function together.
Header
vcl/extctrls.hpp
Description
A TRadioGroup object is a special group box that contains only radio buttons. Radio buttons that
are placed directly in the same control component are said to be “grouped.” When the user
checks a radio button, all other radio buttons in its group become unchecked. Hence, two radio
buttons on a form can be checked at the same time only if they are placed in separate
containers, such as group boxes.
To add radio buttons to a TRadioGroup, edit the Items property in the Object Inspector. Each
string in Items makes a radio button appear in the group box with the string as its caption. The
value of the ItemIndex property determines which radio button is currently selected.
You can display the radio buttons in a single column or in multiple columns by setting the value
of the Columns property.
TRadioGroup publishes the protected properties of TCustomRadioGroup, but doesn’t modify
their behavior.

TRadioGroup properties
TRadioGroup Alphabetically Legend

Derived from TCustomRadioGroup
Columns
ItemIndex
Items

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
Caption
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TRadioGroup properties
TRadioGroup By object Legend

Align
BoundsRect

Brush
Caption
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color
Columns

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
Enabled
Font

Handle
Height
HelpContext
Hint
ItemIndex
Items
Left
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Visible
Width

TRadioGroup events
TRadioGroup Alphabetically Legend

Derived from TWinControl
OnEnter
OnExit

Derived from TControl
OnClick
OnDragDrop
OnDragOver
OnEndDrag
OnStartDrag

TRadioGroup events
TRadioGroup By object Legend

OnClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnStartDrag

TRadioGroup methods
TRadioGroup Alphabetically Legend

In TRadioGroup
~TRadioGroup
TRadioGroup

Derived from TCustomRadioGroup
CanModify

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent

HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TRadioGroup methods
TRadioGroup By object Legend

~TRadioGroup
Assign
BeginDrag
BringToFront
Broadcast
CanFocus

CanModify
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler

DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform
Realign

Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TRadioGroup
UpdateControlState
Update

TRadioGroup::~TRadioGroup
TRadioGroup
~TRadioGroup frees the memory associated with the TRadioGroup object. Do not call ~
TRadioGroup directly. Instead, use the delete keyword on the object, which causes ~
TRadioGroup to be invoked automatically.
__fastcall virtual ~TRadioGroup(void);

TRadioGroup::TRadioGroup
TRadioGroup
TRadioGroup creates a new TRadioGroup object.
__fastcall virtual TRadioGroup(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Protected

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl
TCustomGroupBox
TCustomRadioGroup

TRadioGroup example
TRadioGroup

TReader
Hierarchy Properties Methods Events See also
TReader is a specialized filer object that reads data from an associated stream.
Header
vcl/classes.hpp
Description
TReader is used internally by the VCL streaming system to read data from a stream for the
purpose of restoring the state of a component that has been written to a stream. TReader is a
helper object for streams that handles the mechanics of reading the data associated with a
component from the stream. It is the reader object, rather than the stream object, that is
responsible for handling the complexities of streaming components. These include methods for:
• Creating component instances from class names read from the stream.
• Assigning stream data to published component properties.
• Enabling an object to store hidden or complex data as if they were actual properties of the

object.
• Resolving references between components, as in a property that refers to another component.
Other methods and properties of TReader are used for triggering the reader object's events and
interacting with the stream.
Users do not directly create reader objects. The constructor for TReader takes a stream as a
parameter. Readers are automatically created in stream object methods or in global routines that
initiate the streaming process. These include:
• Calling the global routine ObjectBinaryToText procedure, which directly creates a reader

object.
• Calling the global ReadComponentResFile function, which creates a file stream object that

creates a reader object.
• Calling TStream.ReadCompoennt, which creates a reader object.
The reader constructor takes a stream as a parameter. This represents the associated stream.
Therefore reader objects will always have an associated stream object, and once the streaming
process is underway users do not need to directly manipulate reader objects. The interaction
between the reader, component, and stream objects happens automatically in methods of these
objects that make calls to each other.

TReader properties
TReader Alphabetically

In TReader
Owner
Parent
Position

Derived from TFiler
Ancestor
IgnoreChildren
Root

TReader properties
TReader By object

Ancestor
IgnoreChildren
Owner
Parent
Position
Root

TReader::Owner
TReader See also
Owner stores the component that is assigned as the Owner property of all components read
from the reader object's stream.
__property TComponent* Owner;
Description
Owner is used internally by the VCL streaming system to determine which components are
streamed. All components owned by the Root component are handled by the streaming process.
Owner is the Owner property of the component being streamed. It is assigned a value from its
Reader object. When a reader creates a new component instance, the Component.Owner is
assigned the Reader.Owner. If Reader.Owner is NULL, then the Reader.Root is assigned to the
Owner property.
For most components, Owner is NULL. For components that can contain components that are
not owned by the Root form, such as the pages of a tabbed notebook, the Owner is not the
same as the Root. The GetChildOwner method of the component determines the Owner.

TReader::Parent
TReader See also Example
Parent stores the component that will be assigned as the Parent property of all controls read
from the reader object's stream.
__property TComponent* Parent;
Description
Parent is used internally by the VCL streaming system. The value of the Parent property is
determined by the order of the components being read in from the stream. The Parent
relationship determines the visual containment scheme of components.

TReader::Position
TReader See also Example
Position represents the current reading position in the associated stream.
__property long Position;
Description
Position is used to track the reader’s position within the stream. The value of Position will
always be inside the most recent buffer block read. Thus for reading Position will always be less
than the stream's Position.

TReader events
TReader Alphabetically

In TReader
OnError
OnFindMethod
OnSetName

TReader events
TReader By object

OnError
OnFindMethod
OnSetName

TReader::OnError
TReader See also
OnError occurs whenever a reader object encounters an error reading its data, such as reading
the name of an undeclared property or an illegal value.
__property TReaderError OnError;
Description
OnError is used internally by the Borland C++Builder environment to report errors. It can also be
used to write an event handler to selectively choose to process or ignore errors.
The last parameter passed to the OnError event handler is a var parameter called Handled. By
default, the Error method passes false in Handled, but a handler that corrects the error or
chooses to ignore the error can set Handled to true, which prevents further processing of the
error. If the event handler returns with Handler still set to false, the reader object raises an
EReadError exception.

TReader::OnFindMethod
TReader See also
OnFindMethod occurs each time the reader object reads an event, which is a method-pointer
property, for an object.
__property TFindMethodEvent OnFindMethod;
Description
OnFindMethod is used internally by the Borland C++Builder environment for reading events. It
can also be used to write a handler to ask the user how to handle missing methods.
If the reader cannot locate the named method assigned to the method pointer, it sets the Error
parameter to the OnFindMethod handler to true. The handler can set Error to false, which
prevents FindMethod from raising an exception when the handler returns.

TReader::OnSetName
TReader See also
OnSetName occurs just before the reader object sets the Name property of a component it
reads from its stream.
__property TSetNameEvent OnSetName;
Description
OnSetName is used by internally by the Borland C++Builder environment to handle duplicate
names of components and forms. It can also be used to write an event handler to perform
special processing just before the Name property is set for the component which has just been
created and is about to have its properties read from the stream.
The Name parameter to the OnSetName event handler is a var parameter, so the handler can
change the name before the reader assigns it to the component. For example, OnSetName is
useful for filtering all the component names in a form, to add or change part of the string.

TReader methods
TReader Alphabetically Legend

In TReader
~TReader
BeginReferences
DefineBinaryProperty
DefineProperty
EndOfList
EndReferences
Error
FindMethod
FixupReferences
FlushBuffer
NextValue
Read
ReadBoolean
ReadChar
ReadComponent
ReadComponents

ReadFloat
ReadIdent
ReadInteger
ReadListBegin
ReadListEnd
ReadPrefix
ReadRootComponent
ReadSignature
ReadStr
ReadString
ReadValue

SetName
TReader

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TReader methods
TReader By object Legend

~TReader
BeginReferences
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DefineBinaryProperty
DefineProperty
Dispatch
EndOfList
EndReferences
Error
FieldAddress
FindMethod
FixupReferences
FlushBuffer
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
NextValue
ReadBoolean
ReadChar
ReadComponents
ReadComponent

ReadFloat
ReadIdent
ReadInteger
ReadListBegin
ReadListEnd
ReadPrefix
ReadRootComponent
ReadSignature
ReadString
ReadStr
Read
ReadValue

SetName
TReader

TReader::~TReader
TReader See also
~TReader moves the current position of the stream begin read back to the beginning before
calling the inherited ~TReader.
__fastcall virtual ~TReader(void);
Description
It is not recommended to call ~TReader directly. Call Free instead to ensure that the object
instance is not NULL before ~TReader is called.

TReader::BeginReferences
TReader See also
BeginReference starts a block of commands that read components that might contain references
to other components.
void __fastcall BeginReferences(void);
Description
Do not call BeginReferences directly. BeginReferences is used internally in Borland C++Builder
for streaming properties that reference other components.
Following the call to BeginReferences, the reader object creates a list of all the objects read and
their names. After all of the interdependent objects are read, FixupReferences is called to
resolve the named references from the stream into instance references. Finally, call
EndReferences to dispose of the fixup list.
BeginReferences is always used together with FixupReferences and EndReferences in a try..
finally block.

TReader::DefineBinaryProperty
TReader See also
DefineBinaryProperty defines binary data the reader object reads as if the data were a property.
virtual void __fastcall DefineBinaryProperty(const System::AnsiString
Name, TStreamProc ReadData, TStreamProc WriteData, bool HasData);

Description
DefineBinaryProperty is called internally by the DefineProperties method of an object that has
data it needs to store. Users would call DefineBinaryProperty directly when implementing a
component with a large custom data (like a bitmap), in the component’s DefineProperties
method. This is the only context in which DefineBinaryProperty (or DefineProperty) should be
used.
DefineProperties takes a generic filer object as its parameter. For reading binary data
DefineProperties takes a TReader object and calls the TReader or TFiler DefineBinaryProperty
method of the reader object. DefineBinaryProperty then reads the property’s name and it’s
data and passes the data to the indicated ReadData method.
The Name parameter specifies the name of the “fake” property to be read from the stream. A
“fake” property is a property that is not published, and that exists only in the code for the
DefineBinaryProperty method. The Top and Left properties of a non-visual component are
examples of “fake” properties. These are also called “defined properties” or “custom defined
properties.”
The TStreamProc type is the type of the ReadData and WriteData parameters. It is the method-
pointer type that points to a procedure (defined in the component object) that reads or writes a
binary representation of the object's data directly to or from the stream passed to them in the
Stream parameter. For TReader the WriteData parameter is ignored.
The HasData parameter determines at runtime whether the “fake” property has data to store
(write). For TReader the HasData parameter is ignored.
When writing a component that has special (large) data storage requirements, DefineProperties
can be overridden. For each special or “fake” property item, call the Filer.DefineProperty
method or Filer.DefineBinaryProperty. For the ReadData and WriteData parameters, pass in
methods of the component that know how to handle that special data type. When reading,
ReadData will be called. When writing, WriteData will be called.
Defined binary properties are quite rare. VCL objects that store graphics as binary data are the
most common use of filer objects to store and retrieve that data. More commonly objects use the
DefineProperty method. The difference between DefineBinaryProperty and DefineProperty is
that the component reads or writes the binary property directly to or from a memory stream
object, rather than going through a filer object. Binary data is also harder to edit as text.
Note
Streamable objects that are descended from TPersistent inherit a DefineProperties method,
however DefineProperties does nothing until TComponent. Therefore, it is component objects
DefineProperties method that calls the reader’s DefineBinaryProperty when reading binary
data.

TReader::DefineProperty
TReader See also
DefineProperty defines data the reader object reads as if the data were a property.
virtual void __fastcall DefineProperty(const System::AnsiString Name,
TReaderProc ReadData, TWriterProc WriteData, bool HasData);

Description
DefineProperty is called internally by the DefineProperties method of an object that has data it
needs to store. DefineProperties takes a generic filer object as its parameter. For reading data
DefineProperties takes a TReader object and then it calls the DefineProperties method of the
reader object. DefineProperty then reads the property’s name and it’s data.
The Name parameter specifies the name of the “fake” property to be read from the stream.
The TReaderProc type is the type of the ReadData parameter. It is the method-pointer type that
points to a procedure (defined in the storing object) that reads the object's data, that represents
a property value, to the reader object. For TReader the WriteData parameter is ignored.
The HasData parameter determines at runtime whether the “fake” property has data to store
(write).For TReader the HasData parameter is ignored.
The difference between DefineBinaryProperty and DefineProperty is that the binary property is
read directly from a stream object, rather than going through a filer object, and binary data is
harder to edit as text.

TReader::EndOfList
TReader See also
EndOfList indicates the end of a group of items that are sequentially read from the stream.
bool __fastcall EndOfList(void);
Description
EndOfList is used by other methods that iterate through a list of items when reading in data. It
checks for a value type that signals the end of that type of data. EndOfList returns true if the
reader object has read to the end of a list of items.
When reading a list of items, the reader object's ReadListBegin method is called, then the items
are repeatedly read until EndOfList returns true. Then ReadListEnd is called.
Note
Component writers can use this in their defined property ReadData methods, as for example,
with TStrings.

TReader::EndReferences
TReader See also
EndReferences terminates a block of code that reads components from the reader object's
stream that might contain references to each other.
void __fastcall EndReferences(void);
Description
EndReferences is used for streaming properties that reference another component. Users
should not need to call EndReferences directly.
The reader object calls EndReferences and creates a list of all the objects read and their names.
After all the interdependent objects are read, FixupReferences is called to resolve the named
references from the stream into instance references. Finally, call EndReferences to dispose of
the fixup list.
EndReferences is always used in the finally part of a try..finally block that also includes calls to
BeginReferences and FixupReferences.

TReader::Error
TReader See also
Error is the implementation method for the reader object's OnError event.
virtual bool __fastcall Error(const System::AnsiString Message);
Description
The reader object calls Error whenever it encounters a problem reading a component or a
property. By default, Error sets its return value to false, then calls any handler attached to the
OnError event, which can change the return value.
Use Error to change the return value that indicates whether to continue error processing. A
return value of true indicates that the application should continue to treat the condition as an
error. A return value of false indicates that the error condition is either fixed or should be ignored.
Note
This method is virtual only for the design-time environment. Users would not create descendent
classes of a TReader object.

TReader::FindMethod
TReader See also
FindMethod returns a pointer to a method for a specified component.
virtual void * __fastcall FindMethod(TComponent* Root, const System::
AnsiString MethodName);

Description
FindMethod is used by the reader object when it reads a property that is a method pointer (that
is, usually an event). After reading the name of the assigned method (the event handler), the
reader calls FindMethod to get the address of the method in the root object (the form).
FindMethod returns a pointer to the method, for the component passed in Root, that has the
name passed in MethodName. Then it calls the event handler attached to the OnFindMethod
event, if any. If FindMethod cannot locate the named method and the OnFindMethod handler
does not clear its error flag, FindMethod raises an EReadError exception.
To customize the processing of method pointers read from the reader object, write an event
handler for OnFindMethod.

TReader::FixupReferences
TReader See also
FixupReferences is used to resolve references when streaming properties that are represented
by another component.
void __fastcall FixupReferences(void);
Description
FixupReferences is used internally by the streaming system to resolve the named references
from the stream into instance references. Users would never need to call this method.
The reader object calls BeginReferences and creates a list of all the objects read and their
names. After all the interdependent objects are read, FixupReferences is called to resolve the
references among various mutually dependent components read from the reader object's stream
after all of the objects have been read. Finally, call EndReferences to dispose of the fixup list.
FixupReferences is always used inside a try..finally block between calls to BeginReferences and
EndReferences.

TReader::FlushBuffer
TReader See also
FlushBuffer synchronizes the reader’s buffer with its stream’s buffer.
virtual void __fastcall FlushBuffer(void);
Description
FlushBuffer synchronizes the reader's buffer with the associated stream by setting the stream’s
Position to match the reader’s Position.

TReader::NextValue
TReader See also
NextValue returns the type of the next item in the reader object's stream without moving the
position of the stream.
TValueType __fastcall NextValue(void);
Description
NextValue is used internally by reader methods to query the type of the next item in the stream.
After identifying the type of the next item, NextValue returns with the stream position still before
the value-type indicator.
The TValueType type defines the kinds of values written to and read from filer objects. Borland
C++Builder's filers use a tagged value system, where each value on the stream is preceded by a
prefix indicating its type. Those prefixes are of type TValueType.

TReader::Read
TReader See also
Read is used internally by other methods to handle the reading of data.
void __fastcall Read(void *Buf, long Count);
Description
Do not call read directly. Read is used internally to read data from the stream. Many other writer
methods call Read, usually after setting pertinent values or verifying data types.

TReader::ReadBoolean
TReader
ReadBoolean reads a boolean value from the reader object's stream and returns that boolean
value.
bool __fastcall ReadBoolean(void);
Description
ReadBoolean is a helper method used by other reader methods to read a tagged character
value at the current reader Position.See also
ReadChar method, ReadIdent method, ReadInteger method, ReadStr method, ReadString

method

TReader::ReadChar
TReader See also
ReadChar reads a character from the reader object's stream and returns that character value.
char __fastcall ReadChar(void);
Description
ReadChar is a helper method used by other reader methods to read a tagged character value at
the current reader Position. ReadChar first checks the value type (TValueType) by calling the
ReadValue method. If the item is a vaString ReadString checks the length. If the length indicates
that the value is a char, it calls Read and returns the character. Otherwise a EReadError
exception is raised.
Note
If the tagged data is a string with length = 1, it is char compatible. If length > 1, it is an error,
however, the rest of the string data must be read to keep the reader in a consistent state. Each
action that processes tagged data must leave the reader Position at the start of the next unread
tag.

TReader::ReadComponent
TReader See also
ReadComponent reads the component specified by Instance from the stream and returns the
component.
TComponent* __fastcall ReadComponent(TComponent* Component);
Description
ReadComponent is used internally by ReadRootComponent to read each of the components
owned by Root. Users would not need to call ReadComponent directly.
ReadComponent handles the loading and initialization process for each component. After
loading all the components in the list, ReadComponents calls the Loaded method of each loaded
component in the order it read them. ReadComponent manages the complexities of reading the
component from the stream through calls to other reader methods and to the component’s
methods.

TReader::ReadComponents
TReader
ReadComponents reads a list of owned components from the reader object's associated stream.
void __fastcall ReadComponents(TComponent* AOwner, TComponent* AParent,
TReadComponentsProc Proc);

Description
ReadComponents is used internally by the Borland C++Builder environment for design-time
streaming. Do not call ReadComponents directly.
ReadComponents first sets the reader object's Root and Owner properties to the component
passed in the AOwner parameter and sets its Parent property to AParent. Next
ReadComponents reads components by calling the ReadComponent method, passing each
returned component to the method passed in Proc.
Note
ReadComponents is used at design-time for Clipboard cut and paste of multiple components.

TReader::ReadFloat
TReader See also
ReadFloat reads a floating-point number from the reader object's stream and returns its value.
long double __fastcall ReadFloat(void);
Description
ReadFloat is a helper method used by other reader methods to read a tagged floating-point data
value at the current reader Position. ReadFloat first checks the value type (TValueType) by
calling the ReadValue method. If the item is a vaExtended ReadFloat calls Read and returns the
float value. Otherwise it calls ReadInteger.

TReader::ReadIdent
TReader See also
ReadIndent reads an identifier from the reader object's stream and returns the identifier.
System::AnsiString __fastcall ReadIdent(void);
Description
ReadIndent is a helper method used by other reader methods to read an identifying type at the
current reader Position. ReadIndent first checks the value type (TValueType) by calling the
ReadValue method. If the item is:
• A vaIdent type, ReadIndent calls Read and returns the identifier string value.
• A vaFalse type, ReadIdent returns the string ‘false.’
• A vaTrue type, ReadIdent returns the string ‘true.’
• A vaNil type, ReadIdent returns the string ‘NULL.’
Otherwise if raises a EReadError exception.

TReader::ReadInteger
TReader See also
ReadInteger reads an integer-type number from the reader object's stream and returns its value.
long __fastcall ReadInteger(void);
Description
ReadInteger is a helper method used by other reader methods to read a tagged integer value at
the current reader Position. ReadInteger first checks the value type (TValueType) by calling the
ReadValue method. If the item is a vaString or a vaInt8, vaInt16 or vaInt32 type, ReadInteger
calls Read and returns the integer value. Otherwise if raises a EReadError exception.

TReader::ReadListBegin
TReader See also
ReadListBegin reads a start-of-list marker from the reader object's associated stream.
void __fastcall ReadListBegin(void);
Description
ReadListBegin is used by other methods that iterate through a list of items to ensure that the
type about to be read is a list. ReadListBegin is also used by component writers in defined
property ReadData methods.
If the next item in the stream is not a start-of list marker as written by the WriteListBegin method,
ReadListBegin raises an EReadError exception.
A call to ReadListBegin is generally followed by a reading loop that terminates when the
EndOfList method returns true, indicating that an end-of-list marker is next on the stream, at
which point a call to ReadListEnd is required.

TReader::ReadListEnd
TReader See also
ReadListEnd reads an end-of-list marker from the reader object's associated stream.
void __fastcall ReadListEnd(void);
Description
ReadListEnd is used by other methods that iterate through a list of items to signal the end of a
group of items being read. ReadListEnd is also used by component writers in defined property
ReadData methods.
A call to ReadListEnd is generally preceded by a reading loop that terminates when the
EndOfList method returns true, indicating that an end-of-list marker is next on the stream.
If the item read is not an end-of-list marker, ReadListEnd raises an EReadError exception. A call
to ReadListEnd must correspond to a preceding call to ReadListBegin.

TReader::ReadPrefix
TReader See also
ReadPrefix reads preliminary information concerning form inheritance for a component.
void __fastcall ReadPrefix(TFilerFlags *Flags, int &AChildPos);
Description
ReadPrefix is used internally by the Borland C++Builder streaming system. It is called
automatically by ReadComponent to read two flags to determine whether a component is a
component in an inherited form and whether its creation order in the form is important. It also
reads the component’s position in the ancestor form's creation order. When a writer object
writes a component to its stream, it prefaces the component with these flags.
The TFilerFlags type is the type of the Flags parameter.

TReader::ReadRootComponent
TReader See also
ReadRootComponent reads a component and all its owned components from the reader object's
stream.
TComponent* __fastcall ReadRootComponent(TComponent* Root);
Description
Do not call ReadRootComponent directly. It is used internally by the streaming system. When
the reader object is created by its stream in TStream.ReadComponent, it immediately calls the
ReadRootComponent method, which initiates the streaming sequence of restoring an object.
ReadRootComponent first calls the ReadSignature method to ensure that it is reading a proper
component. ReadRootComponent also handles initializations and fixup references. For example,
the component passed in Root becomes the value of the Root property for the reader object.
ReadRootComponent calls the component’s ReadState method, which calls back to TReader.
ReadData. TComponent.ReadState is virtual, thus providing an opportunity for the component to
prepare itself for being loaded with the new data from the stream.

TReader::ReadSignature
TReader See also
ReadSignature reads a Borland C++Builder filer signature from the reader object's associated
stream.
void __fastcall ReadSignature(void);
Description
ReadSignature is used by several routines to ensure that the file about to be read is a valid
Borland C++Builder component stream. For example, ReadRootComponent, calls
ReadSignature before reading its component from the stream. By checking for the signature
before loading objects, the reader object can guard against inadvertently reading invalid or
corrupted data.
The signature is a four-character sequence. For this version of Borland C++Builder, the
signature is 'TPF0'.

TReader::ReadStr
TReader See also
ReadStr is used internally by certain Borland C++Builder components to read a string value.
System::AnsiString __fastcall ReadStr(void);
Description
Do not call ReadStr directly. ReadStr is for internal use by certain VCL components.
Caution
Always use ReadString for reading component strings to streams. ReadStr can corrupt data if
not used correctly.

TReader::ReadString
TReader See also
ReadString reads a tagged string value written by WriteString from the reader object's stream
and returns its contents.
System::AnsiString __fastcall ReadString(void);
Description
ReadString is a helper method used by other reader methods to read a string at the current
reader Position. ReadString first checks the value type (TValueType) by calling the ReadValue
method. If the item is a vaString or a vaLString type ReadString calls Read and returns the
string. Otherwise it raises a EReadError exception.
Caution
Always use ReadString for reading component strings to streams. The similarly-named ReadStr
method is for internal use only by certain VCL components.

TReader::ReadValue
TReader See also
ReadValue reads the type of the next item on the reader object's stream and returns with the
stream positioned after the value-type indicator.
TValueType __fastcall ReadValue(void);
Description
ReadValue is used by other reader methods when the subsequent processing depends upon a
type check of the data about to be read.
The TValueType type defines the kinds of values written to and read from filer objects. Borland
C++Builder's filers use a tagged value system, where each value on the stream is preceded by a
prefix indicating its type. Those prefixes are of type TValueType.

TReader::SetName
TReader See also
SetName allows a reader object to change the names of components being read from the
associated stream before assigning them to the Name properties of the components.
virtual void __fastcall SetName(TComponent* Component, System::
AnsiString &Name);

Description
SetName is called by ReadComponent. After reading the name, ReadComponent passes the
name read from the stream in the Name parameter to SetName. Name is a var parameter, so
SetName can change the string before returning.
SetName also calls any event handler attached to the OnSetName event, passing the name
string in a var parameter, so the attached handler can also modify the string.

TValueType
TValueType defines the kinds of values written to and read from filer objects.
void __fastcall CheckValue(TValueType Value);
Description
TValueType is the type used by the TReader and TWriter filer objects to type- check property
values that are read from and written to streams when streaming components and their
properties.
Borland C++Builder's filers use a tagged value system, where each value on the stream is
preceded by a prefix indicating its type. Those prefixes are of type TValueType. The following
table lists the values for TValueType:
Value Meaning

vaNull identifies the type as the const variant NULL.
vaList identifies the type as a list of tagged items ending with null.
vaInt8 identifies the type as a Shortint.
vaInt16 identifies the type as a Smallint.
vaInt32 identifies the type as a Longint.
vaExtended identifies the type as a float.
vaString identifies the type as a short string
vaIdent identifies the type as a Pascal identifier string.
vaFalse identifies the type as the Boolean false.
vaTrue identifies the type as the Boolean true.
vaBinary identifies the type as a black of binary proceeded by a length count.
vaSet identifies the type as a set.
vaLString identifies the type as a long string.
vaNil identifies the type as NULL.
vaCollection identifies the type as a TCollection.

TReader::TReader
TReader See also
TReader creates a new TReader object.
__fastcall TReader(TStream* Stream, int BufSize);

Scope
Protected

Hierarchy

TObject

TFiler

TReader example
TReader

TRegIniFile
Hierarchy Properties Methods
TRegIniFile is a low-level wrapper for the Windows 95/NT system registry that is intended to
enable existing Borland C++Builder applications that used INI files to use the system registry
with a minimum of coding changes.
Header
vcl/registry.hpp
Description
TRegIniFile enables handling the Windows 95/NT system registry as if it were a Windows 3.x INI
file. Instead of processing an INI file, however, TRegIniFile reads from and writes to the system
registry.
TRegIniFile is derived from TRegistry. It inherits all of the properties and methods of TRegistry,
and adds to them the same properties and methods used by the TIniFile object. Some of the
added methods for TRegIniFile, such as ReadBool and WriteBool, override the methods of
TRegistry.
The FileName passed to a TRegIniFile object becomes a subkey under the system registry’s
root key (HKEY_CURRENT_USER by default). What corresponds to a section in an INI file is
treated as a key in the system registry, and what corresponds to data entries under a section in
an INI file are treated as data values under a key in the system registry.
TRegIniFile is particularly useful for migrating a 16-bit Windows 3.x application to Windows 95/
NT. By finding all references to TIniFile in an application’s source code, replacing them with
TRegIniFile, and recompiling the application, a developer can update an application to use the
system registry instead of INI files without having to code any new logic into the application.
Note
Information contained in existing users’ INI files is not migrated into the system registry using
the method described above.
Tip
TRegIniFile presents a simple interface to the system registry and hides the need to know about
the underlying structure of the registry. Some developers may prefer to use TRegIniFile instead
of TRegistry in their applications.

TRegIniFile properties
TRegIniFile Alphabetically Legend

In TRegIniFile
FileName

Derived from TRegistry
CurrentKey
CurrentPath

LazyWrite
RootKey

TRegIniFile properties
TRegIniFile By object Legend

CurrentKey
CurrentPath
FileName

LazyWrite
RootKey

TRegIniFile::FileName
TRegIniFile See also
Contains the name of the key opened or created in the system registry.
__property System::AnsiString FileName;
Description
Query FileName to determine the name of the key in the system registry that is the root key for
all TRegIniFile operations.

TRegIniFile methods
TRegIniFile Alphabetically

In TRegIniFile
~TRegIniFile
DeleteKey
EraseSection
ReadBool
ReadInteger
ReadSection
ReadSections
ReadSectionValues
ReadString
TRegIniFile
WriteBool
WriteInteger
WriteString

Derived from TRegistry
CloseKey
CreateKey
DeleteValue
GetDataInfo
GetDataSize
GetDataType
GetKeyInfo
GetKeyNames
GetValueNames
HasSubKeys
KeyExists
LoadKey
MoveKey
OpenKey
ReadBinaryData
ReadCurrency
ReadDate
ReadDateTime
ReadFloat
ReadTime
RegistryConnect
RenameValue
ReplaceKey
RestoreKey
SaveKey
UnLoadKey
ValueExists
WriteBinaryData
WriteCurrency
WriteDate
WriteDateTime
WriteFloat
WriteTime

Derived from TObject
ClassInfo

ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TRegIniFile methods
TRegIniFile By object

~TRegIniFile
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CloseKey
CreateKey
DefaultHandler
DeleteKey
DeleteValue
Dispatch
EraseSection
FieldAddress
FreeInstance
Free
GetDataInfo
GetDataSize
GetDataType
GetKeyInfo
GetKeyNames
GetValueNames
HasSubKeys
InheritsFrom
InitInstance
InstanceSize
KeyExists
LoadKey
MethodAddress
MethodName
MoveKey
NewInstance
OpenKey
ReadBinaryData
ReadBool
ReadCurrency
ReadDateTime
ReadDate
ReadFloat
ReadInteger
ReadSections
ReadSection
ReadSectionValues
ReadString
ReadTime
RegistryConnect
RenameValue
ReplaceKey

RestoreKey
SaveKey
TRegIniFile
UnLoadKey
ValueExists
WriteBinaryData
WriteBool
WriteCurrency
WriteDateTime
WriteDate
WriteFloat
WriteInteger
WriteString
WriteTime

TRegIniFile::~TRegIniFile
TRegIniFile
~TRegIniFile frees the memory associated with the TRegIniFile object. Do not call ~TRegIniFile
directly. Instead, use the delete keyword on the object, which causes ~TRegIniFile to be invoked
automatically.
__fastcall virtual ~TRegIniFile(void);

TRegIniFile::DeleteKey
TRegIniFile See also
Erases a data value that is associated with a key.
void __fastcall DeleteKey(const System::AnsiString Section, const
System::AnsiString Ident);

Description
Call DeleteKey to erase a data value associated with a key. Section is string containing the
name of the system registry key containing the value to delete. Ident is a string containing the
name of the data value to delete.
Note
DeleteKey for TRegIniFile overrides the DeleteKey method of TRegistry, from which TRegIniFile
descends. Call TRegistry::DeleteKey to access the method in the TRegistry.

TRegIniFile::EraseSection
TRegIniFile See also
Deletes a key and its data values in the system registry.
void __fastcall EraseSection(const System::AnsiString Section);
Description
Call EraseSection to remove a key and its data values from the system registry. Section
identifies the key to delete.

TRegIniFile::ReadBool
TRegIniFile See also
Retrieves a Boolean value from a specified data value associated with a key.
bool __fastcall ReadBool(const System::AnsiString Section, const
System::AnsiString Ident, bool Default);

Description
Call ReadBool to retrieve a Boolean value from a specified data value associated with a key.
Section is a string that identifies the key from which to retrieve a data value. Ident is a string that
identifies the name of the data value to return. Default is a Boolean value to use if there is no
key corresponding to Section or no data value corresponding to Ident.
Note
This function overrides the ReadBool function of TRegistry, from which TRegIniFile is derived.
Call TRegistry::ReadBool to access the method in the TRegistry.

TRegIniFile::ReadInteger
TRegIniFile See also
Retrieves an integer value from a specified data value (Ident) associated with a key (Section).
long __fastcall ReadInteger(const System::AnsiString Section, const
System::AnsiString Ident, long Default);

Description
Call ReadInteger to retrieve an integer value from a specified data value associated with a key.
Section is a string that identifies the key from which to retrieve a data value. Ident is a string that
identifies the name of the data value to return. Default is an integer value to use if there is no key
corresponding to Section or no data value corresponding to Ident.
Note
This function overrides the ReadInteger function of TRegistry, from which TRegIniFile is derived.
Call TRegistry::ReadInteger to access the method in the TRegistry.

TRegIniFile::ReadSection
TRegIniFile See also
Retrieves the names of all data values associated with a key, and stores the names in a TString
object.
void __fastcall ReadSection(const System::AnsiString Section, Classes:
:TStrings* Strings);

Description
Call ReadSection to retrieve the names of all data values associated with a key into a TString
object. Section is a string identifying the key for which to retrieve data-value names.
Strings specifies the string object to hold the retrieved names. Strings can point to a TString
object such as a string list, or to a component property, such as Items for a TListBox component,
that is a TString object itself.

TRegIniFile::ReadSections
TRegIniFile See also
Retrieves the names of all subkeys associated with the current key.
void __fastcall ReadSections(Classes::TStrings* Strings);
Description
Call ReadSections to retrieve the names of all subkeys associated with the current key.
Strings specifies the string object to hold the retrieved names. Strings can point to a TString
object, or to a component property, such as Items for a TListBox component, that is a TString
object itself.

TRegIniFile::ReadSectionValues
TRegIniFile See also
Retrieves the data-values associated with a specified key, and stores the retrieved values in a
string object.
void __fastcall ReadSectionValues(const System::AnsiString Section,
Classes::TStrings* Strings);

Description
Call ReadSectionValues to read all data values associated with a specified key into a string
object. Section is the name of the key from which to retrieve data-values. Strings specifies the
string object to hold the retrieved values.
Strings can point to a TString object, or to a component property, such as Items for a TListBox
component, that is a TString object itself. Use the Values property of the string object to access
a specific string in the object.

TRegIniFile::ReadString
TRegIniFile See also
Retrieves a string value from a specified data value (Ident) associated with a key (Section).
System::AnsiString __fastcall ReadString(const System::AnsiString
Section, const System::AnsiString Ident, const System::AnsiString
Default);

Description
Call ReadString to retrieve a string value from a specified data value associated with a key.
Section is a string that identifies the key from which to retrieve a data value. Ident is a string that
identifies the name of the data value to return. Default is a string value to use if there is no key
corresponding to Section or no data value corresponding to Ident.
Note
This function overrides the ReadString function of TRegistry, from which TRegIniFile is derived.
Call TRegistry::ReadString to access the method in the TRegistry.

TRegIniFile::TRegIniFile
TRegIniFile See also
Creates a TRegIniFile object for an application.
__fastcall TRegIniFile(const System::AnsiString FileName);
Description
Call TRegIniFile to construct a TRegIniFile object for an application. TRegIniFile creates an
additional property, FileName, which is used to specify the name of the key to open or create in
the registry.

TRegIniFile::WriteBool
TRegIniFile See also
Writes a Boolean value to a specified data value associated with a specified key.
void __fastcall WriteBool(const System::AnsiString Section, const
System::AnsiString Ident, bool Value);

Description
Call WriteBool to store a Boolean value in a data value associated with a specified key.
Section is a string identifying the key into which to store a data value. Ident is a string identifying
the name of the data value into which to write. Value is the Boolean value to write into the data
value.
Note
This function overrides the WriteBool procedure of TRegistry, from which TRegIniFile is derived.
Call TRegistry::WriteBool to access the method in the TRegistry.

TRegIniFile::WriteInteger
TRegIniFile See also
Writes a long integer value to a specified data value associated with a specified key.
void __fastcall WriteInteger(const System::AnsiString Section, const
System::AnsiString Ident, long Value);

Description
Call WriteInteger to store an integer value in a data value associated with a specified key.
Section is a string identifying the key into which to store a data value. Ident is a string identifying
the name of the data value into which to write. Value is the integer value to write into the data
value.
Note
This function overrides the WriteInteger procedure of TRegistry, from which TRegIniFile is
derived. Call TRegistry::WriteInteger to access the method in the TRegistry.

TRegIniFile::WriteString
TRegIniFile See also
Writes a string value to a specified data value associated with a specified key.
void __fastcall WriteString(const System::AnsiString Section, const
System::AnsiString Ident, const System::AnsiString Value);

Description
Call WriteString to store a string value in a data value associated with a specified key.
Section is a string identifying the key into which to store a data value. Ident is a string identifying
the name of the data value into which to write. Value is the string value to write into the data
value.
Note
This function overrides the WriteString procedure of TRegistry, from which TRegIniFile is
derived. Call TRegistry::WriteString to access the method in the TRegistry.

Accessibility
Read-only

Hierarchy

TObject

TRegistry

TRegIniFile example
TRegIniFile

TRegistry
Hierarchy Properties Methods
The TRegistry object is a low-level wrapper for the MicrosoftWindows95/NT system registry and
functions that operate on the registry.
Header
vcl/registry.hpp
Description
Use TRegistry to encapsulate access to the Windows 95/NT system registry in an application.
The registry is a database that an application can use to store and retrieve configuration
information. Configuration information is stored in a hierarchical tree. Each node in the tree is
called a key. Every key can contain subkeys and data values that represent part of the
configuration information for an application.
All keys that an application creates, opens, reads, or writes are subkeys of predefined root keys.
By default, a TRegistry object is created with a root key of HKEY_CURRENT_USER.
Only one key is accessible at a time in a TRegistry object. To determine the key that is currently
accessible, read the value of the CurrentKey property. TRegistry methods enable an application
to open, close, save, move, copy, and delete keys.
One or more data values containing actual configuration information can be stored in a key.
TRegistry methods enable an application to query a key to see if it contains data, to read data in
a key, and to write data to a key.

TRegistry properties
TRegistry Alphabetically Legend

In TRegistry
CurrentKey
CurrentPath

LazyWrite
RootKey

TRegistry properties
TRegistry By object Legend

CurrentKey
CurrentPath

LazyWrite
RootKey

TRegistry::CurrentKey
TRegistry See also
Reports the registry key that is currently open.
__property HKEY CurrentKey;
Description
Use CurrentKey to determine the registry key that is currently open. All operations performed by
TRegistry affect only the current key. To access another key, call the OpenKey method.

TRegistry::CurrentPath
TRegistry See also
Returns the registry path associated with the current key.
__property System::AnsiString CurrentPath;
Description
Use CurrentPath to determine the registry path of the current key. The system registry is
hierarchical, and CurrentPath returns a string that spells out the hierarchy of keys from the root
key to the current key, inclusive.
CurrentPath is automatically reset each time a different key becomes the current key.

TRegistry::LazyWrite
TRegistry See also
Specifies how keys are written to the registry when calling the CloseKey method.
__property bool LazyWrite;
Description
Use LazyWrite to specify how keys are written to the registry. By default, LazyWrite is true when
a registry object is first created. When LazyWrite is true, keys are written to the registry when
they are closed, but the CloseKey method may return before the write operation takes place.
When LazyWrite is false, keys are written to the registry before CloseKey returns. Set LazyWrite
to false only when absolutely necessary. Setting LazyWrite to false guarantees that the changes
an application makes to keys are written to the registry before further application processing
takes place, but it uses more system resources when keys are closed. If LazyWrite is false, and
an application is displaying or changing many registry entries, there will be a degradation to
application performance.

TRegistry::RootKey
TRegistry See also
Specifies the root key for the TRegistry object in an application.
__property HKEY RootKey;
Description
Use RootKey to determine the hierarchy of subkeys an application can access, or to specify the
root key for the application.
By default, RootKey is set to HKEY_CURRENT_USER when the registry object is created. To
change the root key, specify a valid integer value for the RootKey property.
Note
For some operations, such as LoadKey or RegistryConnect, an application may need to change
the default value of RootKey.

TRegistry methods
TRegistry Alphabetically

In TRegistry
~TRegistry
CloseKey
CreateKey
DeleteKey
DeleteValue
GetDataInfo
GetDataSize
GetDataType
GetKeyInfo
GetKeyNames
GetValueNames
HasSubKeys
KeyExists
LoadKey
MoveKey
OpenKey
ReadBinaryData
ReadBool
ReadCurrency
ReadDate
ReadDateTime
ReadFloat
ReadInteger
ReadString
ReadTime
RegistryConnect
RenameValue
ReplaceKey
RestoreKey
SaveKey
TRegistry
UnLoadKey
ValueExists
WriteBinaryData
WriteBool
WriteCurrency
WriteDate
WriteDateTime
WriteFloat
WriteInteger
WriteString
WriteTime

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance

DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TRegistry methods
TRegistry By object

~TRegistry
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CloseKey
CreateKey
DefaultHandler
DeleteKey
DeleteValue
Dispatch
FieldAddress
FreeInstance
Free
GetDataInfo
GetDataSize
GetDataType
GetKeyInfo
GetKeyNames
GetValueNames
HasSubKeys
InheritsFrom
InitInstance
InstanceSize
KeyExists
LoadKey
MethodAddress
MethodName
MoveKey
NewInstance
OpenKey
ReadBinaryData
ReadBool
ReadCurrency
ReadDateTime
ReadDate
ReadFloat
ReadInteger
ReadString
ReadTime
RegistryConnect
RenameValue
ReplaceKey
RestoreKey
SaveKey
TRegistry
UnLoadKey

ValueExists
WriteBinaryData
WriteBool
WriteCurrency
WriteDateTime
WriteDate
WriteFloat
WriteInteger
WriteString
WriteTime

TRegistry::~TRegistry
TRegistry See also
~TRegistry frees the memory associated with the TRegistry object. Do not call ~TRegistry
directly. Instead, use the delete keyword on the object, which causes ~TRegistry to be invoked
automatically.
__fastcall virtual ~TRegistry(void);
Description
~TRegistry closes the current key and frees the resources allocated for a registry object when it
is no longer needed.

TRegistry::CloseKey
TRegistry See also
Writes the current key to the registry and closes the key.
void __fastcall CloseKey(void);
Description
Call CloseKey to write the current key to the registry and close the key. An application should
not keep keys open any longer than necessary. Many TRegistry methods routinely call CloseKey
after reading from or writing to the registry. Calling CloseKey when there is no current key has
no effect.
Note
When an application closes a key, the key is written to the registry. The LazyWrite property
determines how the write takes place.
The ~TRegistry destructor closes the key if is left open.

TRegistry::CreateKey
TRegistry See also
Creates a new key in the registry.
bool __fastcall CreateKey(const System::AnsiString Key);
Description
Use CreateKey to add a new key to the registry. Key is the name of the key to create. Key can
be an absolute or relative name. An absolute key begins with a backslash (\) and is a subkey of
the root key. A relative key is a subkey of the current key.
CreateKey returns true if key creation is successful. On error, an exception is raised, and
CreateKey returns false. Attempting to create a key that already exists has no effect.
CreateKey creates only non-volatile keys. If you need to create volatile keys on Windows NT,
you must call the Windows API directly.
CreateKey creates keys with a security access of KEY_ALL_ACCESS. If you need to create
keys with more restricted access, you must call the Windows API directly.
A key created by CreateKey has no values. To set key values, use the WriteCurrency,
WriteBinaryData, WriteBool, WriteDate, WriteDateTime, WriteFloat, WriteInteger, WriteString, or
WriteTime procedures.

TRegistry::DeleteKey
TRegistry See also
Removes a specified key and its associated data from the registry.
bool __fastcall DeleteKey(const System::AnsiString Key);
Description
Call DeleteKey to remove a specified key and its associated data, if any, from the registry. If the
key has subkeys, the subkeys and any associated data are also removed.
DeleteKey returns true if key deletion is successful. On error, DeleteKey returns false.

TRegistry::DeleteValue
TRegistry See also
Erases a data value that is associated with the current key.
bool __fastcall DeleteValue(const System::AnsiString Name);
Description
Call DeleteValue to remove a specific data value associated with the current key. Name is string
containing the name of the value to delete. Keys can contain multiple data values, and every
value associated with a key has a unique name.
DeleteValue returns true if the deletion is successful, false if the deletion fails.

TRegistry::GetDataInfo
TRegistry See also
Returns information about a specified data value associated with the current key.
bool __fastcall GetDataInfo(const System::AnsiString ValueName,
TRegDataInfo &Value);

Description
Call GetDataInfo to get information about a data value associated with the current key.
ValueName is a string containing the name of the data value to query. Value is a record of type
TRegDataInfo in which information about the data value is returned. If the data value is of type
rdString or rdExpandString, the size of the data value includes an extra byte for the terminating
null character.
GetDataInfo returns true if data value information is returned. If GetDataInfo fails, it returns false,
and the Value record is filled with zeros.
Value is a record of type TRegDataInfo that is declared in an application. Records of type
TRegDataInfo contain two fields: a field called RegData, of type TRegDataType, that specifies
the data type of the data value; and a field called DataSize that specifies the size, in bytes, of the
data value. RegData can have the following values:
Value Meaning

rdUnknown Data value type is of no defined value type.
rdString Data value type is a null-terminated string. It is a Unicode or ANSI string

depending on whether the application calls the Unicode or ANSI string
functions.

rdExpandString Data value type is a null-terminated string that contains unexpanded
references to environment variables (for example, "%PATH%"). It is a
Unicode or ANSI string depending on whether the application calls the
Unicode or ANSI string functions.

rdInteger Data value type is a32-bit number.
rdBinary Data value type is binary data, in any form.

TRegistry::GetDataSize
TRegistry See also
Returns the size, in bytes, of a specified data value associated with the current key.
int __fastcall GetDataSize(const System::AnsiString ValueName);
Description
Call GetDataSize to determine the size, in bytes, of a data value associated with the current key.
ValueName is a string containing the name of the data value to query.
On success, GetDataSize returns the size of the data value. On failure, GetDataSize returns –1.
Note
If the data value is a string, GetDataSize returns the size of the data value and one extra byte for
the terminating null character.

TRegistry::GetDataType
TRegistry See also
Returns the enumerated data type of a specified data value associated with the current key.
TRegDataType __fastcall GetDataType(const System::AnsiString ValueName)
;

Description
Call GetDataType to determine the data type of a data value associated with the current key.
ValueName is a string containing the name of the data value to query.
GetDataType returns an enumerated value of type TRegDataType. TRegDataType can be one
of the following values
Value Meaning

rdUnknown Data value type is of no defined value type.
rdString Data value type is a null-terminated string. It is a Unicode or ANSI string

depending on whether the application calls the Unicode or ANSI string
functions.

rdExpandString Data value type is a null-terminated string that contains unexpanded
references to environment variables (for example, "%PATH%"). It is a
Unicode or ANSI string depending on whether the application calls the
Unicode or ANSI string functions.

rdInteger Data value type is a32-bit number.
rdBinary Data value type is binary data, in any form.

TRegistry::GetKeyInfo
TRegistry See also
Returns information about the current key.
bool __fastcall GetKeyInfo(TRegKeyInfo &Value);
Description
Call GetKeyInfo to return all information about the current key to an application. Value is a
variable declared in an application to store the key information returned by this function. Value
must be of type TRegKeyInfo. Information returned by GetKeyInfo about the current key
includes:
• Number of subkeys
• Longest subkey name length, in characters
• Number of data values
• Longest data-value name length
• Longest data-value length
• Time of last write to the key
On success GetKeyInfo returns true. On failure it returns false, and the Value record is set to
zeroes.

TRegistry::GetKeyNames
TRegistry See also
Returns a string list containing the names of all subkeys belonging to the current key.
void __fastcall GetKeyNames(Classes::TStrings* Strings);
Description
Call GetKeyNames to determine the names of all subkeys belonging to the current key.
Determining the names of subkeys is useful in an application that iterates through a set of keys.
Strings is a variable of type TString into which to return the list of subkey names.

TRegistry::GetValueNames
TRegistry See also
Returns a string list containing the names of all data values associated with the current key.
void __fastcall GetValueNames(Classes::TStrings* Strings);
Description
Call GetValueNames to determine the names of all data values associated with the current key.
Determining the names of data values is useful in an application that iterates through a set of
data values for a key.
Strings is a variable of type TString into which to return the list of data value names.

TRegistry::HasSubKeys
TRegistry See also
Determines if the current key has subkeys.
bool __fastcall HasSubKeys(void);
Description
Call HasSubKeys to determine if the current key has any subkeys. HasSubKeys returns true if
the current key has at least one subkey. Otherwise it returns false.

TRegistry::KeyExists
TRegistry See also
Determines if a specified key exists.
bool __fastcall KeyExists(const System::AnsiString Key);
Description
Call KeyExists to determine if a key of a specified name exists. Key is the name of the key for
which to search.

TRegistry::LoadKey
TRegistry See also
Creates a subkey under the root key and loads registry information from a file into the newly
created subkey.
bool __fastcall LoadKey(const System::AnsiString Key, const System::
AnsiString FileName);

Description
Call LoadKey to:
1 Create a new subkey under the root key, and
2 Load registry information from a file into the subkey. Registry information can include data

values, subkeys, and data values for those subkeys.
LoadKey is intended to simplify creation of a key, its values and subkeys, and the values for
those subkeys in a single operation. A key, its subkeys, and all data values the key and its
subkeys is called a hive. Rather than creating each key and value separately, an application can
read a hive from a file. This is especially useful for applications that users can reconfigure at run
time.
Note
Before an application calls LoadKey the RootKey property must be set to HKEY_USERS,
HKEY_LOCAL_MACHINE, or to a key returned by a previous call to RegistryConnect.
The Key parameter is the name of the subkey to create. The FileName parameter is the location
of the file containing registry information to store in the subkey. The file specified by FileName
must be one previously created using the SaveKey function or the RegSaveKey Windows API
function. On systems that use a file allocation table (FAT), FileName cannot include an
extension.

TRegistry::MoveKey
TRegistry See also
Moves an existing key, its subkeys, and data values to a new location using a new key name.
void __fastcall MoveKey(const System::AnsiString OldName, const System:
:AnsiString NewName, bool Delete);

Description
Call MoveKey to copy or move an existing key, its subkeys, and data values to a different
location. Copying is recursive. If a key contains subkeys and data values, they too, are copied.
When the operation is complete, the new key is closed.
OldName specifies the key to copy or move. NewName specifies a name for the duplicate key to
create. If the key specified by NewName does not exist, MoveKey creates it. Delete specifies
whether to delete the old key after the copy operation. If Delete is true, the key specified by
OldName is deleted after it is copied. Otherwise the old key is closed.

TRegistry::OpenKey
TRegistry See also
Opens a specified key.
bool __fastcall OpenKey(const System::AnsiString Key, bool CanCreate);
Description
Call OpenKey to make a specified key the current key. Key is the name of the key to open. If
Key is null, the CurrentKey property is set to the key specified by the RootKey property.
CanCreate specifies whether to create the specified key if it does not exist. If CanCreate is true,
the key is created if necessary.
Key is opened or created with the security access value KEY_ALL_ACCESS. OpenKey only
creates non-volatile keys, A non-volatile key is stored in the registry and is preserved when the
system is restarted.
OpenKey returns true if the key is successfully opened or created

TRegistry::ReadBinaryData
TRegistry See also
Retrieves a binary value from a specified data value associated with the current key.
int __fastcall ReadBinaryData(const System::AnsiString Name, void *
Buffer, int BufSize);

Description
Call ReadBinaryData to read a binary value from a specified data value associated with the
current key. Name is the name of the data value to read. Buffer is the application variable into
which to read the registry data. Buffer must be large enough to hold all of the data returned.
BufSize specifies the size of Buffer.
If successful, ReadBinaryData returns the requested data. On error, an exception is raised, and
the value returned by this function should be discarded.
Note
Binary data is typically a record. It might also be an icon or a bitmap although Microsoft
recommends against storing graphics objects in the registry for performance reasons.

TRegistry::ReadBool
TRegistry See also
Retrieves a Boolean value from a specified data value associated with the current key.
bool __fastcall ReadBool(const System::AnsiString Name);
Description
Call ReadBool to read a Boolean value from a specified data value associated with the current
key. Name is the name of the data value to read.
If successful, ReadBool returns the requested Boolean value. On error, an exception is raised,
and the value returned by this function should be discarded.

TRegistry::ReadCurrency
TRegistry See also
Retrieves a currency value from a specified data value associated with the current key.
System::Currency __fastcall ReadCurrency(const System::AnsiString Name)
;

Description
Call ReadCurrency to read a Currency value from a specified data value associated with the
current key. Name is the name of the data vale to read.
If successful, ReadCurrency returns a Currency value. On error, an exception is raised, and the
value returned by this function should be discarded.

TRegistry::ReadDate
TRegistry See also
Retrieves a date value from a specified data value associated with the current key.
System::TDateTime __fastcall ReadDate(const System::AnsiString Name);
Description
Call ReadDate to read a date value from a specified data value associated with the current key.
Name is the name of the data value to read.
If successful, ReadDate returns a Borland C++Builder TDateTime value. The integral part of a
TDateTime value is the number of days that have passed since 12/30/1899. The fractional part
of a TDateTime value is the time of day.
On error, an exception is raised, and the value returned by this function should be discarded.
Note
Only use ReadDate to read data values previously stored with the WriteDate procedure.

TRegistry::ReadDateTime
TRegistry See also
Retrieves a date and time value from a specified data value associated with the current key.
System::TDateTime __fastcall ReadDateTime(const System::AnsiString
Name);

Description
Call ReadDateTime to read a datetime value from a specified data value associated with the
current key. Name is the name of the data value to read.
If successful, ReadDateTime returns a Borland C++Builder TDateTime value. The integral part
of a TDateTime value is the number of days that have passed since 12/30/1899. The fractional
part of a TDateTime value is the time of day.
On error, an exception is raised, and the value returned by this function should be discarded.

TRegistry::ReadFloat
TRegistry See also
Retrieves a float value from a specified data value associated with the current key.
double __fastcall ReadFloat(const System::AnsiString Name);
Description
Call ReadFloat to read a float value from a specified data value associated with the current key.
Name is the name of the data value to read.
If successful, ReadFloat returns a double value. On error, an exception is raised, and the value
returned by this function should be discarded.

TRegistry::ReadInteger
TRegistry See also
Retrieves an integer value from a specified data value associated with the current key.
int __fastcall ReadInteger(const System::AnsiString Name);
Description
Call ReadInteger to read an integer value from a specified data value associated with the current
key. Name is the name of the data value to read.
If successful, ReadInteger returns an int value. On error, an exception is raised, and the value
returned by this function should be discarded.

TRegistry::ReadString
TRegistry See also
Retrieves a string value from a specified data value associated with the current key.
System::AnsiString __fastcall ReadString(const System::AnsiString Name)
;

Description
Call ReadString to read a string value from a specified data value associated with the current
key. Name is the name of the data value to read.
If successful, ReadString returns a String value. On error, an exception is raised, and the value
returned by this function should be discarded.

TRegistry::ReadTime
TRegistry See also
Retrieves a time value from a specified data value associated with the current key.
System::TDateTime __fastcall ReadTime(const System::AnsiString Name);
Description
Call ReadTime to read a time value from a specified data value associated with the current key.
Name is the name of the data value to read.
If successful, ReadTime returns a Borland C++Builder TDateTime value. The integral part of a
TDateTime value is the number of days that have passed since 12/30/1899. The fractional part
of a TDateTime value is the time of day.
On error, an exception is raised, and the value returned by this function should be discarded.
Note
Only use ReadTime to read data values previously stored with the WriteTime procedure.

TRegistry::RegistryConnect
TRegistry See also
Establishes a connection to a registry on another computer.
bool __fastcall RegistryConnect(const System::AnsiString UNCName);
Description
Call RegistryConnect to establish a connection to a registry on another computer running
Windows 95 or Windows NT. UNCName is the name of the remote computer, and must take the
following form:
\\computername
where computername is the name of the remote computer. If UNCName is NULL, the local
machine name is used.
Note
Before calling RegistryConnect, an application must set the RootKey property for its registry
object to HKEY_USERS or HKEY_LOCAL_MACHINE.
If connection is successful, RegistryConnect sets the RootKey property to the root key of the
remote computer and returns true. If unsuccessful, RegistryConnect returns false, and RootKey
remains unchanged.

TRegistry::RenameValue
TRegistry See also
Changes the name of a data value associated with the current key.
void __fastcall RenameValue(const System::AnsiString OldName, const
System::AnsiString NewName);

Description
Call RenameValue to change the name of a data value associated with the current key.
OldName is a string containing the current name of the data value. NewName is a string
containing the replacement name for the data value.
If OldName is the name of an existing data value for the current key, and NewName is not the
name of an existing data value for the current key, RenameValue changes the data value name
as specified. Otherwise the current name remains unchanged.

TRegistry::ReplaceKey
TRegistry See also
Replaces the hive file backing a key and all its subkeys with a hive stored in a different file, so
that when the system is next started, the key and subkeys will have the values stored in the new
file.
bool __fastcall ReplaceKey(const System::AnsiString Key, const System:
:AnsiString FileName, const System::AnsiString BackUpFileName);

Description
Call ReplaceKey to replace the hive file backing a key and all its subkeys with a different hive
file. A hive is a discrete collection of keys, subkeys, and values that is rooted at the top of the
registry hierarchy.
FileName indicates the name of the file containing the new key and subkey information.
BackUpFileName is the name of a backup file used to store the current key and subkey
information before it is overwritten.
ReplaceKey returns true if it is successful.
Note
The file specified by FileName parameter must be created with the SaveKey function, or by
directly calling the Windows 95/NT RegSaveKey API function. Under the FAT file system
FileName cannot have an extension.

TRegistry::RestoreKey
TRegistry See also
Reopens the specified key, and overwrites any information contained in this key and its subkeys
keys with registry data stored in a hive file.
bool __fastcall RestoreKey(const System::AnsiString Key, const System:
:AnsiString FileName);

Description
Call RestoreKey to open the specified key with a security access value of KEY_ALL_ACCESS
and overwrite any information in the key and its subkeys with registry data stored in a hive file. A
hive is a discrete collection of keys, subkeys, and values that is rooted at the top of the registry
hierarchy.
Key is the name of the key to open. FileName is the name of the file containing the hive
information.
If RestoreKey successfully reads and copies the registry information in FileName to the specified
key, the return value of RestoreKey is true and the key is closed.
Note
The file specified by FileName parameter must be created with the SaveKey function, or by
directly calling the Windows 95/NT RegSaveKey API function. Under the FAT file system
FileName cannot have an extension.

TRegistry::SaveKey
TRegistry See also
Opens the specified key with the security access value KEY_ALL_ACCESS and saves the
specified key and all of its subkeys and values to a hive file.
bool __fastcall SaveKey(const System::AnsiString Key, const System::
AnsiString FileName);

Description
Call SaveKey to open a key with a security access value of KEY_ALL_ACCESS, and save the
key and its subkeys and data values to a hive file. A hive is a discrete collection of keys,
subkeys, and values that is rooted at the top of the registry hierarchy.
Key is the key to save. FileName is the file into which to save the key information. It must be the
name of a new file that does not already exist. On FAT file systems FileName cannot include an
extension.
Files created by SaveKey are passed as parameters to the RestoreKey, ReplaceKey and
LoadKey functions.
If SaveKey is successful it returns true and closes the key.

TRegistry::TRegistry
TRegistry See also
Creates a TRegistry object for an application.
__fastcall TRegistry(void);
Description
Call TRegistry to instantiate a TRegistry object for an application. TRegistry sets the RootKey
property of TRegistry to HKEY_CURRENT_USER, and sets the LazyWrite property to true.

TRegistry::UnLoadKey
TRegistry See also
Removes a hive from the registry.
bool __fastcall UnLoadKey(const System::AnsiString Key);
Description
Call UnLoadKey to remove a hive from the registry without modifying its associated hive file, if
any. A hive is a discrete collection of keys, subkeys, and values that is rooted at the top of the
registry hierarchy.
Key is the name of the key at the root of the hive to remove.
If successful, UnLoadKey returns true.
Note
Before calling this function, set RootKey to HKEY_USERS, HKEY_LOCAL_MACHINE, or call
RegistryConnect.

TRegistry::ValueExists
TRegistry See also
Determines if a specified data value exists for the current key.
bool __fastcall ValueExists(const System::AnsiString Name);
Description
Call ValueExists to determine if a particular key exists in the registry. Calling Value Exists is
especially useful before calling other TRegistry methods that operate only on existing keys.
Name is the name of the data value for which to check.
ValueExists returns true if a match if found, false otherwise.

TRegistry::WriteBinaryData
TRegistry See also
Stores a record in a specifically named data value associated with the current key.
void __fastcall WriteBinaryData(const System::AnsiString Name, void *
Buffer, int BufSize);

Description
Call WriteBinaryData to store a record in a data value associated with the current key.
Name is a string containing the name of the data value in which to store data. If Name already
exists, its current value is overwritten by WriteBinary. If Name does not exist, it is created.
Buffer is a record or data buffer containing the data to store in the registry. BufSize indicates the
size of Buffer.
Note
Data-value lengths are limited by available memory. Long values (more than 2048 bytes) should
be stored as separate files, and those file names should be stored in the registry. Application
elements such as icons, bitmaps, and executable files should be stored as separate files rather
than as values in the registry.
If WriteBinaryData fails, an exception is raised, and the value is not written to the registry.

TRegistry::WriteBool
TRegistry See also
Stores a Boolean value in a specifically named data value associated with the current key.
void __fastcall WriteBool(const System::AnsiString Name, bool Value);
Description
Call WriteBool to store a Boolean value in a data value associated with the current key.
Name is a string containing the name of the data value in which to store data. If Name already
exists, its current value is overwritten by WriteBool. If Name does not exist, it is created.
Value is a Boolean value to store in the registry.
If WriteBool fails, an exception is raised, and the value is not written to the registry.

TRegistry::WriteCurrency
TRegistry See also
Stores a currency value in a specifically named data value associated with the current key.
void __fastcall WriteCurrency(const System::AnsiString Name, System::
Currency Value);

Description
Call WriteCurrency to store a Currency value in a data value associated with the current key.
Name is a string containing the name of the data value in which to store data. If Name already
exists, its current value is overwritten by WriteCurrency. If Name does not exist, it is created.
Value is a Currency value to store in the registry.
If WriteCurrency fails, an exception is raised, and the value is not written to the registry.

TRegistry::WriteDate
TRegistry See also
Stores a date value in a specifically named data value associated with the current key.
void __fastcall WriteDate(const System::AnsiString Name, System::
TDateTime Value);

Description
Call WriteDate to store a datetime value in a data value associated with the current key.
Name is a string containing the name of the data value in which to store data. If Name already
exists, its current value is overwritten by WriteDate. If Name does not exist, it is created.
Value is a datetime value to store in the registry.
If WriteDate fails, an exception is raised, and the value is not written to the registry.
If successful, WriteDate stores a Borland C++Builder TDateTime value. The integral part of a
TDateTime value is the number of days that have passed since 12/30/1899. The fractional part
of a TDateTime value is the time of day.

TRegistry::WriteDateTime
TRegistry See also
Stores a datetime value in a specifically named data value associated with the current key.
void __fastcall WriteDateTime(const System::AnsiString Name, System::
TDateTime Value);

Description
Call WriteDateTime to store a datetime value in a data value associated with the current key.
Name is a string containing the name of the data value in which to store data. If Name already
exists, its current value is overwritten by WriteDateTime. If Name does not exist, it is created.
Value is a datetime value to store in the registry.
If WriteDateTime fails, an exception is raised, and the value is not written to the registry.
If successful, WriteDateTime stores a Borland C++Builder TDateTime value. The integral part of
a TDateTime value is the number of days that have passed since 12/30/1899. The fractional part
of a TDateTime value is the time of day.

TRegistry::WriteFloat
TRegistry See also
Stores a Double value in a specifically named data value associated with the current key.
void __fastcall WriteFloat(const System::AnsiString Name, double Value)
;

Description
Call WriteFloat to store a float value in a data value associated with the current key.
Name is a string containing the name of the data value in which to store data. If Name already
exists, its current value is overwritten by WriteFloat. If Name does not exist, it is created.
Value is a float value to store in the registry.
If WriteFloat fails, an exception is raised, and the value is not written to the registry.

TRegistry::WriteInteger
TRegistry See also
Stores an integer value in a specifically named data value associated with the current key.
void __fastcall WriteInteger(const System::AnsiString Name, int Value)
;

Description
Call WriteInteger to store a integer value in a data value associated with the current key.
Name is a string containing the name of the data value in which to store data. If Name already
exists, its current value is overwritten by WriteInteger. If Name does not exist, it is created.
Value is a integer value to store in the registry.
If WriteInteger fails, an exception is raised, and the value is not written to the registry.

TRegistry::WriteString
TRegistry See also
Stores an integer value in a specifically named data value associated with the current key.
void __fastcall WriteString(const System::AnsiString Name, const
System::AnsiString Value);

Description
Call WriteString to store a string value in a data value associated with the current key.
Name is a string containing the name of the data value in which to store data. If Name already
exists, its current value is overwritten by WriteString. If Name does not exist, it is created.
Value is a string value to store in the registry.
If WriteString fails, an exception is raised, and the value is not written to the registry.

TRegistry::WriteTime
TRegistry See also
Stores a time value in a specifically named data value associated with the current key.
void __fastcall WriteTime(const System::AnsiString Name, System::
TDateTime Value);

Description
Call WriteTime to store a datetime value in a data value associated with the current key.
Name is a string containing the name of the data value in which to store data. If Name already
exists, its current value is overwritten by WriteTime. If Name does not exist, it is created.
Value is a datetime value to store in the registry.
If WriteTime fails, an exception is raised, and the value is not written to the registry.
If successful, WriteTime stores a Borland C++Builder TDateTime value. The integral part of a
TDateTime value is the number of days that have passed since 12/30/1899. The fractional part
of a TDateTime value is the time of day.

Accessibility
Read-only

Hierarchy

TObject

TRegistry example
TRegistry

TReplaceDialog
Hierarchy Properties Methods Events See also
TReplaceDialog generates a search-and-replace dialog.
Header
vcl/dialogs.hpp
Description
TReplaceDialog is a special version of TFindDialog that both finds and replaces text. Like the
Find dialog, the Replace dialog is modeless and does not appear at runtime until activated by a
call to the Execute method.

TReplaceDialog properties
TReplaceDialog Alphabetically Legend

In TReplaceDialog
ReplaceText

Derived from TFindDialog
FindText

Handle
Left
Options
Position
Top

Derived from TCommonDialog
Ctl3D
HelpContext

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TReplaceDialog properties
TReplaceDialog By object Legend

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

Ctl3D
DesignInfo
FindText

Handle
HelpContext
Left
Name
Options

Owner
Position

ReplaceText
Tag
Top

TReplaceDialog::ReplaceText
TReplaceDialog See also
Contains the text that should replace FindText.
__property ReplaceText;
FindText, taken from the Find What edit box, contains the text string that the user wants to
search for. ReplaceText, taken from the Replace With edit box, contains the text string that will
replace FindText. To make a default text string appear in the Replace With edit box when the
dialog opens, assign a value to ReplaceText in the Object Inspector or in program code.

TReplaceDialog events
TReplaceDialog Alphabetically Legend

In TReplaceDialog
OnReplace

Derived from TFindDialog
OnFind

TReplaceDialog events
TReplaceDialog By object Legend

OnFind
OnReplace

TReplaceDialog::OnReplace
TReplaceDialog See also
OnReplace occurs when the user clicks the Replace or Replace All button.
__property Classes::TNotifyEvent OnReplace;
Description
OnReplace occurs whenever the user clicks Replace or Replace All. In addition, when the user
clicks Replace, the frReplace flag is set (and the frReplaceAll flag is turned off) in Options. When
the user clicks ReplaceAll, the frReplaceAll flag is set (and the frReplace flag is turned off) in
Options.
Write an OnReplace event handler that searches for the text specified in FindText and replaces
it with the text in ReplaceText. Use the Options flags to determine how the search is conducted.
To search a TMemo object, call the Search method.

TReplaceDialog methods
TReplaceDialog Alphabetically

In TReplaceDialog
~TReplaceDialog
TReplaceDialog

Derived from TFindDialog
CloseDialog
Execute

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TReplaceDialog methods
TReplaceDialog By object

~TReplaceDialog
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CloseDialog
DefaultHandler
DestroyComponents
Destroying
Dispatch
Execute
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
TReplaceDialog

TReplaceDialog::~TReplaceDialog
TReplaceDialog
~TReplaceDialog frees the memory associated with the TReplaceDialog object. Do not call ~
TReplaceDialog directly. Instead, use the delete keyword on the object, which causes ~
TReplaceDialog to be invoked automatically.
__fastcall virtual ~TReplaceDialog(void);

TReplaceDialog::TReplaceDialog
TReplaceDialog See also
Creates and initializes a TReplaceDialog instance.
__fastcall virtual TReplaceDialog(Classes::TComponent* AOwner);
Description
The TReplaceDialog method generates a TReplaceDialog instance, but the new dialog does not
appear on the form at runtime until the Execute method is called.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TCommonDialog
TFindDialog

TReplaceDialog example
TReplaceDialog

TRichEdit
Hierarchy Properties Methods Events See also
TRichEdit is a wrapper for a Windows rich text edit control.
Header
vcl/comctrls.hpp
Description
Use a TRichEdit object to put a standard Windows rich text edit control on a form. Rich text edit
controls let the user enter text that includes variation in font attributes and paragraph formatting
information.
TRichEdit provides the properties and methods to enter and work with rich text. TRichEdit does
not provide any user interface components to make these formatting options available to the
user. Applications must implement the user interface components to surface the rich text
capabilities of a TRichEdit object.
TRichEdit publishes many of the properties inherited from TCustomRichEdit, but does not
introduce any new behavior.

TRichEdit properties
TRichEdit Alphabetically Legend

Derived from TCustomRichEdit
DefAttributes
DefaultConverter

HideScrollBars
HideSelection
Lines
PageRect

Paragraph
PlainText
SelAttributes

Derived from TCustomMemo
Alignment
ScrollBars
WantReturns
WantTabs
WordWrap

Derived from TCustomEdit
BorderStyle
MaxLength
Modified
ReadOnly
SelLength
SelStart
SelText

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragMode
Enabled
Font
Height
Hint
Left
Name

Parent
ParentColor
ParentFont
PopupMenu
ShowHint

Text
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TRichEdit properties
TRichEdit By object Legend

Alignment
Align
BorderStyle
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DefAttributes
DefaultConverter
DesignInfo
DragMode
Enabled
Font

Handle
Height
HelpContext
HideScrollBars
HideSelection
Hint
Left
Lines
MaxLength
Modified
Name

Owner
PageRect

Paragraph
ParentColor
ParentCtl3D
ParentFont
Parent
PlainText
PopupMenu
ReadOnly
ScrollBars
SelAttributes
SelLength
SelStart
SelText
ShowHint

Showing
TabOrder
TabStop
Tag

Text
Top

Visible
WantReturns
WantTabs
Width
WordWrap

TRichEdit events
TRichEdit Alphabetically Legend

Derived from TCustomRichEdit
OnProtectChange
OnResizeRequest
OnSaveClipboard
OnSelectionChange

Derived from TCustomEdit
OnChange

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TRichEdit events
TRichEdit By object Legend

OnChange
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnProtectChange
OnResizeRequest
OnSaveClipboard
OnSelectionChange
OnStartDrag

TRichEdit methods
TRichEdit Alphabetically

Derived from TCustomRichEdit
~TCustomRichEdit
FindText
Print
RegisterConversionFormat
TCustomRichEdit

Derived from TCustomEdit
Clear
ClearSelection
CopyToClipboard
CutToClipboard
GetSelTextBuf
PasteFromClipboard
SelectAll
SetSelTextBuf

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh

ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TRichEdit methods
TRichEdit By object

~TCustomRichEdit
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClearSelection
Clear
ClientToScreen
ContainsControl
ControlAtPos
CopyToClipboard
CutToClipboard
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
FindText
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetSelTextBuf
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize

Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
PasteFromClipboard
Perform
Print
Realign
Refresh
RegisterConversionFormat
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SelectAll
SendToBack
SetBounds
SetFocus
SetSelTextBuf
SetTextBuf
Show
TCustomRichEdit
UpdateControlState
Update

~TRichEdit
~TRichEdit frees the memory associated with the TRichEdit object. Do not call ~TRichEdit
directly. Instead, use the delete keyword on the object, which causes ~TRichEdit to be invoked
automatically.
__fastcall virtual ~TRichEdit(void);

TRichEdit
TRichEdit creates a new TRichEdit object.
__fastcall virtual TRichEdit(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomEdit
TCustomMemo
TCustomRichEdit

TRichEdit example
TRichEdit

TResourceStream
Hierarchy Properties Methods See also
The TResourceStream object is a memory stream that provides access to the compiled
resources in a Windows application.
Header
vcl/classes.hpp
Description
Use TResourceStream to read the resources of a Windows application. An instance of
TResourceStream holds the value of a single resource in a memory buffer where it is accessible
to the application.
The global ReadComponentRes function uses TResourceStream to access the compiled
resources used by the application.

TResourceStream properties
TResourceStream Alphabetically Legend

Derived from TCustomMemoryStream
Memory

Derived from TStream
Position

Size

TResourceStream properties
TResourceStream By object Legend

Memory
Position

Size

TResourceStream methods
TResourceStream Alphabetically

In TResourceStream
~TResourceStream
TResourceStream
Write

Derived from TCustomMemoryStream
Read
SaveToFile
SaveToStream
Seek

Derived from TStream
CopyFrom
ReadBuffer
ReadComponent
ReadComponentRes
ReadResHeader
WriteBuffer
WriteComponent
WriteComponentRes
WriteDescendent
WriteDescendentRes

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TResourceStream methods
TResourceStream By object

~TResourceStream
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CopyFrom
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
ReadBuffer
ReadComponentRes
ReadComponent
ReadResHeader
Read
SaveToFile
SaveToStream
Seek
TResourceStream
WriteBuffer
WriteComponentRes
WriteComponent
WriteDescendentRes
WriteDescendent
Write

TResourceStream::~TResourceStream
TResourceStream See also
~TResourceStream frees the memory associated with the TResourceStream object. Do not call
~TResourceStream directly. Instead, use the delete keyword on the object, which causes ~
TResourceStream to be invoked automatically.
__fastcall virtual ~TResourceStream(void);
Description
~TResourceStream frees the memory buffer that stores the resource before calling the inherited
destructor.

TResourceStream::TResourceStream
TResourceStream See also
The TResourceStream method creates an instance of TResourceStream associated with a
particular resource name and type.
__fastcall TResourceStream(int Instance, const System::AnsiString
ResName, char * ResType);

-Or-
__fastcall TResourceStream(int Instance, int ResID, char * ResType);

Description
Call TResourceStream to instantiate a TResourceStream for a resource in the indicated instance
that can be identified by name. TResourceStream finds the resource data and loads it into the
Memory buffer for the TResourceStream.
The Instance parameter is the Windows instance handle associated with the executable or DLL
that contains the resource.
The ResID is the integer ID associated with the resource in the .RC file that was compiled with
the application.
The ResName is the string associated with the resource in the .RC file that was compiled with
the application. If the resource is associated with an integer ID rather than a string, use the string
representation of the integer after a pound sign (#). Thus, for example, a resource with an
integer identifier of 128 be identified by a ResName of #128.
The ResType is a string identifying the type of the resource. Applications can define their own
resource types and identify them by name in the .RC file. In addition, Windows provides a
number of predefined resource types. To identify a resource that is one of the predefined
Windows resource types, set ResType to the appropriate value from the following table.
ResType Type of resource

RT_ACCELERATOR Accelerator table
RT_BITMAP Bitmap resource
RT_DIALOG Dialog box
RT_FONT Font resource
RT_FONTDIR Font directory resource
RT_MENU Menu resource
RT_RCDATA Application-defined resource (raw data)
RT_STRING String-table entry
RT_MESSAGETABLEMessage-table entry
RT_CURSOR Hardware-dependent cursor resource
RT_GROUP_CURSORHardware-independent cursor resource
RT_ICON Hardware-dependent icon resource
RT_GROUP_ICON Hardware-independent icon resource
RT_VERSION Version resource
Note
Specifying resources by ID requires less memory than specifying resources by name.

TResourceStream::Write
TResourceStream See also
Write overrides the inherited method to raise an EStreamError exception when an attempt is
made to write the resource back to the application.
virtual long __fastcall Write(const void *Buffer, long Count);
Description
Applications should not use a TResourceStream to write the resources of the running
application. Write overrides the inherited method to raise an error whenever an application tries
to write to the application’s resources.
As all other data-writing methods of TResourceStream (WriteBuffer, WriteComponent) call Write
to do the actual writing, calling any of the data-writing methods of TResourceStream will raise an
exception.

Accessibility
Read-only

Hierarchy

TObject

TStream
TCustomMemoryStream

TResourceStream example
TResourceStream

TSaveDialog
Hierarchy Properties Methods See also
TSaveDialog generates a Save As dialog for saving files.
Header
vcl/dialogs.hpp
Description
TSaveDialog displays a Windows dialog box for selecting file names and saving files. The dialog
does not appear at runtime until it is activated by a call to the Execute method. When the user
clicks Save, the dialog closes and the selected file name is stored in the FileName property.

TSaveDialog properties
TSaveDialog Alphabetically Legend

Derived from TOpenDialog
DefaultExt
FileEditStyle
FileName

Files
Filter
FilterIndex
HistoryList
InitialDir
Options
Title

Derived from TCommonDialog
Ctl3D
HelpContext

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TSaveDialog properties
TSaveDialog By object Legend

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

Ctl3D
DefaultExt
DesignInfo
FileEditStyle
FileName

Files
FilterIndex
Filter
HelpContext
HistoryList
InitialDir
Name
Options

Owner
Tag
Title

TSaveDialog methods
TSaveDialog Alphabetically

In TSaveDialog
Execute

Derived from TOpenDialog
~TOpenDialog
TOpenDialog

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TSaveDialog methods
TSaveDialog By object

~TOpenDialog
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
Dispatch
Execute
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
TOpenDialog

~TSaveDialog
~TSaveDialog frees the memory associated with the TSaveDialog object. Do not call ~
TSaveDialog directly. Instead, use the delete keyword on the object, which causes ~
TSaveDialog to be invoked automatically.
__fastcall virtual ~TSaveDialog(void);

TSaveDialog::Execute
TSaveDialog
Displays the Save As dialog box.
virtual bool __fastcall Execute(void);
Description
Execute opens the Save As dialog, returning true when the user selects a file name and clicks
Save.

TSaveDialog
TSaveDialog creates a new TSaveDialog object.
__fastcall virtual TSaveDialog(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent
TCommonDialog
TOpenDialog

TSaveDialog example
TSaveDialog

TScreen
Hierarchy Properties Methods Events See also
TScreen represents the state of the screen in which an application runs.
Header
vcl/forms.hpp
Description
There is a global variable, Screen, of type TScreen, that is already instantiated for use by Delphi
applications. Use Screen to obtain information about the current state of the screen in an
application. TScreen provides properties that keep track of
• What forms and data modules have been instantiated by the application.
• The active form, and the active control within that form.
• The size and resolution of the screen.
• The cursors and fonts available for the application to use.

TScreen properties
TScreen Alphabetically Legend

In TScreen
ActiveControl
ActiveForm

Cursor
Cursors

DataModuleCount
DataModules
Fonts
FormCount
Forms
Height
PixelsPerInch
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TScreen properties
TScreen By object Legend

ActiveControl
ActiveForm
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

Cursors
Cursor

DataModuleCount
DataModules

DesignInfo
Fonts
FormCount
Forms
Height

Name
Owner
PixelsPerInch

Tag
Width

TScreen::ActiveControl
TScreen See also
ActiveControl indicates which control currently has input focus on the screen.
__property Controls::TWinControl* ActiveControl;
Description
Read ActiveControl to learn which windowed control object in the active form currently receives
the input from the keyboard.
ActiveControl is a read-only property. To change the ActiveControl, use the SetFocusedControl
method of the form which contains control that should receive focus.
After focus shifts from one control to another, the screen receives an OnActiveControlChange
event.

TScreen::ActiveForm
TScreen See also
ActiveForm indicates which form currently has focus.
__property TForm* ActiveForm;
Description
Read ActiveForm to learn which form in the application has input focus. If the application is not
currently active, ActiveForm is the form that will have focus when the application becomes active
again.
ActiveForm is a read-only property. To change the ActiveForm, use the SetFocus method of the
form that should receive focus. ActiveForm will also change if the SetFocusedControl method of
an inactive form is called to set focus to a control on that inactive form.
After focus shifts from one form to another, the screen receives an OnActiveFormChange event.

TScreen::Cursor
TScreen See also
Cursor controls the mouse cursor image on a global level.
__property Controls::TCursor Cursor;

Description
Set Cursor to override the cursor image associated with individual control objects. When Cursor
is crDefault, the individual objects determine the cursor image. Assigning any other value sets
the mouse cursor image for all windows belonging to the application. The global mouse cursor
image remains in effect until the screen’s Cursor property is changed back to crDefault.
Assignments to the Screen object's cursor property are typically guarded by a try...finally
statement to ensure that normal cursor behavior is restored. For example:
class TWaitCursor {
public:

TWaitCursor() : oldc(Screen->Cursor) { Screen->Cursor =
crHourGlass; }

~TWaitCursor(){ Screen->Cursor = oldc; }
private:

TCursor oldc;
};

TWaitCursor wait; // show hourglass
// do some lengthy operation
// cursor restored on exit of block

Cursor can be set to any of the cursor values available in the Cursors property. This can be one
of the built-in cursor values, or a custom cursor that has been added to the Cursors property.

TScreen::Cursors
TScreen See also
Cursors is an array of cursors available to the application.
__property HICON Cursors[int Index];
Description
Use Cursor to access a particular cursor for use by the application or by a control within the
application. TScreen includes several built-in cursors that are indexed by symbolic cursor
constants. The image associated with the built-in cursors constants can be changed by setting
the Cursors property.
These are the cursor constants and their position in the Cursors property array
Constant Value Image

crDefault 0 depends on the ActiveControl.
crNone -1
crArrow -2
crCross -3
crIBeam -4
crSize -5
crSizeNESW -6
crSizeNS -7
crSizeNWSE -8
crSizeWE -9
crUpArrow -10
crHourGlass -11
crDrag -12
crNoDrop -13
crHSplit -14
crVSplit -15
crMultiDrag -16
crSQLWait -17
crNo -18
crAppStart -19
crHelp -20
Custom cursors can be added to the Cursors property for use by the application or any of its
controls. To add a custom cursor to an application:
1 Create the cursor resource using a resource editor.
2 Declare a cursor constant with a value that does not conflict with an existing cursor constant.
3 Use the Windows API function LoadCursor to obtain a handle to the new cursor.
4 Set the Cursors property, indexed by the newly declared cursor constant, to the handle

obtained from LoadCursor.
For example, assume that a custom cursor has been added to the resources of an application
with the name NewCursor. The following code makes this cursor available to the application via
the constant crMyCursor, and sets it as the global cursor to the application.
__fastcall TForm1::TForm1(TComponent* Owner)

: TForm(Owner)
{

Screen->Cursors[crMyCursor] = LoadCursor(HInstance, "NewCursor");
Cursor = crMyCursor;

}
Note
Don’t call the Windows API function DestroyCursor when finished with the custom cursor;
Borland C++Builder does this automatically.

TScreen::DataModuleCount
TScreen See also
DataModuleCount is the number of data modules that are currently instantiated in the
application.
__property int DataModuleCount;
Description
Read DataModuleCount to learn the number of data modules in the DataModules property.
DataModuleCount can be used with DataModules when an application needs to iterate over all
its data modules.

TScreen::DataModules
TScreen See also
DataModules is a list of all the data modules that are currently instantiated in the application.
__property TDataModule* DataModules[int Index];
Description
Use DataModules to access an instantiated data module by index. The value of Index is a
number between zero (the first data module) and DataModuleCount - 1. DataModules can be
used with DataModuleCount when an application needs to iterate over all its data modules.

TScreen::Fonts
TScreen See also
Fonts is a list of face names for all fonts supported by the screen.
__property Classes::TStrings* Fonts;
Description
Read Fonts to learn what screen fonts are currently installed. Applications can use Fonts to
ensure that they do not request a font that is not installed on the user’s system. When an
application uses a TFont object to request a font that is not installed, Windows substitutes
another font, which may not be a font appropriate to the application’s needs.
Note
Fonts is a list of screen fonts. It does not give any indication of the printer fonts available to the
application.

TScreen::FormCount
TScreen See also
FormCount is the number of forms displayed on the screen.
__property int FormCount;
Description
Read FormCount to learn the number of forms currently displayed on the screen. These forms
can be accessed by the Forms property. FormCount can be used with Forms to iterate over all
the forms in an application.

TScreen::Forms
TScreen See also
Forms is a list of all the forms that are currently displayed in the application.
__property TForm* Forms[int Index];
Description
Use Forms to access a form by index. The value of Index is a number between zero (the first
form) and FormCount - 1. Forms can be used with FormCount when an application needs to
iterate over all its data modules.
For example, the following code adds the name of all forms on the screen to ListBox1 when
Button1 is clicked.
void __fastcall TForm1::Button1Click(TObject *Sender)
{

for (int i = 0; i < Screen->FormCount; ++i)
ListBox1->Items->Add(Screen->Forms[i]->Name);

}

TScreen::Height
TScreen See also Example
Height is the vertical size of the screen in pixels.
__property int Height;
Description
Read Height to learn the size of the user’s screen in pixels. The size or position of objects
placed on the screen, can then be set to ensure that the objects fit on screen and don’t look
crowded. For example, the following code determines the height of all forms on the screen and
resizes any that are taller than the screen height.
for (int i = 0; i < Screen->FormCount; ++i)

if (Screen->Forms[i]->Height > Screen->Height)
Screen->Forms[i]->Height = Screen->Height;

TScreen::PixelsPerInch
TScreen See also
PixelsPerInch is the number of screen pixels that make up a logical inch in the vertical direction.
__property int PixelsPerInch;
Description
Read PixelsPerInch to convert between measurements in pixels and measurements in logical
inches. PixelsPerInch is only accurate for vertical measurements. Most screens have a different
scaling factor for horizontal measurements. The value in PixelsPerInch is set from Windows
when Delphi loads.

TScreen::Width
TScreen See also Example
Width is the horizontal size of the screen in pixels.
__property int Width;
Description
Read Width to learn the size of the user’s screen in pixels. The size or position of objects
placed on the screen, can then be set to ensure that the objects fit on screen and don’t look
crowded. For example, the following code determines the width of all forms on the screen and
resizes any that are wider than the screen width.
for (int i = 0; i < Screen->FormCount; ++i)

if (Screen->Forms[i]->Width > Screen->Width)
Screen->Forms[i]->Width = Screen->Width;

TScreen events
TScreen Alphabetically

In TScreen
OnActiveControlChange
OnActiveFormChange

TScreen events
TScreen By object

OnActiveControlChange
OnActiveFormChange

TScreen::OnActiveControlChange
TScreen See also
OnActiveControlChange occurs immediately after input focus changes to a new windowed
control.
__property Classes::TNotifyEvent OnActiveControlChange;
Description
Write an OnActiveControlChange event handler to take specific action when input focus changes
to a new control. The change in focus may be within the active form, or across forms to a new
form that then becomes the active form.
When focus moves from one control to another, the following events occur.
1 If the new focused control is in a different form, focus moves to the new form.
2 Focus moves to the new active control.
3 If the active form changed, an OnActiveFormChange event occurs.
4 An OnActiveControlChange event occurs.

TScreen::OnActiveFormChange
TScreen See also
OnActiveFormChange occurs immediately after a new form becomes active in a multi-form
application.
__property Classes::TNotifyEvent OnActiveFormChange;
Description
Write an OnActiveFormChange event handler to take specific action when a new form becomes
active. OnActiveFormChange occurs when the active form for the application changes, not when
a form becomes active because the application becomes active.

TScreen methods
TScreen Alphabetically

In TScreen
~TScreen
TScreen

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TScreen methods
TScreen By object

~TScreen
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
TScreen

TScreen::~TScreen
TScreen See also
~TScreen frees the memory associated with the TScreen object. Do not call ~TScreen directly.
Instead, use the delete keyword on the object, which causes ~TScreen to be invoked
automatically.
__fastcall virtual ~TScreen(void);
Description
~TScreen frees the memory associated with DataModules, Forms, and Fonts properties, and
releases the cursors used by the Cursors property.

TScreen::TScreen
TScreen See also
TScreen creates an instance of TScreen.
__fastcall virtual TScreen(Classes::TComponent* AOwner);
Description
Do not create separate instances of TScreen. There is a global variable, Screen, of type
TScreen, that is already instantiated for use by Borland C++Builder applications. The properties
of Screen are global to the entire application.
TScreen allocates memory for the TScreen object and
• Fills the Cursors property with the built-in cursors.
• Fills the Fonts property with the available screen fonts.
• Sets the PixelsPerInch property for the current screen resolution.
• Creates helper objects for the Forms and DataModules properties.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent

TScreen example
TScreen

TScrollBar
Hierarchy Properties Methods Events
The TScrollBar component is a Windows scroll bar, which is used to scroll the contents of a
window, form, or control. In the OnScroll event handler, you write the code that determines how
the window, form, or control behaves in response to the user scrolling the scroll bar.
Header
vcl/stdctrls.hpp
Description
You determine how far a thumb tab moves when the user clicks the scroll bar on either side of
the thumb tab with the value of the LargeChange property. The value of the SmallChange
property determines how far the thumb tab moves when the user clicks the arrows at the end of
the scroll bar or scrolls the scroll bar using the arrow keys on the keyboard.
The Min and Max property values together determine how many positions are available on the
scroll bar for the thumb tab to move when the user scrolls the scroll bar. Your application can set
the position of the thumb tab with the Position property, or use the property to determine how far
the scroll bar has scrolled. Use the SetParams method to set the Min, Max, and Position
properties all at once.
To cause the form or scroll box to scroll while the scroll bar thumb tab is being dragged instead
of waiting for the tab to be dropped, set the Tracking property to true.
The TScrollBar component is a direct descendent of TWinControl. In addition to the following
properties, methods, and events, this component also has the properties, methods, and events
that apply to all windowed controls.

TScrollBar properties
TScrollBar Alphabetically Legend

In TScrollBar
Kind
LargeChange
Max
Min
Position
SmallChange

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
DragCursor
DragMode
Enabled
Height
Hint
Left
Name
Parent
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TScrollBar properties
TScrollBar By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
Enabled

Handle
Height
HelpContext
Hint
Kind
LargeChange
Left
Max
Min
Name

Owner
ParentCtl3D
ParentShowHint
Parent
PopupMenu
Position
ShowHint

Showing
SmallChange
TabOrder
TabStop
Tag
Top
Visible
Width

TScrollBar::Kind
TScrollBar Example
Determines if a scroll bar is horizontal or vertical.
__property Forms::TScrollBarKind Kind;
Description
These are the possible values:
Value Meaning

sbHorizontal Scroll bar is horizontal
sbVertical Scroll bar is vertical

TScrollBar::LargeChange
TScrollBar See also Example
Determines how far the scroll box moves when the user clicks the scroll bar on either side of the
scroll box or presses PgUp or PgDn.
__property Forms::TScrollBarInc LargeChange;
Description
For example, if the LargeChange property setting is 1000, each time the user clicks the scroll
bar, the scroll box moves 1000 positions. How big the change from one position to another
depends on the difference between the Max property value and the Min property value. If Max is
3000 and Min is 0, the user needs to click the scroll bar three times to move the scroll box from
one end of the scroll bar to the other.

TScrollBar::Max
TScrollBar See also
Along with the Min property, Max determines the number of possible positions the scroll box can
have on the scroll bar.
__property int Max;
Description
The LargeChange and SmallChange properties use the number of positions to determine how
far to move the scroll box when the user uses the scroll bar.
For example, if Max is 30000 and Min is 0, the scroll box can assume 30,000 positions on a
horizontal scroll bar. If the LargeChange property setting is 10000 and the scroll box position is
at the far left of the scroll bar (Position is 0), the user can click the scroll bar three times to the
right of the scroll box before the scroll box is moved all the way to the right of the scroll bar
(30000/10000 = 3).
If you want to change the Min, Max, and Position values all at once at runtime, call the
SetParams method.

TScrollBar::Min
TScrollBar See also
Along with the Max property, Min determines the number of possible positions the scroll box can
have on the scroll bar.
__property int Min;
Description
The LargeChange and SmallChange properties use the number of positions to determine how
far to move the scroll box when the user uses the scroll bar.
For example, if Max is 3000 and Min is 0, the scroll box can assume 3000 positions on a
horizontal scroll bar. If the LargeChange property setting is 1000 and the scroll box position is at
the far left of the scroll bar (Position is 0), the user can click the scroll bar three times to the right
of the scroll box before the scroll box is moved all the way to the right of the scroll bar (3000/
1000 = 3).
To change the Min, Max, and Position values all at runtime, call the SetParams method.

TScrollBar::Position
TScrollBar See also Example
Determines the position of the thumb tab on a scroll bar.
__property int Position;
Description
When the user scrolls the scroll bar, the value of Position changes. You can also change where
the thumb tab appears on the scroll bar by changing the value of Position.
The number of possible positions on the scroll bar is determined by the difference between the
Max property and the Min property. If the Min and Position values are both 0, the thumb tab is
positioned to the far left on a horizontal scroll bar and to the top of a vertical scroll bar. If Min is
10, Position can be no less than 10.

TScrollBar::SmallChange
TScrollBar See also Example
Determines how far the thumb tab moves when the user clicks the arrows at the end of the scroll
bar to scroll or uses the arrow keys on the keyboard.
__property Forms::TScrollBarInc SmallChange;

For example, if SmallChange is 1000, each time the user clicks an arrow on the scroll bar, the
thumb tab moves 1000 positions. The number of positions is determined by the difference
between the Max property value and the Min property value. If the Max property is 30000 and
the Min property is 0, the user would need to click an arrow on the scroll bar 30 times to move
the thumb tab from one end of the scroll bar to the other.

TScrollBar events
TScrollBar Alphabetically Legend

In TScrollBar
OnScroll

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnDragDrop
OnDragOver
OnEndDrag
OnStartDrag

TScrollBar events
TScrollBar By object Legend

OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnScroll
OnStartDrag

TScrollBar::OnScroll
TScrollBar Example
Occurs when the user scrolls the scroll bar.
__property TScrollEvent OnScroll;
Description
The TScrollEvent type points to a method that handles the scrolling of a scroll bar. The
ScrollCode parameter is one of these values:
Value Meaning

scLineUp User clicked the top or left scroll arrow or presses the Up arrow key.
scLineDown User clicked the bottom or right scroll arrow or pressed the Down arrow

key.
scPageUp User clicked the area to the left of the thumb tab or pressed the PgUp

key.
scPageDown User clicked the area to the right of the thumb tab or pressed the PgDn

key.
scPosition User positioned the thumb tab and released it.
scTrack User is moving the thumb tab.
scTop User moved the thumb tab to the top or far left on the scroll bar.
scBottom User moved the thumb tab to the bottom or far right on the scroll bar.
scEndScroll User is done moving the thumb tab on the scroll bar.
The ScrollPos parameter indicates the position of the thumb tab on the scroll bar.

TScrollBar methods
TScrollBar Alphabetically

In TScrollBar
~TScrollBar
SetParams
TScrollBar

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent

InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TScrollBar methods
TScrollBar By object

~TScrollBar
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetParams
SetTextBuf
Show
TScrollBar
UpdateControlState
Update

TScrollBar::~TScrollBar
TScrollBar
~TScrollBar frees the memory associated with the TScrollBar object. Do not call ~TScrollBar
directly. Instead, use the delete keyword on the object, which causes ~TScrollBar to be invoked
automatically.
__fastcall virtual ~TScrollBar(void);Max property, Min property,
Position property

TScrollBar::SetParams
TScrollBar
Sets the Position, Max, and Min property values all at once.
void __fastcall SetParams(int APosition, int AMin, int AMax);
Description
Use the SetParams method to set the Position, Max, and Min property values all at once,
preventing repaints that would occur if each property value were set one at time.

TScrollBar::TScrollBar
TScrollBar
Constructs a scroll bar component
__fastcall virtual TScrollBar(Classes::TComponent* AOwner);
Description
TScrollBar calls the constructor of its parent object and then sets the initial values for the scroll
bar.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TScrollBar example
TScrollBar

TScrollBox
Hierarchy Properties Methods Events See also
TScrollBox is the component for a scrolling area (a scroll box) in a window.
Header
vcl/forms.hpp
Description
Use TScrollBox to create a scroll box in a window.
One use of a scroll box is to prevent areas of a window, such as a toolbar or status bar (TPanel
components), from scrolling. To prevent a toolbar and status bar from scrolling, hide the
window’s scroll bars, and then position a scroll box in the client area of the window between the
toolbar and status bar. The scroll bars associated with the scroll box will appear to belong to the
window, but will scroll only the area inside the scroll box.
Another use of scroll boxes is to create multiple scrolling areas (views) in a window. Views are
common in commercial word-processor, spreadsheet, and project management applications.
A scroll box can contain objects, such as TButton and TCheckBox objects.

TScrollBox properties
TScrollBox Alphabetically Legend

In TScrollBox
BorderStyle

Derived from TScrollingWinControl
AutoScroll
HorzScrollBar
VertScrollBar

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TScrollBox properties
TScrollBox By object Legend

Align
AutoScroll
BorderStyle
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
Enabled
Font

Handle
Height
HelpContext
Hint
HorzScrollBar
Left
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu
ShowHint

Showing
TabOrder
TabStop
Tag
Top
VertScrollBar
Visible
Width

TScrollBox::BorderStyle
TScrollBox Example
BorderStyle is a value that specifies whether the scroll box has a border.
__property TBorderStyle BorderStyle;
Description
Use BorderStyle to get or set whether the scroll box has a border. BorderStyle can be one of the
following TBorderStyle values:
Value Meaning

bsNone No visible border
bsSingle Single-line border

TScrollBox events
TScrollBox Alphabetically Legend

In TScrollBox
OnResize

Derived from TWinControl
OnEnter
OnExit

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp

TScrollBox events
TScrollBox By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnMouseDown
OnMouseMove
OnMouseUp
OnResize

TScrollBox::OnResize
TScrollBox
OnResize occurs when the scroll box is resized.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnResize;
Description
Use OnResize to perform special processing when the scroll box is resized.

TScrollBox methods
TScrollBox Alphabetically

In TScrollBox
~TScrollBox
TScrollBox

Derived from TScrollingWinControl
ScrollInView

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent

HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TScrollBox methods
TScrollBox By object

~TScrollBox
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
ScrollInView
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TScrollBox
UpdateControlState
Update

TScrollBox::~TScrollBox
TScrollBox
~TScrollBox frees the memory associated with the TScrollBox object. Do not call ~TScrollBox
directly. Instead, use the delete keyword on the object, which causes ~TScrollBox to be invoked
automatically.
__fastcall virtual ~TScrollBox(void);

TScrollBox::TScrollBox
TScrollBox See also
Create creates and initializes a new TScrollBox object.
__fastcall virtual TScrollBox(Classes::TComponent* AOwner);
Description
Use Create to create and initialize a new TScrollBox object.
AOwner is a TComponent object that encapsulates the parent object for the scroll box.
Create performs the following tasks:
• Calls the TScrollingWinControl::TScrollingWinControl method, passing it AOwner.
• Sets the TScrollingWinControl::ControlStyle property to csAcceptsControls, csCaptureMouse,

csClickEvents, csSetCaption, csDoubleClicks.
• Sets the TScrollingWinControl::Width property to 185.
• Sets the TScrollingWinControl::Height property to 41.
• Sets the BorderStyle property to bsSingle.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TScrollingWinControl

TScrollBox example
TScrollBox

TScroller
Hierarchy Properties Methods Events See also
TScroller is a horizontal scrolling control that provides basic horizontal scrolling capabilities.
Header
vcl/tabs.hpp
Description
Use TScroller to add a horizontal scrolling control to objects that do not require the full
capabilities of a TScrollBar object. Unlike scroll bars, TScroller objects do not have a thumb. To
provide similar functionality in the vertical direction, use a TUpDown object.
TScroller is used by the TTabSet object to scroll the visible tabs.

TScroller properties
TScroller Alphabetically Legend

In TScroller
Change
Max
Min
Position

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TScroller properties
TScroller By object Legend

Align
BoundsRect

Brush
Change
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
Left
Max
Min
Name

Owner
Parent

Position
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Visible
Width

TScroller::Change
TScroller See also
Change is the number of units to scroll when the user clicks the arrow buttons on the scroller
object.
__property int Change;
Description
Set Change to indicate the number of units between Min and Max the Position moves whenever
the user clicks on one of the arrow buttons. Change represents the mapping between the units
used to specify Min, Max, and Position, and the logical units represented by the scroller.
For example, if the values of Min, Max, and Position are given in screen pixels, Change would
be the number of pixels to scroll whenever the user clicks the scroll arrow.

TScroller::Max
TScroller See also
Max is the maximum value the Position property can take.
__property long Max;
Description
Use Max to set the upper limit of the scrolling range. The Max and Min properties define the
range of values over which the scroller can scroll.

TScroller::Min
TScroller See also
Min is the minimum value the Position property can take.
__property long Min;
Description
Use Min to set the lower limit of the scrolling range. The Min and Max properties define the
range of values over which the scroller can scroll.

TScroller::Position
TScroller See also Example
Position is the current position in the scroll range.
__property long Position;
Description
Read Position to determine the current position the scroller represents. Position will be a value
between Min and Max. Use an OnClick event handler to notify the object being scrolled when the
Position changes.

TScroller events
TScroller Alphabetically Legend

In TScroller
OnClick

TScroller events
TScroller By object Legend

OnClick

TScroller::OnClick
TScroller See also Example
OnClick occurs after the Position property has been updated in response to the user clicking one
of the arrow buttons.
__property Classes::TNotifyEvent OnClick;
Description
Write an OnClick event handler to implement the scrolling action of the object that uses the
TScroller to control scrolling. When the user clicks one of the arrow buttons, the Position gets
updated by Change (unless the Max or Min value is hit), and then an OnClick event occurs.

TScroller methods
TScroller Alphabetically

In TScroller
~TScroller
Paint
TScroller

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent

InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TScroller methods
TScroller By object

~TScroller
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Paint

Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TScroller
UpdateControlState
Update

TScroller::~TScroller
TScroller See also
~TScroller frees the memory associated with the TScroller object. Do not call ~TScroller directly.
Instead, use the delete keyword on the object, which causes ~TScroller to be invoked
automatically.
__fastcall virtual ~TScroller(void);

TScroller::Paint
TScroller See also
Paint paints the image of the TScroller object into its canvas.
virtual void __fastcall Paint(void);
Description
Call Paint to update the image of the scroller. Paint is called automatically in response to
WM_PAINT messages. Paint paints the arrow buttons, graying them out when Position cannot
be moved in the associated direction.

TScroller::TScroller
TScroller See also
TScroller creates an instance of TScroller.
__fastcall virtual TScroller(Classes::TComponent* AOwner);
Description
Call TScroller to create an instance of TScroller at runtime. TScroller allocates the memory for
the TScroller object and initializes
• Width and Height to 24 and 13 respectively
• Min and Max to 0
• Position to 0
• Change to 1

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl

TScroller example
TScroller

TScrollingWinControl
Hierarchy Properties Methods See also
TScrollingWinControl is the component for a windowed control that supports scrolling.
Header
vcl/forms.hpp
Description
Use TScrollingWinControl to create a windowed control that supports scrolling.
Typically, a scrolling windowed control has horizontal and vertical scroll bars and scrolls a child
control into view when the child control receives focus.
Examples of scrolling windowed controls include TForm and TScrollBox objects.

TScrollingWinControl properties
TScrollingWinControl Alphabetically Legend

In TScrollingWinControl
AutoScroll
HorzScrollBar
VertScrollBar

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TScrollingWinControl properties
TScrollingWinControl By object Legend

Align
AutoScroll
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
HorzScrollBar
Left
Name

Owner
Parent

ShowHint
Showing

TabOrder
TabStop
Tag
Top
VertScrollBar
Visible
Width

TScrollingWinControl::AutoScroll
TScrollingWinControl See also
AutoScroll is a Boolean property that specifies whether scroll bars appear automatically on the
scrolling windowed control if it is not large enough to display all of its controls.
__property bool AutoScroll;
Description
If AutoScroll is true, the scroll bars appear automatically when necessary. For example, if the
user resizes the scrolling windowed control so that some of its controls are partially obscured,
scroll bars appear.
If AutoScroll is false, scroll bars don’t appear automatically. In this case, use the HorzScrollBar
and VertScrollBar properties to make scroll bars appear.

TScrollingWinControl::HorzScrollBar
TScrollingWinControl See also
HorzScrollBar is a TControlScrollBar object that encapsulates the horizontal scroll bar for the
scrolling windowed control.
__property TControlScrollBar* HorzScrollBar;
Description
Use HorzScrollBar to hide, show, or manipulate the horizontal scroll bar for the scrolling
windowed control.

TScrollingWinControl::VertScrollBar
TScrollingWinControl See also
VertScrollBar is a TControlScrollBar object that encapsulates the vertical scroll bar for the
scrolling windowed control.
__property TControlScrollBar* VertScrollBar;
Description
Use VertScrollBar to hide, show, or manipulate the vertical scroll bar for the scrolling windowed
control.

TScrollingWinControl methods
TScrollingWinControl Alphabetically Legend

In TScrollingWinControl
~TScrollingWinControl

AlignControls
AutoScrollInView
ChangeScale
CreateWnd
ScrollInView
TScrollingWinControl

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent

FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TScrollingWinControl methods
TScrollingWinControl By object Legend

~TScrollingWinControl
AlignControls
Assign
AutoScrollInView
BeginDrag
BringToFront
Broadcast
CanFocus
ChangeScale
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen

ContainsControl
ControlAtPos

CreateWnd
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification

Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform
Realign
Refresh

RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
ScrollInView
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TScrollingWinControl
UpdateControlState
Update

TScrollingWinControl::~TScrollingWinControl
TScrollingWinControl See also
~TScrollingWinControl frees the memory associated with the TScrollingWinControl object. Do
not call ~TScrollingWinControl directly. Instead, use the delete keyword on the object, which
causes ~TScrollingWinControl to be invoked automatically.
__fastcall virtual ~TScrollingWinControl(void);
Description
~TScrollingWinControl frees the HorzScrollBar and VertScrollBar properties and then calls
TWinControl::~TWinControl.

TScrollingWinControl::AlignControls
TScrollingWinControl See also
AlignControls is a method that aligns the controls in the scrolling windowed control.
virtual void __fastcall AlignControls(Controls::TControl* AControl,
Windows::TRect &ARect);

Description
Use AlignControls to align the controls in the scrolling windowed control according to the values
of their Align properties.
AControl is a TControl object specifying the control that takes precedence in alignment when
other controls have the same Align value. AControl can be NULL.
ARect is a TRect object specifying the area in the scrolling windowed control that contains the
controls to align. ARect is automatically set to the entire area of the scrolling windowed control.
If AutoScroll is true and the scrolling windowed control is not being resized, the ranges of the
scroll bars on the scrolling windowed control are automatically recalculated.
After recalculating the ranges of the scroll bars and setting the value of ARect, AlignControls calls
TWinControl::AlignControls, passing the AControl and ARect objects.

TScrollingWinControl::AutoScrollInView
TScrollingWinControl See also
AutoScrollInView is a method that scrolls a control into the visible area of the scrolling windowed
control.
void __fastcall AutoScrollInView(Controls::TControl* AControl);
Description
Use AutoScrollInView to scroll a control into the visible area of the scrolling windowed control.
AControl is a TControl object encapsulating the control to scroll into the visible area of the
scrolling windowed control.
Unlike ScrollInView, AutoScrollInView does not perform scrolling when the ComponentState
property of AControl or the scrolling windowed control is csLoading.
AutoScrollInView calls ScrollInView to perform any needed scrolling.

TScrollingWinControl::ChangeScale
TScrollingWinControl See also
ChangeScale is a method that resizes the scrolling windowed control by a specific ratio.
virtual void __fastcall ChangeScale(int M, int D);
Description
Use ChangeScale to resize the scrolling windowed control by a specific ratio.
M is the multiplier of the ratio; D is the divisor of the ratio. For example, to resize the scrolling
windowed control to four-fifths of its current size, set M to four and D to five.
ChangeScale recalculates the ranges of the scroll bars on the scrolling windowed control
according to the ratio, and then calls TControl.ChangeScale.

TScrollingWinControl::CreateWnd
TScrollingWinControl See also
CreateWnd is a method that creates a Windows control corresponding to the
TScrollingWinControl object.
virtual void __fastcall CreateWnd(void);
Description
Use CreateWnd to create a Windows control corresponding to the ScrollingWinControl object.
CreateWnd initializes the scroll bars on the scrolling windowed control and then calls
TWinControl::CreateWnd.

TScrollingWinControl::ScrollInView
TScrollingWinControl See also
ScrollInView is a method that scrolls a control into the visible area of the scrolling windowed
control.
void __fastcall ScrollInView(Controls::TControl* AControl);
Description
Use ScrollInView to scroll a control into the visible area of the scrolling windowed control.
AControl is a TControl object encapsulating the control to scroll into view.
Note
If the ComponentState property for AControl or the scrolling windowed control might be
csLoading, use AutoScrollInView instead.

TScrollingWinControl::TScrollingWinControl
TScrollingWinControl See also
TScrollingWinControl is a method that creates and initializes a new TScrollingWinControl object.
__fastcall virtual TScrollingWinControl(Classes::TComponent* AOwner);
Description
Use TScrollingWinControl to create and initialize a new TScrollingWinControl object.
AOwner is a TComponent object encapsulating the object that owns the scrolling windowed
control.
TScrollingWinControl performs the following tasks:
• Calls TWinControl::TWinControl to create the TScrollingWinControl object and insert it into its

owner.
• Creates horizontal and vertical scroll bar objects and assigns them to HorzScrollBar and

VertScrollBar respectively.
• Sets AutoScroll to true.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TScrollingWinControl example
TScrollingWinControl

TSessionList
Hierarchy Properties Methods
TSessionList provides management of Borland Database Engine (BDE) sessions within a
database application.
Header
vcl/db.hpp
Description
Use TSessionList to manage session components in applications that provide multiple sessions.
Borland C++Builder automatically creates a globally accessible default session list component
named Sessions for all database applications. In a multi-session application there can be more
than one active session, but only one session can be current at a time. TSessionList enables an
application to switch current sessions.
Note
Applications should not instantiate additional session list components.

TSessionList properties
TSessionList Alphabetically Legend

In TSessionList
Count

CurrentSession
List
Sessions

TSessionList properties
TSessionList By object Legend

Count
CurrentSession

List
Sessions

TSessionList::Count
TSessionList See also
Indicates the number of available sessions for the application.
__property int Count;
Description
Read Count to determine the current number of available sessions. Count is typically used to
iterate through the list of available sessions to perform some universal action on all sessions.
Used with the Sessions property, which enables an application to access a session by index
number, Count specifies the maximum number of index entries for Sessions (Count - 1).

TSessionList::CurrentSession
TSessionList See also
Returns a pointer to the current session.
__property TSession* CurrentSession;
Description
Use CurrentSession to determine or specify which session in a database application is the
current session. By default the current session is a pointer to the default session component,
Session, that is created automatically by Borland C++Builder for all database applications.
Setting CurrentSession makes the specified session component the current one. While any
number of sessions may be active, only one session can be current at a time.

TSessionList::List
TSessionList See also
Returns a specified session component.
void __fastcall GetSessionNames(Classes::TStrings* List);
Description
Use List to return a pointer to a specific session component managed by the session list. List
does not change which session is current. SessionName specifies the session component to
return, and must match the SessionName property of an existing session component. If no such
session exists, List raises an EDatabaseError exception with a message specifying the invalid
session name.
Note
To prevent raising an exception, call the FindSession method instead of using the List property.

TSessionList::Sessions
TSessionList See also
Provides an indexed array of all active session components in the session list.
__property TSession* Sessions[int Index];
Description
Use Sessions to access available session components. Index specifies the session to access.
Index must be in the range of zero to the current value of the Count property minus one, or an
EListError exception is raised describing the out of bounds condition.
For example, an application might iterate through all available sessions in the list to perform a
global action on them. The following code sets the KeepConnections property of each session to
false:
for (int index = 0; index < Sessions.Count - 1; index++)
Sessions[index]->KeepConnections = false;

TSessionList methods
TSessionList Alphabetically

In TSessionList
~TSessionList
FindSession
GetSessionNames
OpenSession
TSessionList

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TSessionList methods
TSessionList By object

~TSessionList
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FindSession
FreeInstance
Free
GetSessionNames
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
OpenSession
TSessionList

TSessionList::~TSessionList
TSessionList See also
~TSessionList frees the memory associated with the TSessionList object. Do not call ~
TSessionList directly. Instead, use the delete keyword on the object, which causes ~
TSessionList to be invoked automatically.
__fastcall virtual ~TSessionList(void);
Description
~TSessionList closes all session components, deletes the BDE critical section, and calls the
destructor of its parent object.

TSessionList::FindSession
TSessionList See also
Searches the list of sessions for a specified session.
TSession* __fastcall FindSession(const System::AnsiString SessionName)
;

Description
Call FindSession to determine whether or not a specified session exists. SessionName specifies
the session to search for.
FindSession compares the SessionName parameter to the SessionName property for each
session component in the session list. If a match is found, FindSession returns a pointer to the
session component. If an application passes an empty string in SessionName, FindSession
returns the default session, Session. If a match is not found, FindSession returns NULL.

TSessionList::GetSessionNames
TSessionList See also
Populates a string list with the names of all available sessions.
void __fastcall GetSessionNames(Classes::TStrings* List);
Fills a string list object you create with the names (SessionName property) of all available
sessions.
Description
Call GetSessionNames to retrieve a list of all available sessions. List is a string list object,
created and maintained by the application, into which to store session names. Names returned
by GetSessionNames correspond to the SessionName properties of all available sessions.

TSessionList::OpenSession
TSessionList See also
Makes an existing session active, or creates a new session component and makes it active.
TSession* __fastcall OpenSession(const System::AnsiString SessionName)
;

Description
Call OpenSession to make an existing session active, or to create a new session and make it
active. SessionName specifies the name of the session to open.
OpenSession calls FindSession to see if the session specified in the SessionName parameter
already exists. If it finds a match, it starts that session if necessary, and makes the session
active. If OpenSession does not find an existing session, it creates a new session using the
name specified in the SessionName parameter, starts the session, and makes it active.
In either case, OpenSession returns the session object.

TSessionList::TSessionList
TSessionList See also
Creates an instance of a TSessionList component.
__fastcall TSessionList(void);
Description
Do not create instances of TSessionList. A default session list component, Sessions, is
automatically created for all database applications. Secondary session lists are not necessary.
TSessionList calls the constructor of its parent object, creates an empty list object to keep track
of session components, and creates and initializes a BDE critical section.

Accessibility
Read-only

Hierarchy

TObject

TSessionList example
TSessionList

TSession
Hierarchy Properties Methods Events See also
TSession provides global management of a group of database connections within an application.
Header
vcl/db.hpp
Description
Use TSession to manage a group of database connections within an application. There are three
uses for TSession: standard, multiple net files for Paradox, and multi-threaded database
applications.
Borland C++Builder automatically creates a globally accessible default TSession component
named Session for all database applications. The default session component handles standard
database connections. An application can control the default session by accessing its properties,
events, and methods at runtime.
Database applications that must simultaneously access Paradox tables located in different
network locations can establish multiple sessions, one for each network location.
Finally, database applications that must establish multiple, concurrent connections to the same
database, such as performing two queries against the same data at once, are multi-threaded
applications. Multi-threaded applications must create and maintain one additional session
component for each simultaneous connection to a single database server.
Note
Applications that maintain multiple sessions can manage them through the TSessionList
component. A default session list component, called Sessions—note the plural which
distinguishes this component from the default session component, Session—is automatically
created for all database applications.

TSession properties
TSession Alphabetically Legend

In TSession
Active
ConfigMode

DatabaseCount
Databases
Handle

KeepConnections
Locale

NetFileDir
PrivateDir
SessionName
TraceFlags

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TSession properties
TSession By object Legend

Active
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

ConfigMode
DatabaseCount
Databases

DesignInfo
Handle

KeepConnections
Locale

Name
NetFileDir

Owner
PrivateDir
SessionName
Tag
TraceFlags

TSession::Active
TSession See also
Specifies whether or not a session is active.
__property bool Active;
Description
Examine Active at runtime for the default session, Session, to determine if it is active or not.
Active is false by default, meaning there are no open database connections or datasets
associated with the session. If Active is true, one or more database connections are open, and
one or more datasets may also be open.
Set the Active property at design time or runtime for additional session components in a
database application. Setting Active to true starts the session and makes it the current session.
Setting Active to true triggers an OnStartup event handler for the session and initializes the
NetFileDir, PrivateDir, and ConfigMode properties.
Setting Active to false (the default), closes any open datasets, and disconnects from attached
database servers.
Note
An application can close the default session by setting Active to false, but this is not
recommended.

TSession::ConfigMode
TSession See also
Specifies how the Borland Database Engine (BDE) should handle aliases for the session.
__property TConfigMode ConfigMode;
Description
Set ConfigMode to specify how the BDE should handle aliases created using the AddAlias or
AddStandardAlias methods within the context of a session. ConfigMode also determines which
BDE aliases are reported to a session when an application calls the GetAliasNames method.
The default setting for ConfigMode is cmAll, meaning that the aliases in the BDE configuration
file, the BDE persistent store, and aliases local to the session are available to this session. The
following table summarizes the possible BDE configuration modes that can be set for aliases:
Mode Meaning

cmAll All aliases in the BDE configuration file, the BDE persistent store, and
aliases local to the session are available to the session.

cmPersistent Only aliases in the BDE configuration file, or that are added to the
persistent store are available to the session.

cmSession Only aliases created within this session are available to the session.
The main purpose of ConfigMode is to enable an application to specify and restrict aliases at the
session level.
Note
Aliases created within a session are not automatically saved to the BDE configuration file. To
save an alias to the configuration file, call the SaveConfigFile method.

TSession::DatabaseCount
TSession See also
Indicates the number of active database components currently associated with the session.
__property int DatabaseCount;
Description
Examine DatabaseCount to determine the number of active database components associated
with a session. As database connections are opened or closed during a session’s life-span, this
number can change. If DatabaseCount is zero, there are currently no active database
components for the session.
DatabaseCount is typically used with the Databases property to iterate through the current set of
active databases in a session. For example, the following code sets the KeepConnection
property of each active database in the default session to true:
if (Session.DataBaseCount > 0)
for (int MaxDbCount = 1; MaxDbCount <= Session.DatabaseCount;
MaxDbCount++)

Databases[MaxDbCount]->KeepConnection = true;

TSession::Databases
TSession See also
Provides an indexed array of all active database component names for a session.
__property TDatabase* Databases[int Index];
Description
Use Databases to access active database components associated with a session. An active
database is one that is currently connected to a database server.
Databases is typically used with the DatabaseCount property to iterate through the current set of
active databases in a session. For example, the following code sets the KeepConnection
property of each active database in the default session to true:
if (Session.DataBaseCount > 0)
for (int MaxDbCount = 1; MaxDbCount <= Session.DatabaseCount;
MaxDbCount++)

Databases[MaxDbCount]->KeepConnection = true;

TSession::Handle
TSession See also Example
Specifies the Borland Database Engine (BDE) handle for the session.
__property Bde::hDBISes Handle;
Description
Use Handle only to bypass TSession methods and write directly to the BDE API. Many BDE
function calls require a handle parameter. Handle is assigned an initial value when a session is
activated.
Note
Do not use this property unless an application requires BDE functionality not available through
standard Borland C++Builder components.

TSession::KeepConnections
TSession See also
Specifies whether a temporary database component created in the context of a session
maintains a database server connection even if there are no active datasets associated with the
database component.
__property bool KeepConnections;
Description
Use KeepConnections to specify whether or not temporary database components created at
runtime maintain server connections even when they have no active datasets. If
KeepConnections is true (the default), the application maintains database connections until the
application exits or calls the DropConnections method. For connections to remote database
servers, or for applications that frequently open and close datasets, KeepConnections should
remain true to reduce network traffic and speed up processing.
When KeepConnections is false, an application disconnects from a database when all datasets
associated with a database component are closed. Dropping a connection releases system
resources allocated to the connection, but if a dataset is later reopened that uses the same
database, the connection must be reestablished and initialized.
Note
Duration of server connection for a persistent database component is determined by the
database component’s KeepConnection property instead of the session’s KeepConnections
property.

TSession::Locale
TSession See also
Identifies the Borland Database Engine (BDE) language driver for the session component.
__property void * Locale;
Description
Examine Locale to determine the BDE language driver used by the session component.
Applications that make direct calls to the BDE may need to pass Locale information as an API
function parameter.
Note
Do not use this property unless an application requires BDE functionality not available through
standard Borland C++Builder components.

TSession::NetFileDir
TSession See also
Specifies the directory that contains the Borland Database Engine (BDE) network control file,
PDOXUSRS.NET.
__property System::AnsiString NetFileDir;
Description
Use NetFileDir to specify the directory that contains the BDE network control file, PDOXUSER.
NET. This file governs the sharing of Paradox tables on network drives. All applications that
share Paradox tables on a network directory must specify the same value for this property, and
must have read, write, and create rights for the directory.
Borland C++Builder derives an initial value for NetFileDir from the BDE configuration file for the
Paradox driver. Any value assigned to NetFileDir at design time or runtime overrides the BDE
configuration setting.

TSession::PrivateDir
TSession See also
Specifies the directory in which to store temporary table processing files generated by the
Borland Database Engine (BDE) for database components associated with a session.
__property System::AnsiString PrivateDir;
Description
Use PrivateDir to set the directory in which to store temporary table processing files for all
database connections, such as those generated by the BDE to handle local SQL statements. If
no value is specified for PrivateDir, the BDE automatically stores temporary files in the directory
current at the time the BDE was initialized.
Note
For applications that run directly from a networked file server, the application might want to set
PrivateDir to a user’s local drive to prevent temporary files from being created on the server
where they might conflict with temporary files created by other instances of the application.

TSession::SessionName
TSession See also
Specifies a unique session name that can be used by database and dataset components to link
to this session.
__property System::AnsiString SessionName;
Description
Set SessionName to a unique and meaningful name that can be used to link database and
dataset components to the session. Database and dataset components each have
corresponding SessionName properties that must either match the SessionName property of an
active session or that be blank, indicating that they should be associated with the default
session, Session.

TSession::TraceFlags
TSession See also
Specifies the database operations to track with the SQL Monitor at runtime.
__property TTraceFlags TraceFlags;
Description
Use TraceFlags to specify which database operations the SQL Monitor should track in an
application at runtime. TraceFlags is only meaningful for the SQL Monitor, which is provided to
enable performance tuning and SQL debugging when working with remote SQL database
servers.
Note
Normally trace options are set from the SQL Monitor rather than setting TraceFlags in
application code.
The value of a session component’s TraceFlags property determines the initial settings of the
TraceFlags property for database components associated with the session.
The TTraceFlags type defines the individual values that can be included in the TraceFlags
property. The following table summarizes those values:
Values Meaning

tfQPrepare Monitor Prepare statements.
tfQExecute Monitor ExecSQL statements.
tfError Monitor server error messages. Such messages may include an error

code.
tfStmt Monitor all SQL statements.
tfConnect Monitor database connect and disconnect operations, including allocation

of connection handles, and freeing connection handles.
tfTransact Monitor transaction statements, such as StartTransaction, Commit, and

Rollback.
tfBlob Monitor operations on blob data types.
tfMisc Monitor any statements not covered by other flag options.
tfVendor Monitor direct API function calls to the database server.
Because TraceFlags is a set property, an application can specify different combinations of flags
to monitor different combinations of statements. For example, the following statement limits
monitoring to database connections and SQL statement preparation:
TraceFlags << tfConnect << tfQPrepare;

TSession events
TSession Alphabetically Legend

In TSession
OnPassword
OnStartup

TSession events
TSession By object Legend

OnPassword
OnStartup

TSession::OnPassword
TSession See also
OnPassword occurs when an application attempts to open a Paradox table for the first time and
the Borland Database Engine (BDE) reports insufficient access rights.
__property TPasswordEvent OnPassword;
Description
Write an OnPassword event handler to take specific action when an application attempts to open
a password-protected Paradox table for the first time. To gain access to the Paradox table, the
event handler must pass a valid password to the BDE. The event handler should call the
AddPassword method to make the password available to the session.
Note
If an OnPassword event does not exist, but the BDE reports insufficient access rights, Borland
C++Builder displays a default dialog box that prompts for a password.

TSession::OnStartup
TSession See also
OnStartup occurs when an application activates a session.
__property Classes::TNotifyEvent OnStartup;
Description
Write an OnStartup event handler to take specific actions when an application activates a
session. A session is activated by setting its Active property to true, or by opening a database or
dataset associated with the session (both of which set Active to true).

TSession methods
TSession Alphabetically

In TSession
~TSession
AddAlias
AddPassword
AddStandardAlias
Close
CloseDatabase
DeleteAlias
DropConnections
FindDatabase
GetAliasDriverName
GetAliasNames
GetAliasParams
GetConfigParams
GetDatabaseNames
GetDriverNames
GetDriverParams
GetPassword
GetStoredProcNames
GetTableNames
IsAlias
ModifyAlias
Open
OpenDatabase
RemoveAllPasswords
RemovePassword
SaveConfigFile
TSession

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free

FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TSession methods
TSession By object

~TSession
AddAlias
AddPassword
AddStandardAlias
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CloseDatabase
Close
DefaultHandler
DeleteAlias
DestroyComponents
Destroying
Dispatch
DropConnections
FieldAddress
FindComponent
FindDatabase
FreeInstance
FreeNotification
Free
GetAliasDriverName
GetAliasNames
GetAliasParams
GetConfigParams
GetDatabaseNames
GetDriverNames
GetDriverParams
GetParentComponent
GetPassword
GetStoredProcNames
GetTableNames
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsAlias
MethodAddress
MethodName
ModifyAlias
NewInstance
OpenDatabase
Open
RemoveAllPasswords

RemoveComponent
RemovePassword
SaveConfigFile
TSession

TSession::~TSession
TSession See also
Never delete the default session. The deletion of the default session is handled automatically by
Borland C++Builder when an application terminates.
__fastcall virtual ~TSession(void);
Description
~TSession performs the following actions before calling the destructor of its parent object:
• Makes the session inactive, which closes all database connections.
• Removes the session from the session list.
• Resets database session references, if necessary.
• Frees the list of database components associated with the session.
• Frees the list of callbacks associated with the session.

TSession::AddAlias
TSession See also
Adds a specified Borland Database Engine (BDE) alias to the session for an SQL database
server.
void __fastcall AddAlias(const System::AnsiString Name, const System::
AnsiString Driver, Classes::TStrings* List);

Description
Call AddAlias at runtime to create a session-specific BDE alias for an SQL database server.
Name is the unique name to assign to the alias. Driver is the name of the SQL Links database
driver to use for the alias. List is a string list containing parameters for the alias.
A session’s ConfigMode property determines whether an alias is local to the session, or is
available to all applications in the BDE persistent store as long as any BDE clients are active. the
lifetime of the session. To save an alias permanently, call the SaveConfigFile method before
ending the session.
Note
Although AddAlias can be used to create a Paradox or dBASE alias, AddStandardAlias provides
a simpler method for Paradox and dBASE alias creation.
Example
This example creates an alias for an InterBase database server:
TStringList MyList;
try
{
MyList = TStringList.Create();
MyList->Add("SERVER NAME=IB_SERVER:/PATH/DATABASE.GDB");
MyList->Add("USER NAME=MYNAME");

}
catch(...)
{

Session1->AddAlias("NewIBAlias", "INTRBASE", MyList);
}
delete MyList;

TSession::AddPassword
TSession See also
Adds a password to the current session for accessing encrypted Paradox tables.
void __fastcall AddPassword(const System::AnsiString Password);
Description
Call AddPassword to provide a password for a session prior to opening an encrypted Paradox
table that requires a password. If an application opens a Paradox table that requires a password
for access, the session does not have a password assigned to it, and the application does not
provide its own OnPassword event handler, Borland C++Builder displays a dialog box prompting
the user for a valid password before allowing table access.
Note
If an application defines its own OnPassword event handler, the handler should call this method
to add passwords for the session. All passwords assigned by AddPassword should be deleted
with RemoveAllPasswords or RemovePassword before an application closes.

TSession::AddStandardAlias
TSession See also
Adds a standard Borland Database Engine (BDE) alias to the session for Paradox, dBASE, or
ASCII tables.
void __fastcall AddStandardAlias(const System::AnsiString Name, const
System::AnsiString Path, const System::AnsiString DefaultDriver);

Description
Call AddStandardAlias at runtime to create a session-specific BDE alias for Paradox, dBASE or
ASCII tables. Name is the unique name to assign to the alias. Path specifies the directory where
the database is located. DefaultDriver is the name of the standard BDE driver to use for the
alias. If set, DefaultDriver must be one of “Paradox,” “DBASE,” or “ASCIIDRV”. If left blank
DefaultDriver defaults to “Paradox”. DefaultDriver is used when attempting to open a table that
both does not have an extension and is defined as a table of type ttDefault.
A session’s ConfigMode property determines whether an alias is local to the session, or is
available to all applications in the BDE persistent store as long as any BDE clients are active. the
lifetime of the session. To save an alias permanently, call the SaveConfigFile method before
ending the session.
Note
To create an alias for an SQL database, call AddAlias instead of AddStandardAlias.

TSession::Close
TSession See also
Disconnects from all databases, and closes the session.
void __fastcall Close(void);
Description
Call Close to end a session. Close disconnects from all active databases by freeing temporary
database components, and calling the Close methods persistent database components, and
then sets its own session handle to NULL.
Note
Setting the Active property to false also closes a session.

TSession::CloseDatabase
TSession See also
Closes a database connection associated with the current session.
void __fastcall CloseDatabase(TDatabase* Database);
Description
Call CloseDatabase to close a persistent database connection, or to close and free a temporary
database connection. Database specifies the name of the database component for which to
close the connection.
CloseDatabase decrements the specified database component’s reference count, and then, if
the reference count is zero and the database component’s KeepConnection property is false,
CloseDatabase either frees a temporary database component or closes the connection for a
persistent database component.
Note
Calling CloseDatabase for a persistent database component does not close the connection. To
close a connection for a persistent database component, call the database component’s Close
method directly.
Temporary database components are closed automatically when the last dataset associated with
the database component is closed, but an application can call CloseDatabase prior to that time
to force closure. Closing a connection established by a temporary database component does not
free the component if the session’s KeepConnections property is true (the default). To free
temporary database components after closing their connections call DropConnections.

TSession::DeleteAlias
TSession See also
Removes a specified Borland Database Engine (BDE) alias from the session.
void __fastcall DeleteAlias(const System::AnsiString Name);
Description
Call DeleteAlias to remove a BDE alias from a session. Removing an alias makes the alias
unavailable to the session, but does not remove it from the BDE configuration file if the alias was
stored there when it was created. To remove an alias from the BDE configuration file follow the
call to DeleteAlias with a call to SaveConfigFile.

TSession::DropConnections
TSession See also
Frees all temporary database components associated with a session if they are inactive.
void __fastcall DropConnections(void);
Description
Use DropConnections to free all temporary database components that are currently inactive. If
the KeepConnections property of the session is true (the default), then temporary database
components created as needed for the session by Borland C++Builder at runtime are not
automatically freed when their database connections are closed. DropConnections enables an
application to free these components when they are no longer needed.

TSession::FindDatabase
TSession See also
Searches a session’s list of database components for a specified database.
TDatabase* __fastcall FindDatabase(const System::AnsiString
DatabaseName);

Description
Call FindDatabase to determine whether or not a specified database is associated with a
session. DatabaseName specifies the name of the database component for which to search.
FindDatabase compares DatabaseName to the DatabaseName property for each database
component in a session’s list. If a match is found, FindDatabase returns a pointer to the
database component. Otherwise FindDatabase returns NULL.
An application can call FindDatabase to see if a database component already exists before
creating a new database component for a session.

TSession::GetAliasDriverName
TSession See also
Provides the name of the database driver used by a specified Borland Database Engine (BDE)
alias associated with the session.
System::AnsiString __fastcall GetAliasDriverName(const System::
AnsiString AliasName);

Description
Call GetAliasDriverName to determine the BDE database driver used by a specific alias.
AliasName is the name of the alias for which to return driver information.
For aliases corresponding to Paradox and dBASE tables, GetAliasDriverName returns
“STANDARD”. For ASCII tables the return value is “ASCIIDRV”. For SQL databases, the
driver name depends on the database server.

TSession::GetAliasNames
TSession See also
Populates a string list with the names of persistent Borland Database Engine (BDE) aliases.
void __fastcall GetAliasNames(Classes::TStrings* List);
Description
Call GetAliasNames to retrieve a list of persistent BDE aliases—those aliases that exist in
persistent storage or in the BDE configuration file. List is a string list object, created and
maintained by the application, into which to store the alias names.
A session’s ConfigMode property determines whether an alias created in the context of this
session is reported by GetAliasNames. If ConfigMode is cmAll or cmPersistent, aliases created
within the session are reported.

TSession::GetAliasParams
TSession See also
Retrieves the parameters associated with a specified Borland Database Engine (BDE) alias.
void __fastcall GetAliasParams(const System::AnsiString AliasName,
Classes::TStrings* List);

Description
Call GetAliasParams to retrieve the BDE configuration parameters for a specified alias.
AliasName is the name of the alias for which to retrieve parameters. List is a string list object,
created and maintained by the application, into which to store the parameters.

TSession::GetConfigParams
TSession See also
Retrieves Borland Database Engine (BDE) configuration information.
void __fastcall GetConfigParams(const System::AnsiString Path, const
System::AnsiString Section, Classes::TStrings* List);

Description
Call GetConfigParams to retrieve specific types of configuration information from the BDE
configuration file used to initialize the application.
Path represents the internal node structure of the BDE configuration file, and must always start
at the root, denoted by a backslash. Each node must be separated from others by a backslash,
and no node may be empty. For example, a Path of \SYSTEM\FORMATS\TIME, returns the time
format used by the BDE configuration file.
Path can contain a replaceable string formatting symbol (%s) in one of its node designations. If it
does, Section must contain the missing node information. In this case, GetConfigParams inserts
the contents of Section into Path before calling the BDE for the requested information.
List is a string list object, created and maintained by the application, into which to store the
configuration information. For example, if Path is \DATABASES\%s\DB INFO, and Section is an
alias name, then GetConfigParams returns the parameters for the alias in List.
For more information about the BDE Configuration File, see the on-line BDE help.

TSession::GetDatabaseNames
TSession See also
Populates a string list with the names of persistent Borland Database Engine (BDE) aliases and
the names of all databases components known to the session.
void __fastcall GetDatabaseNames(Classes::TStrings* List);
Description
Call GetDatabaseNames to retrieve a sorted, combined list of persistent BDE aliases—those
aliases that exist in persistent storage or in the BDE configuration file—and the names of all
database components known to the session. List is a string list object, created and maintained
by the application, into which to store the database and alias names.

TSession::GetDriverNames
TSession See also
Populates a string list with the names of all Borland Database Engine (BDE) drivers available to
the session.
void __fastcall GetDriverNames(Classes::TStrings* List);
Description
Call GetDriverNames to retrieve the names of all BDE drivers that can be used by a session. List
is a string list object, created and maintained by the application, into which to store the driver
names.

TSession::GetDriverParams
TSession See also
Populates a string list with the parameters for a specified Borland Database Engine (BDE) driver.
void __fastcall GetDriverParams(const System::AnsiString DriverName,
Classes::TStrings* List);

Description
Call GetDriverParams to retrieve a list of parameters associated with a specified BDE driver.
DriverName is the BDE driver for which to return a parameter list. List is a string list object,
created and maintained by the application, into which to store the driver parameters.
The actual number of parameters returned by GetDriverParams depends on the specified driver.
For example, for the STANDARD driver used by Paradox and dBASE, returns only a few
parameters. For SQL Links drivers multiple parameters are returned.

TSession::GetPassword
TSession See also
Invokes the OnPassword event handler for the session or displays the default password dialog
box.
bool __fastcall GetPassword(void);
Description
Call GetPassword to invoke the OnPassword event handler for the session and handle response
logic when an application is working with password-protected Paradox files. If an OnPassword
event handler is not defined, GetPassword displays the default password dialog box.
An application can use the return value of GetPassword to control program logic. GetPassword
returns true if a user chooses OK, or false if the user chooses Cancel.

TSession::GetStoredProcNames
TSession See also
Populates a string list with the names of all stored procedures associated with a specified
database component that is connected to an SQL database server.
void __fastcall GetStoredProcNames(const System::AnsiString
DatabaseName, Classes::TStrings* List);

Description
Call GetStoredProcNames to retrieve a list of all stored procedures for a database component
that is attached to an SQL database server. DatabaseName specifies the name of the database
for which to retrieve stored procedure names. List is a string list object, created and maintained
by the application, into which to return the stored procedure names.
Note
GetStoredProcNames raises an exception if called on Paradox or dBASE databases.

TSession::GetTableNames
TSession See also
Populates a string list with the names of tables associated with a specified database component.
void __fastcall GetTableNames(const System::AnsiString DatabaseName,
const System::AnsiString Pattern, bool Extensions, bool SystemTables,
Classes::TStrings* List);

Description
Call GetTableNames to retrieve a list of the tables associated with a given database.
DatabaseName specifies the name of the database from which to retrieve table names.
Pattern specifies a delimiter string that restricts the tables returned to those that match the
string. Pattern can include wildcard symbols. Pass an empty Pattern string to match all files not
restricted by other criteria.
For searches on Paradox and dBASE, set Extensions to true to include filename extensions as
part of the table name. For SQL-based databases, set Extension to false.
Set SystemTables to true for SQL-based databases to return both data tables and the system
tables that define the database structure. Set SystemTables to false for Paradox and dBASE
tables.
List is a string list object, created and maintained by the application, into which to return the table
names.

TSession::IsAlias
TSession See also
Determines whether or not a string value corresponds to an existing Borland Database Engine
(BDE) database alias known to the session.
bool __fastcall IsAlias(const System::AnsiString Name);
Description
Call IsAlias to determine if a string corresponds to the name of an existing BDE alias that can be
used by the session. Name is the string to test.
If IsAlias returns true, Name is a valid alias.
Note
The aliases known to IsAlias depend on the session’s ConfigMode property. If ConfigMode is
cmAll, then all aliases are available to the session.

TSession::ModifyAlias
TSession See also
Adds or changes parameters for a Borland Database Engine (BDE) alias.
void __fastcall ModifyAlias(System::AnsiString Name, Classes::
TStrings* List);

Description
Call ModifyAlias to change the parameters for a specified BDE alias. Name is the name of the
alias to modify. List is a string list object previously populated with parameter values to add or
change. An application must create and maintain List.
Populate List with parameter strings before calling ModifyAlias. List need only contain the
parameters to change. If ModifyAlias passes a parameter for which a value already exists, the
new parameter replaces the existing one. New parameters that are not yet defined for the alias
are added to the existing parameters. If List is empty, ModifyAlias does not change any existing
parameters.

TSession::Open
TSession See also
Starts a session and makes it the current session.
void __fastcall Open(void);
Description
Call Open to start a session other than the default session in a database application. Open sets
Active to true, triggers an OnStartup event handler for the session and initializes the NetFileDir,
PrivateDir, and ConfigMode properties.

TSession::OpenDatabase
TSession See also
Opens an existing database, or creates a temporary database component and opens it.
TDatabase* __fastcall OpenDatabase(const System::AnsiString
DatabaseName);

Description
Call OpenDatabase to connect to a database for which a persistent database component
already exists, or to create a temporary database component and connect to a database.
DatabaseName specifies the database to open.
OpenDatabase makes the current session active, then calls FindDatabase to determine if the
DatabaseName parameter corresponds to the DatabaseName property of an existing database
component. If it does not, OpenDatabase creates a temporary database component, assigning
the DatabaseName parameter to the DatabaseName property. Finally, OpenDatabase calls the
Open method of the database to connect to a database server, then increments the session’s
database reference count by one.

TSession::RemoveAllPasswords
TSession See also
Deletes all passwords previously added to the current session for accessing encrypted Paradox
tables.
void __fastcall RemoveAllPasswords(void);
Description
Call RemoveAllPasswords to delete all current Paradox table passwords associated with the
current session. Subsequent attempts to access encrypted Paradox tables fail unless an
application first calls AddPassword to reestablish a password.
Note
Ordinarily an application should call RemoveAllPasswords to remove all session-specific
passwords it creates from the Borland Database Engine (BDE) persistent store before
terminating.

TSession::RemovePassword
TSession See also
Deletes a single password previously added to the current session for accessing an encrypted
Paradox table.
void __fastcall RemovePassword(const System::AnsiString Password);
Description
Call RemovePassword to delete a single Paradox table password associated with the current
session from the Borland Database Engine (BDE) persistent store. Subsequent attempts to
access the encrypted Paradox table fails unless an application first calls AddPassword to
reestablish a password.

TSession::SaveConfigFile
TSession See also
Writes the current information in the Borland Database Engine (BDE) persistent store from
memory to the BDE configuration file on disk.
void __fastcall SaveConfigFile(void);
Description
Call SaveConfigFile to write any BDE configuration changes currently in memory to the BDE
configuration file on disk. When the BDE is first initialized, the current BDE configuration file is
read into persistent storage in memory. Applications can read or modify the configuration file in
memory, but modification exist only in memory, not on disk.
For example, if an application defines a new BDE alias with AddAlias, the alias exists in memory
only for as long as the BDE resides in memory. To store the new alias for later use by all
applications that use the BDE, call SaveConfigFile. SaveConfigFile overwrites the disk image of
the configuration file with the in-memory image of the persistent configuration file.
Note
If a session’s ConfigMode property is cmSession, added aliases cannot be saved to the BDE
configuration file.

TSession::TSession
TSession See also
Creates an instance of a TSession component.
__fastcall virtual TSession(Classes::TComponent* AOwner);
Description
Do not call TSession directly. The default session component, Session, is created automatically
for all database applications. To create additional sessions for a multi-threaded database
application at runtime call OpenSession instead of TSession. OpenSession calls TSession only if
the session does not already exist. (At design time, create additional sessions by dropping them
on a data module.)
TSession calls the constructor of its parent object and ensures that the session component
cannot be inherited should the data module or form on which it is placed be stored in the Object
Repository. TSession also:
• Creates an empty list of database components for the session.
• Creates an empty list of callbacks for the session.
• Sets the KeepConnections property to true.
• Adds the session to the session list.
• Sets the Handle property to NULL.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent

TSession example
TSession

TShape
Hierarchy Properties Methods Events See also
TShape represents a geometric shape that can be drawn on a form.
Header
vcl/extctrls.hpp
Description
Add a TShape object to a form to draw a simple geometric shape on the form. TShape
introduces properties to describe the pen used to outline the shape and the brush used to fill it.
If the shape is only part of the image of a TCustomControl object, use the methods of the
control’s canvas instead.

TShape properties
TShape Alphabetically Legend

In TShape
Brush
Pen
Shape

Derived from TControl
Align
BoundsRect
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Height
Hint
Left
Name
Parent
ParentShowHint
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TShape properties
TShape By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

ControlState
ControlStyle
Cursor
DesignInfo
DragCursor
DragMode
Enabled
Height
Hint
Left
Name

Owner
ParentShowHint
Parent
Pen
Shape
ShowHint
Tag
Top
Visible
Width

TShape::Brush
TShape See also Example
Brush specifies the color and pattern used for filling the shape control.
__property Graphics::TBrush* Brush;
Description
Read Brush to obtain the TBrush object that represents the color and pattern that fill the interior
of the shape. Use the properties of Brush to change the color or pattern.
Set the Brush property to assign another TBrush object to the TBrush object maintained by
TShape.

TShape::Pen
TShape See also
Pen specifies the pen used to outline the shape control.
__property Graphics::TPen* Pen;
Description
Read Pen to obtain the TPen object that represents the color and style of the line used to outline
the shape. Use the properties of Pen to change the color or style.
Set the Pen property to assign another TPen object to the TPen object maintained by TShape.

TShape::Shape
TShape See also
Shape specifies the shape of the control.
__property TShapeType Shape;
Description
Set Shape to the geometric shape that should be drawn on the form. The Shape property has
these possible values:
Value Meaning

stCircle The shape is a circle.
stEllipse The shape is an ellipse.
stRectangle The shape is a rectangle.
stRoundRect The shape is a rectangle with rounded corners.
stRoundSquare The shape is a square with rounded corners.
stSquare The shape is a square.

TShape events
TShape Alphabetically Legend

Derived from TControl
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TShape events
TShape By object Legend

OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TShape methods
TShape Alphabetically Legend

In TShape
~TShape

Paint
TShape

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Invalidate
Perform
Refresh
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
Update

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize

MethodAddress
MethodName
NewInstance

TShape methods
TShape By object Legend

~TShape
Assign
BeginDrag
BringToFront
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
DefaultHandler
DestroyComponents
Destroying
Dispatch
DragDrop
Dragging
EndDrag
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
GetTextBuf
GetTextLen
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance

Paint
Perform
Refresh
RemoveComponent
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
TShape
Update

TShape::~TShape
TShape See also
~TShape frees the memory associated with the TShape object. Do not call ~TShape directly.
Instead, use the delete keyword on the object, which causes ~TShape to be invoked
automatically.
__fastcall virtual ~TShape(void);

TShape::Paint
TShape See also
Paint draws the image of the shape onto the form.
virtual void __fastcall Paint(void);
Description
Paint is called automatically when the control receives a WM_PAINT message. Paint draws the
appropriate image onto the canvas.

TShape::TShape
TShape See also
TShape creates an instance of TShape.
__fastcall virtual TShape(Classes::TComponent* AOwner);
Description
Call TShape to instantiate a TShape object at runtime. Shapes added to a form at design time
are created automatically.
TShape allocates memory and initializes the Height and Width properties of the shape to 65.

Scope
Published

Accessibility
Read-only

Scope
Protected

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TGraphicControl

TShape example
TShape

TSimpleFrameSite
Hierarchy Methods
TSimpleFrameSite is an object that encapsulates the ISimpleFrameSite interface.
Header
vcl/olectrls.hpp
Description
Use TSimpleFrameSite to work with controls that support the ISimpleFrameSite interface.
For information about the ISimpleFrameSite interface, search the Microsoft world-wide web
pages at http://www.microsoft.com, or search the latest Microsoft Developer Network CD.

TSimpleFrameSite methods
TSimpleFrameSite Alphabetically

In TSimpleFrameSite
~TSimpleFrameSite
AddRef
PostMessageFilter
PreMessageFilter
QueryInterface
Release
TSimpleFrameSite

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TSimpleFrameSite methods
TSimpleFrameSite By object

~TSimpleFrameSite
AddRef
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
PostMessageFilter
PreMessageFilter
QueryInterface
Release
TSimpleFrameSite

TSimpleFrameSite::~TSimpleFrameSite
TSimpleFrameSite
~TSimpleFrameSite frees the memory associated with the TSimpleFrameSite object. Do not call
~TSimpleFrameSite directly. Instead, use the delete keyword on the object, which causes ~
TSimpleFrameSite to be invoked automatically.
__fastcall virtual ~TSimpleFrameSite(void);

TSimpleFrameSite::AddRef
TSimpleFrameSite See also
AddRef increments the reference count for the TSimpleFrameSite object.
virtual long __stdcall AddRef(void);
Description
Use AddRef to increment the reference count for the TSimpleFrameSite object. The object will
not be destroyed until its reference count is zero.
AddRef returns the new reference count.

TSimpleFrameSite::PostMessageFilter
TSimpleFrameSite See also
PostMessageFilter handles the post-processing of a Windows message sent to the object
associated with the simple frame site.
virtual long __stdcall PostMessageFilter(HWND wnd, int msg, int wp, int
lp, int &res, long Cookie);

Description
Override PostMessageFilter to perform special processing of a Windows message that has been
sent to the object associated with the simple frame site.
By default, PostMessageFilter simply returns S_OK.

TSimpleFrameSite::PreMessageFilter
TSimpleFrameSite See also
PreMessageFilter handles the pre-processing of a Windows message sent to the object
associated with the simple frame site.
virtual long __stdcall PreMessageFilter(HWND wnd, int msg, int wp, int
lp, int &res, long &Cookie);

Description
Override PreMessageFilter to perform special processing of a Windows message that has been
sent to the object associated with the simple frame site.
By default, PreMessageFilter simply returns S_OK.

TSimpleFrameSite::QueryInterface
TSimpleFrameSite
QueryInterface retrieves an interface for the object associated with the simple frame site.
virtual long __stdcall QueryInterface(const GUID &iid, void *obj);
Description
Use QueryInterface to retrieve an interface for the object associated with the simple frame site.
iid specifies the IID for the interface. An IID is a specialized GUID structure containing an
interface identifier. For more information, search the OLE.HLP file for GUID.
obj is the variable in which the interface will be stored.
QueryInterface returns S_OK if the object supports the interface; otherwise, QueryInterface
returns S_FALSE.
For more information about QueryInterface, search the OLE.HLP file for QueryInterface.

TSimpleFrameSite::Release
TSimpleFrameSite See also
Release decrements the reference count for the TSimpleFrameSite object.
virtual long __stdcall Release(void);
Description
Use Release to decrement the reference count for the TSimpleFrameSite object. The object will
be destroyed when the reference count is zero.
Release returns the new reference count.

TSimpleFrameSite::TSimpleFrameSite
TSimpleFrameSite
TSimpleFrameSite creates a new instance of the TSimpleFrameSite object.
__fastcall TSimpleFrameSite(TOleControl* Control);
Description
Use TSimpleFrameSite to create a new instance of the TSimpleFrameSite object.
Control is the control associated with the simple frame site.

Hierarchy

TObject

IUnknown
ISimpleFrameSite

TSimpleFrameSite example
TSimpleFrameSite

TSmallIntField
Hierarchy Properties Methods Events See also
A TSmallintField object represents a signed 16-bit integer field in a dataset.
Header
vcl/dbtables.hpp
Description
Small-integer fields can hold values in the range -32768 to 32767, and are used to hold values
that are signed 16-bit whole numbers.
TSmallIntField differs from its immediate ancestor TIntegerField only in the data type it
represents. Except for the constructor, all of the properties, methods, and events are the same
as those of TIntegerField, and provide functionality that is useful for managing the value and
properties of an integral numeric field in a database.

TSmallIntField properties
TSmallIntField Alphabetically Legend

Derived from TIntegerField
MaxValue
MinValue
Value

Derived from TNumericField
DisplayFormat
EditFormat

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TSmallIntField properties
TSmallIntField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayFormat
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditFormat

EditMaskPtr
EditMask
FieldKind

FieldName
FieldNo

Index
IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
MaxValue
MinValue
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Value
Visible

TSmallIntField events
TSmallIntField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TSmallIntField events
TSmallIntField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TSmallIntField methods
TSmallIntField Alphabetically

Derived from TSmallintField
~TSmallIntField
TSmallIntField

Derived from TIntegerField
IsValidChar

Derived from TField
Assign
AssignValue
Clear
FocusControl
GetData
SetData
SetFieldType

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TSmallIntField methods
TSmallIntField By object

~TSmallIntField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TSmallIntField

~TSmallIntField
~TSmallIntField frees the memory associated with the TSmallIntField object. Do not call ~
TSmallIntField directly. Instead, use the delete keyword on the object, which causes ~
TSmallIntField to be invoked automatically.
__fastcall virtual ~TSmallintField(void);

TSmallIntField
TSmallIntField creates an instance of a TSmallintField object.
__fastcall virtual TSmallintField(Classes::TComponent* AOwner);
Description
It is seldom necessary to call TSmallIntField directly, because a small-integer field object is
instantiated automatically for all small-integer fields in a dataset.
After calling the inherited constructor, TSmallIntField sets
• DataType to ftSmallint
• MinValue to -32768
• MaxValue to 32767

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField
TNumericField
TIntegerField

TSmallIntField example
TSmallIntField

TSpeedButton
Hierarchy Properties Methods Events See also
TSpeedButton is a button, usually with a graphical image on its face, that is used to execute
commands or set modes.
Header
vcl/buttons.hpp
Description
TSpeedButton introduces properties that can be used to set graphical images to represent the
different button states (selected, unselected, disabled and so on). You can use other properties
to specify multiple images or to rearrange the images and text on the button. Speed button
properties also enable them to work together as a group. They are commonly used in this way
with panels (TPanel) to create tool bars and tool palettes.

TSpeedButton properties
TSpeedButton Alphabetically Legend

In TSpeedButton
AllowAllUp
Down
Glyph
GroupIndex
Layout
Margin
NumGlyphs
Spacing

Derived from TControl
Align
BoundsRect

Caption
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ControlState
ControlStyle
Cursor
Enabled
Font
Height
Hint
Left
Name
Parent
ParentFont
ParentShowHint
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TSpeedButton properties
TSpeedButton By object Legend

Align
AllowAllUp
BoundsRect
Caption
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

ControlState
ControlStyle

Cursor
DesignInfo
Down
Enabled
Font
Glyph
GroupIndex
Height
Hint
Layout
Left
Margin
Name
NumGlyphs

Owner
ParentFont
ParentShowHint
Parent
ShowHint
Spacing
Tag
Top
Visible
Width

TSpeedButton::AllowAllUp
TSpeedButton See also Example
Specifies whether at least one speed button in this speed button’s group must be down.
__property bool AllowAllUp;
Description
AllowAllUp should be used only with speed buttons in a group (that is, each button’s
GroupIndex property is not zero). See the GroupIndex property for information on how to create
a group of speed buttons. If GroupIndex is zero, AllowAllUp has no effect.
If AllowAllUp is true, all of the speed buttons in a group can be unselected. All buttons can
appear in their up state.
If AllowAllUp is false, one of the speed buttons belonging to a group must be selected (in its
down state) at all times. Clicking a down button won’t return the button to its up state. The
button only becomes unselected when the user clicks one of the other buttons in the group. In
such a group, one button must always be selected. Determine which speed button will be initially
down by setting its Down property to true.
The default value is false.
Changing the value of the AllowAllUp property for one speed button in a group changes the
AllowAllUp value for all buttons in the group.
You can use AllowAllUp with a single bitmap button in its own group (with a GroupIndex value
greater than 0) so that the button can be selected and remain selected until the user clicks the
button again—at which time it becomes unselected. In other words, the button can work much
like a check box. To make a single speed button behave this way, set its GroupIndex property to
a value greater than 0 (but different from any other GroupIndex value of any other speed buttons
you have), and set AllowAllUp to true.

TSpeedButton::Down
TSpeedButton See also
Determines if the button appears in an up (unselected) or down (selected) state.
__property bool Down;
Description
Speed buttons are initially in their up (unselected) state. This occurs because the default setting
of the Down property is false.
To initially display a speed button in its down state, set the Down property to true. For example, if
you use a panel component with several speed buttons to create a tools palette, you might want
one of the speed buttons selected when the palette first appears.
Although you can use a group of speed buttons with the AllowAllUp property set to false to make
the tool palette buttons work as a group, you must set the Down property for the button you want
to be selected initially. You can also use the Down property at runtime any time you want to put
a button in a down state without the user clicking it first.
Note
The Down property cannot be changed if the GroupIndex property is zero.

TSpeedButton::Glyph
TSpeedButton See also Example
Specifies the bitmap that appears on the selected speed button.
__property Graphics::TBitmap* Glyph;
Description
Use the Open dialog box that appears as an editor in the Object Inspector to choose a bitmap
file (with a .BMP extension) to use on the button, or specify a bitmap file at runtime.
You can provide up to four images on a speed button with a single bitmap. Borland C++Builder
then displays one of these images depending on the state of the button.
Image position in bitmap Button state Description

First Up This image appears when the button is unselected.
If no other images exist in the bitmap, Borland C+
+Builder also uses this image for all other images.

Second Disabled This image usually appears dimmed to indicate
that the button can’t be selected.

Third Down This image appears when a button is clicked. The
up state image reappears when the user releases
the mouse button.

Fourth Stay down This image appears when a button stays down
indicating that it remains selected. (This fourth
state applies only to speed buttons.)

If only one image is present, Borland C++Builder attempts to represent the other states by
altering the image slightly for the different states, although the stay down state is always the
same as the up state. If you aren’t satisfied with the results, you can provide one or more
additional images in the bitmap.
If you have multiple images in a bitmap, you must specify the number of images that are in the
bitmap with the NumGlyphs property. All images must be the same size and next to each other
in a horizontal row.
Note
The lower left hand pixel of the bitmap is reserved for the “transparent” color. Any pixel in the
bitmap which matches that lower left hand pixel will be “transparent”.

TSpeedButton::GroupIndex
TSpeedButton See also Example
Determines which speed buttons work together as a group.
__property int GroupIndex;
Description
By default, speed buttons have a GroupIndex property value of 0, indicating that they do not
belong to a group. When the user clicks such a speed button, the button appears “pressed,” or
in its down state, then the button returns to its normal up state when the user releases the
mouse button.
Speed buttons with the same GroupIndex property value (other than 0), work together as a
group. When the user clicks one of these speed buttons, it remains “pressed,” or in its down
state, until the user clicks another speed button belonging to the same group. Speed buttons
used in this way can present mutually exclusive choices to the user.

TSpeedButton::Layout
TSpeedButton See also Example
Determines where the image appears on the bitmap button or a speed button.
__property TButtonLayout Layout;
Description
These are the possible values.:
Value Meaning

blGlyphLeft The image appears near the left side of the button.
blGlyphRight The image appears near the right side of the button.
blGlyphTop The image appears near the top of the button.
blGlyphBottom The image appears near the bottom of the button.
The TButtonLayout type defines the values the Layout property of a speed button can assume.

TSpeedButton::Margin
TSpeedButton See also Example
Determines the number of pixels between the edge of the image (specified in the Glyph
property) and the edge of the button.
__property int Margin;
Description
The edges that the margin separates depends on the layout of the image and text (specified in
the Layout property). For example, if Layout is blGlyphLeft, the margin appears between the left
edge of the image and the left edge of the button. If Margin is 3, three pixels separates the
image and the button edges. If Margin is 0, no distance in pixels separates the image and the
button edges.
If Margin is –1 (which it is by default), then the image and text (specified in the Caption property)
are centered. The number of pixels between the image and button edge is equal to the number
of pixels between the opposite edge of the button and the text.

TSpeedButton::NumGlyphs
TSpeedButton See also Example
Indicates the number of images that are in the graphic specified in the Glyph property for use on
a speed button.
__property TNumGlyphs NumGlyphs;
Description
If you have multiple images in a bitmap, you must specify the number of images that are in the
bitmap with the NumGlyphs property. All images must be the same size and next to each other
in a row. Valid NumGlyphs values are 1 to 4. The default value is 1.
You can provide up to four images on a bitmap button or speed button with a single bitmap.
Borland C++Builder then displays one of these images depending on the state of the button.
Only one image is required in a bitmap.
Image position in bitmap Speed button stateDescription

First Up This image appears when the button is unselected.
If no other images exist in the bitmap, Borland C+
+Builder uses this image for all other images.

Second Disabled This image usually appears dimmed and indicates
that the button can’t be selected.

Third Down This image appears when a button is clicked. The
up state image then reappears when the user
releases the mouse button.

Fourth Stay down This image appears when a button stays down
indicating that it remains selected.

If only one image is present, Borland C++Builder attempts to represent the other states by
altering the image slightly for the different states, although the stay down state is always the
same as the up state. If you aren’t satisfied with the results, you can provide additional images
in the bitmap.
The TNumGlyphs type defines the range of values (1–4) the NumGlyphs property of a speed
button can assume.

TSpeedButton::Spacing
TSpeedButton See also Example
Determines where the image and text appear on a speed button.
__property int Spacing;
Description
Spacing determines the number of pixels between the image (specified in the Glyph property)
and the text (specified in the Caption property). The default value is 4 pixels.
If Spacing is a positive number, its value is the number of pixels between the image and text. If
Spacing is 0, no pixels will be between the image and text. If Spacing is –1, the text appears
centered between the image and the button edge. The number of pixels between the image and
text is equal to the number of pixels between the text and the button edge opposite the glyph.

TSpeedButton events
TSpeedButton Alphabetically Legend

Derived from TControl
OnClick
OnDblClick
OnMouseDown
OnMouseMove
OnMouseUp

TSpeedButton events
TSpeedButton By object Legend

OnClick
OnDblClick
OnMouseDown
OnMouseMove
OnMouseUp

TSpeedButton methods
TSpeedButton Alphabetically

In TSpeedButton
~TSpeedButton
Click
TSpeedButton

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Invalidate
Perform
Refresh
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
Update

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize

MethodAddress
MethodName
NewInstance

TSpeedButton methods
TSpeedButton By object

~TSpeedButton
Assign
BeginDrag
BringToFront
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Click
ClientToScreen
DefaultHandler
DestroyComponents
Destroying
Dispatch
DragDrop
Dragging
EndDrag
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
GetTextBuf
GetTextLen
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
Perform
Refresh
RemoveComponent
Repaint
ScreenToClient
SendToBack
SetBounds
SetTextBuf
Show
TSpeedButton
Update

TSpeedButton::~TSpeedButton
TSpeedButton See also
~TSpeedButton frees the memory associated with the TSpeedButton object. Do not call ~
TSpeedButton directly. Instead, use the delete keyword on the object, which causes ~
TSpeedButton to be invoked automatically.
__fastcall virtual ~TSpeedButton(void);
Description
~TSpeedButton frees the button glyph object, then calls the destructor of its parent object.

TSpeedButton::Click
TSpeedButton
Simulates a mouse click, as if the user had clicked the speed button.
virtual void __fastcall Click(void);
Description
Click calls the inherited Click method.

TSpeedButton::TSpeedButton
TSpeedButton See also
Constructs a speed button component.
__fastcall virtual TSpeedButton(Classes::TComponent* AOwner);
Description
TSpeedButton calls the constructor of its parent object, then sets the initial values for the speed
button, including the creation of button glyph object.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TGraphicControl

TSpeedButton example
TSpeedButton

TStoredProc
Hierarchy Properties Methods Events See also
TStoredProc encapsulates a stored procedure on a database server.
Header
vcl/dbtables.hpp
Description
Use a TStoredProc object when a client application must use a stored procedure on a database
server. A stored procedure is a grouped set of statements, stored as part of a database
server’s metadata (just like tables, indexes, and domains), that performs a frequently-repeated,
database-related task on the server and passes results to the client.
Note
Not all database servers support stored procedures. See a specific server’s documentation to
determine if it supports stored procedures.
Many stored procedures require a series of input arguments, or parameters, that are used during
processing. TStoredProc provides a Params property that enables an application to set these
parameters before executing the stored procedure.
TStoredProc reuses the Params property to hold the results returned by a stored procedure.
Params is an array of values. Depending on server implementation, a stored procedure can
return either a single set of values, or a result set similar to the result set returned by a query.

TStoredProc properties
TStoredProc Alphabetically Legend

In TStoredProc
Overload
ParamBindMode

ParamCount
Params
Prepared

StmtHandle
StoredProcName

Derived from TDBDataSet
Database

DatabaseName
DBHandle
DBLocale
DBSession

SessionName
Derived from TDataSet

Active
AutoCalcFields

BOF
Bookmark

DataSource
DefaultFields
Designer
EOF
FieldCount

FieldDefs
Fields
FieldValues

Found
Modified
State

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TStoredProc properties
TStoredProc By object Legend

Active
AutoCalcFields

BOF
Bookmark

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

DatabaseName
Database
DataSource
DBHandle
DBLocale
DBSession
DefaultFields
Designer

DesignInfo
EOF
FieldCount

FieldDefs
Fields
FieldValues

Found
Modified

Overload
Owner

ParamBindMode
ParamCount

Params
Prepared
SessionName

State
StmtHandle

StoredProcName
Tag

TStoredProc::Overload
TStoredProc See also
Specifies which Oracle overloaded stored procedure to execute.
__property unsigned short Overload;
Description
Use Overload to specify which overloaded stored procedure to execute on an Oracle server. An
Oracle overloaded stored procedure is one that shares a name with one or more other stored
procedures. Oracle distinguishes among overloaded stored procedures by assigning each
procedure a unique numeric identifier. An application can specify this identifier using the
Overload property.
By default, Overload is zero, which assumes there is no procedure overloading. For all servers
except Oracle, do not change this value. If an application attempts to access an Oracle
overloaded procedure without setting Overload, the Borland Database Engine (BDE) accesses
the lowest numbered, or first, overloaded procedure on the server.
If Overload is 1, the BDE executes the first overloaded procedure on the server. If Overload is 2,
it executes the second, and son on.
Note
While Oracle overloaded procedures share names, their parameter lists are unique. An
application must ensure that it passes the correct parameter list to an overloaded procedure.

TStoredProc::ParamBindMode
TStoredProc See also
Determines the order in which a component’s parameters are assigned to the parameter list for
the stored procedure on the server.
__property TParamBindMode ParamBindMode;
Description
Examine or set ParamBindMode to determine the order in which parameters in the Params
property are matched to the parameters used by the stored procedure on the server.
ParamBindMode can be one of the following:
Value Ordering

pbByName Parameters specified in the Params property are matched to identically
named parameters on the server. This is the default.

pbByNumber Parameters in Params are assigned one-by-one to the next available
parameter on the server (i.e., the first parameter in Params is assigned to
the first parameter used by the stored procedure, and so on).

Whenever possible, ParamBindMode should be pbByName. This guarantees that parameters
are matched to the correct parameters used by the stored procedure regardless of physical
ordering in Params. At design time, the names of known parameters appear in the Parameters
editor.
In some cases stored procedures on the server do not provide the Borland Database Engine
(BDE) with parameter names. If parameter names as they exist on the server side are not known
at design or runtime, it may be necessary to set ParamBindMode to pbByNumber. In this case,
however, it is necessary to know the correct data type for each parameter in sequence.
Otherwise an exception may be raised on execution.

TStoredProc::ParamCount
TStoredProc See also
Indicates the number of parameters for the stored procedure component.
__property unsigned short ParamCount;
Description
Examine ParamCount to determine the number of parameters currently stored in the Params
property. When an application prepares a stored procedure for execution, ParamCount indicates
the number of parameters that will be passed to the server. After a stored procedure executes,
ParamCount indicates the number of parameters returned.

TStoredProc::Params
TStoredProc See also
Stores the input and output parameters for a stored procedure.
__property TParams* Params;
Description
Access Params at runtime to set input parameter names, values, and data types dynamically (at
design time use the Parameters editor to set parameter information). Params is an array of
parameter values.
An application can also access Params after executing a stored procedure to retrieve the output
parameters, or result set, returned to the procedure by the server.
Note
To set parameter values, an application should call the SetParams method, rather than indexing
into the Params array directly. To retrieve a value for a parameter returned when a stored
procedure is executed, call the ParamByName method.

TStoredProc::Prepared
TStoredProc See also
Determines whether or not a stored procedure is prepared for execution.
__property bool Prepared;
Description
Examine Prepared to determine if a stored procedure is already prepared for execution. If
Prepared is true, the stored procedure is prepared, and if Prepared is false, the procedure is not
prepared. A stored procedure must be prepared before it can be executed.
Note
An application can change the current setting of Prepared to prepare or unprepare a stored
procedure. If Prepared is true, setting it to false calls the Unprepare method to unprepare the
stored procedure. If Prepared is false, setting it to true calls the Prepare method to prepare the
procedure. Generally, however, it is better programming practice to call Prepare and Unprepare
directly. These methods automatically update the Prepared property.

TStoredProc::StmtHandle
TStoredProc
Identifies the Borland Database Engine (BDE) statement handle for the stored procedure.
__property Bde::hDBIStmt StmtHandle;
Description
Retrieve StmtHandle if an application makes a direct call to the BDE, bypassing the methods of
TStoredProc. Some BDE API calls require a statement handle as a parameter. Under all other
circumstances an application does not need to access this property.

TStoredProc::StoredProcName
TStoredProc See also
Identifies the name of the stored procedure on the server for which this object is an
encapsulation.
__property System::AnsiString StoredProcName;
Description
Set StoredProcName to specify the name of the stored procedure to call on the server. If
StoredProcName does not match the name of an existing stored procedure on the server, then
when the application attempts to prepare the procedure prior to execution, an exception is
raised.

TStoredProc events
TStoredProc Alphabetically Legend

Derived from TDataSet
AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
OnCalcFields
OnDeleteError
OnEditError
OnFilterRecord
OnNewRecord
OnPostError

TStoredProc events
TStoredProc By object Legend

AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
OnCalcFields
OnDeleteError
OnEditError
OnFilterRecord
OnNewRecord
OnPostError

TStoredProc methods
TStoredProc Alphabetically

In TStoredProc
~TStoredProc
CopyParams
DescriptionsAvailable
ExecProc
GetResults
ParamByName
Prepare
TStoredProc
UnPrepare

Derived from TDBDataSet
CheckOpen

Derived from TDataSet
ActiveBuffer
Append
AppendRecord
CheckBrowseMode
ClearFields
Close
ControlsDisabled
CursorPosChanged
Delete
DisableControls
Edit
EnableControls
FieldByName
FindField
FindFirst
FindLast
FindNext
FindPrior
First
FreeBookmark
GetBookmark
GetFieldList
GetFieldNames
GotoBookmark
Insert
InsertRecord
IsLinkedTo
Last
MoveBy
Next
Open
Post
Prior
Refresh
Resync
SetFields
UpdateCursorPos

UpdateRecord
Derived from TComponent

DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TStoredProc methods
TStoredProc By object

~TStoredProc
ActiveBuffer
AppendRecord
Append
Assign
CheckBrowseMode
CheckOpen
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClearFields
Close
ControlsDisabled
CopyParams
CursorPosChanged
DefaultHandler
Delete
DescriptionsAvailable
DestroyComponents
Destroying
DisableControls
Dispatch
Edit
EnableControls
ExecProc
FieldAddress
FieldByName
FindComponent
FindField
FindFirst
FindLast
FindNext
FindPrior
First
FreeBookmark
FreeInstance
FreeNotification
Free
GetBookmark
GetFieldList
GetFieldNames
GetParentComponent
GetResults
GotoBookmark
HasParent
InheritsFrom

InitInstance
InsertComponent
InsertRecord
Insert
InstanceSize
IsLinkedTo
Last
MethodAddress
MethodName
MoveBy
NewInstance
Next
Open
ParamByName
Post
Prepare
Prior
Refresh
RemoveComponent
Resync
SetFields
TStoredProc
UnPrepare
UpdateCursorPos
UpdateRecord

TStoredProc::~TStoredProc
TStoredProc See also
~TStoredProc frees the memory associated with the TStoredProc object. Do not call ~
TStoredProc directly. Instead, use the delete keyword on the object, which causes ~
TStoredProc to be invoked automatically.
__fastcall virtual ~TStoredProc(void);
Description
~TStoredProc disconnects from the server, frees the parameter list, and calls the destructor of
its parent object.

TStoredProc::CopyParams
TStoredProc See also
Copies a stored procedure’s parameters into another parameter list.
void __fastcall CopyParams(TParams* Value);
Description
Call CopyParams to copy this stored procedure’s parameters into a separate parameter list
object. Value is the parameter list into which to assign this stored procedure’s parameters.
Value can be the parameter list of another stored procedure. For example:
TStoredProc1->CopyParams(TStoredProc2->Params);
If the stored procedure is not prepared when an application calls CopyParams, CopyParams
calls Prepare before assigning the parameters to the target parameters list, and then calls
UnPrepare to return the stored procedure to its previous state.

TStoredProc::DescriptionsAvailable
TStoredProc See also
Determines if parameter information is available from the stored procedure on the server.
bool __fastcall DescriptionsAvailable(void);
Description
Call DescriptionsAvailable to determine if a stored procedure on a server can return parameter
information to the application. If DescriptionsAvailable returns true, parameter information is
available from the server. If DescriptionsAvailable returns false, parameter information is not
available.
Note
If DescriptionsAvailable returns false, the application must still provide correct parameter
information to the stored procedure on the server. It is up to the application developer to know
the necessary parameters at design time.

TStoredProc::ExecProc
TStoredProc See also
Executes the stored procedure on the server.
void __fastcall ExecProc(void);
Description
Call ExecProc to execute a stored procedure on the server. Before calling ExecProc:
1 Provide any input parameters in the Params property. At design time, a developer can provide

parameters using the Parameters editor. At runtime an application must access Params
directly.

2 Call Prepare to bind the parameters.
If a stored procedure returns output parameters, they are stored in the Params property when
ExecProc returns control to the application. An application can access the output parameters by
indexing into the Params list, or by using the ParamByName method.

TStoredProc::GetResults
TStoredProc See also
Returns the output parameter values from a Sybase stored procedure.
void __fastcall GetResults(void);
Description
Call GetResults to force a Sybase stored procedure to return its result set, if any, to the client.
For stored procedures on all other servers, result sets are automatically flushed to the client, but
Sybase stored procedures do not return a result set until the cursor is positioned at the end of
the set. GetResults forces the cursor to the end of the set.
If a Sybase stored procedure returns a result set in response to GetResults, the set is stored in
the Params property. An application can access the result set by indexing into the Params list, or
by using the ParamByName method.

TStoredProc::ParamByName
TStoredProc See also
Accesses parameter information based on a specified parameter name.
TParam* __fastcall ParamByName(const System::AnsiString Value);
Description
Call ParamByName to return parameter information for a specific parameter based on its name.
Value is the name of the parameter for which to retrieve information. Typically ParamByName is
used to set an input parameter’s value at runtime, or to retrieve the value of an output
parameter. For example, the following statement retrieves the current value of a parameter
called “Contact” into an edit box:
Edit1->Text = StoredProc1->ParamByName("Contact").AsString;

TStoredProc::Prepare
TStoredProc See also
Prepares a stored procedure for execution.
void __fastcall Prepare(void);
Description
Call Prepare to bind a stored procedure’s parameters before calling ExecProc to execute the
procedure. Prepare readies a stored procedure’s parameters, initializes the Borland Database
Engine (BDE), and informs the server of the stored procedure’s readiness. These steps
allocate system resources and optimize the query for server performance.
Note
An application cannot execute a procedure that is not prepared. To see if a stored procedure is
already prepared, check the Prepared property to see if it true.

TStoredProc::TStoredProc
TStoredProc See also
Creates an instance of a stored procedure component.
__fastcall virtual TStoredProc(Classes::TComponent* AOwner);
Description
Call TStoredProc to instantiate a stored procedure declared in an application. TStoredProc calls
the constructor of its parent object, creates an empty parameter list for the newly instantiated
stored procedure, and initializes its parameter, server, and record buffers to NULL.

TStoredProc::UnPrepare
TStoredProc See also
Frees the resources allocated for a previously prepared stored procedure.
void __fastcall UnPrepare(void);
Description
Call UnPrepare to free the resources allocated for a previously prepared stored procedure on the
server and client sides.
Note
An application must call UnPrepare prior to changing any input parameter information for a
previously prepared procedure. When a stored procedure is unprepared, all current parameter
information is lost.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TDataSet
TDBDataSet

TStoredProc example
TStoredProc

TStream
Hierarchy Properties Methods See also
TStream is the abstract base class type for Borland C++Builder stream objects that can store
binary data in various kinds of storage media, such as disk files, dynamic memory, and so on.
Header
vcl/classes.hpp
Description
TStream encapsulates methods for generic file I/O. For this purpose TStream defines methods
that provide for reading, writing, and copying bytes to and from the stream, and for seeking the
current position in the stream. Properties of TStream provide information about the stream, such
as its size and the current position in the stream.
TStream also introduces methods that work in conjunction with components and filers for
streaming components in simple and inherited forms. These methods are called automatically by
global routines that initiate component streaming. They can also be called directly to the initiate
the streaming process. Note, however, that component streaming always involves two additional
objects:
• A component object that is passed as a parameter to the stream’s methods.
• A filer object that is automatically created by the stream, and associated with the stream.
As an abstract class TStream cannot be instantiated. Descendant stream objects, such as
memory and file streams used for component streaming, are created automatically when using
the global functions ReadComponentRes and WriteComponentRes. For streaming other kinds of
information, choose a descendent class according to the specific data and storage needs.

TStream properties
TStream Alphabetically Legend

In TStream
Position

Size

TStream properties
TStream By object Legend

Position
Size

TStream::Position
TStream See also Example
Position indicates the current offset into the stream for reading and writing.
__property long Position;
Description
Use Position to query the current position of the stream. Position is used internally by filer
objects when reading and writing data to and from the stream.

TStream::Size
TStream See also
Size indicates the size in bytes of the stream.
__property long Size;
Description
Use Size to find the size of the stream. Size is used internally in routines that read and write to
and from the stream.

TStream methods
TStream Alphabetically

In TStream
~TStream
CopyFrom
Read
ReadBuffer
ReadComponent
ReadComponentRes
ReadResHeader
Seek
TStream
Write
WriteBuffer
WriteComponent
WriteComponentRes
WriteDescendent
WriteDescendentRes

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TStream methods
TStream By object

~TStream
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CopyFrom
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
ReadBuffer
ReadComponentRes
ReadComponent
ReadResHeader
Read
Seek
TStream
WriteBuffer
WriteComponentRes
WriteComponent
WriteDescendentRes
WriteDescendent
Write

TStream::~TStream
TStream See also
~TStream frees the memory associated with the TStream object. Do not call ~TStream directly.
Instead, use the delete keyword on the object, which causes ~TStream to be invoked
automatically.
__fastcall virtual ~TStream(void);

TStream::CopyFrom
TStream
CopyFrom copies a specified number of bytes from one stream to another.
long __fastcall CopyFrom(TStream* Source, long Count);
Description
Use CopyFrom to copy data to the stream from a different stream. Using CopyFrom eliminates
the need for the user to create, read into, write from, and free a buffer when copying data.
CopyFrom copies Count bytes from the stream specified by Source into the stream. It then
moves the current position by Count bytes, and returns the number of bytes copied.
If Count is 0, CopyFrom sets Source position to 0 before reading and then copies the entire
contents of Source into the stream. If Count is greater than or less than 0, CopyFrom reads from
the current position in Source.

TStream::Read
TStream See also
TStream introduces Read as an abstract method.
virtual long __fastcall Read(void *Buffer, long Count);
Description
Each descendant stream object defines a Read method that reads data from its particular
storage medium (such as memory or a disk file).
Read is used in cases where the number of bytes to read from the stream is not necessarily
fixed.
All the other data-reading methods of a stream (ReadBuffer, ReadComponent) call Read to do
their actual reading.

TStream::ReadBuffer
TStream See also
ReadBuffer reads bytes from the stream into Buffer.
void __fastcall ReadBuffer(void *Buffer, long Count);
Description
Use ReadBuffer to read Count bytes from the stream into a buffer in cases where the number of
bytes is known and fixed, for example when reading in structures. ReadBuffer is used internally
for loading from a stream and copying from a stream.
ReadBuffer calls Read to do the actual reading. If reading attempts to read past the end of the
stream, an EReadError exception is raised.

TStream::ReadComponent
TStream See also
ReadComponent is one of several ways to initiate streaming of components and their properties.
TComponent* __fastcall ReadComponent(TComponent* Instance);
Description
ReadComponent is called indirectly by the global routine ReadComponentRes, by the
ReadComponentRes method, or it can be called directly to initiate streaming of components.
ReadComponent reads data values from the stream and assigns them to Instance’s properties.
It then constructs a reader object and calls the reader’s ReadRootComponent method to read
Instance’s property values and construct child objects defined in the stream as children of the
Instance. ReadComponent returns the component.
If Instance is NULL, ReadComponent constructs a component based on the type information in
the stream and returns the newly-constructed component.

TStream::ReadComponentRes
TStream See also
ReadComponentRes is one of several ways to initiate streaming of components and their
properties.
TComponent* __fastcall ReadComponentRes(TComponent* Instance);
Description
ReadComponentRes is called automatically by the global routine ReadComponentResFile. It
can also be called directly if the current position of the stream points to a component written
using the WriteComponentRes method.
ReadComponentResFile creates a file stream object which then calls its ReadComponentRes
method.
ReadComponentRes first calls the ReadResHeader method to read a resource header from the
stream. If the stream does not contain a resource header at the current position,
ReadResHeader will raise an EInvalidImage exception. ReadComponentRes then calls
ReadComponent to read Instance.

TStream::ReadResHeader
TStream See also
ReadResHeader is used internally by the streaming system to read a Windows resource-file
header from the stream.
void __fastcall ReadResHeader(void);
Description
Do not call ReadResHeader directly. It is called automatically by ReadComponentRes before
reading a component from a resource file.
After reading the resource-file header, ReadResHeader moves the current position of the stream
to just beyond the header. If the stream does not contain a valid resource-file header,
ReadResHeader raises an EInvalidImage exception.

TStream::Seek
TStream
TStream introduces Seek as an abstract method.
virtual long __fastcall Seek(long Offset, unsigned short Origin);
Description
Each descendant stream object defines a Seek method that moves the current position of the
stream in its particular storage medium (such as memory or a disk file).
Seek is called by the Position and Size properties.

TStream::TStream
TStream See also
TStream creates a new TStream object.
__fastcall TStream(void);

TStream::Write
TStream See also
TStream introduces Write as an abstract method.
virtual long __fastcall Write(const void *Buffer, long Count);
Description
Each descendant stream object defines a Write method that writes data to its particular storage
medium (such as memory or a disk file). All the other data-writing methods of a stream
(WriteBuffer, WriteComponent) call Write to do their actual writing.

TStream::WriteBuffer
TStream See also
WriteBuffer writes Count bytes from Buffer onto the stream and advances the current position of
the stream by Count bytes.
void __fastcall WriteBuffer(const void *Buffer, long Count);
Description
Use WriteBuffer to save data to a stream. WriteBuffer and ReadBuffer are used in cases where
the number of bytes is known and required, for example when reading in structures. Use
WriteBuffer for standard file I/O streaming.
WriteBuffer is used internally for writing to a stream and copying from a stream. It is used by
other objects, such as strings and lists, for writing strings to a buffer.
WriteBuffer calls Write to handle the actual writing. If the stream fails to write all the requested
bytes, an EWriteError exception is raised.

TStream::WriteComponent
TStream See also
WriteComponent is one of several ways to initiate writing components and their properties to a
stream.
void __fastcall WriteComponent(TComponent* Instance);
Description
WriteComponent is used internally in the Borland C++Builder streaming system, but can also be
called directly when writing components to memory streams or database blobs.
WriteComponent constructs a writer object and calls its WriteRootComponent method to write
the component specified by Instance, and its owned objects, to the stream.

TStream::WriteComponentRes
TStream See also
WriteComponentRes is one of several ways to initiate writing components and their properties to
a stream.
void __fastcall WriteComponentRes(const System::AnsiString ResName,
TComponent* Instance);

Description
WriteComponentRes is used internally in the Borland C++Builder streaming system, but can also
be called directly when sending data to other applications on disk. WriteComponentRes is used
for streaming components that need data, such as a bitmap, or icon to be stored specifically in a
Windows resource-file format.
WriteComponentRes calls WriteDescendentRes, passing in NULL as the Ancestor. Therefore,
WriteDescendentRes initiates the remainder of the streaming process for a component that, in
this case, is not a descendent.
To read a component written with WriteComponentRes, call the ReadComponentRes method.

TStream::WriteDescendent
TStream See also
WriteDescendent is used internally by the streaming system to stream components and their
properties in inherited forms.
void __fastcall WriteDescendent(TComponent* Instance, TComponent*
Ancestor);

Description
Do not call WriteDescendent directly. WriteDescendent is called automatically by
WriteComponent.
WriteDescendent constructs a writer object, then calls the writer object’s WriteDescendent
method to write the component passed in Instance to the stream. Instance is either an inherited
form descended from Ancestor or NULL. However, WriteDescendent is never used to write
owned components, only to initiate streaming on the root component.

TStream::WriteDescendentRes
TStream See also
WriteDescendentRes is used internally by the streaming system to stream components and their
properties in inherited forms.
void __fastcall WriteDescendentRes(const System::AnsiString ResName,
TComponent* Instance, TComponent* Ancestor);

Description
Do not call WriteDescendentRes directly. WriteDescendentRes is called automatically by
WriteComponentRes.
WriteDescendentRes writes a standard Windows resource-file header to the stream, using the
resource name passed in ResName as the name of the resource. It then calls WriteDescendent
to write Instance to the stream as a descendant of Ancestor.

Accessibility
Read-only

Hierarchy

TObject

TStream example
TStream

TStrings
Hierarchy Properties Methods See also
TStrings is an abstract base class for objects that represent a list of strings.
Header
vcl/classes.hpp
Description
Derive a class from TStrings to store and manipulate a list of strings. Descendants of TStrings
can represent several individual strings, such as the individual lines that appear in a list box.
Some objects use descendants of TStrings to represent one long body of text so that it can be
manipulated in smaller chunks.
TStrings introduces many properties and methods to
• Add or delete strings at specified positions in the list.
• Rearrange the strings in the list.
• Access the string at a particular location.
• Read the strings from or write the strings to a file or stream.
• Associate an object with each string in the list.

TStrings properties
TStrings Alphabetically Legend

In TStrings
CommaText

Count
Names

Objects
Strings
Text
Values

TStrings properties
TStrings By object Legend

CommaText
Count
Names

Objects
Strings
Text
Values

TStrings::CommaText
TStrings See also
CommaText is the list of strings in the TStrings object, listed in system data format (SDF) style.
__property System::AnsiString CommaText;

Use CommaText to get or set all the strings in the TStrings object in a single comma-delimited
string.
When retrieving CommaText, any string in the list that include spaces, commas or quotes will be
contained in double quotes, and any double quotes in a string will be repeated. For example, if
the list contains the following strings:
Stri,ng 1
Stri”ng 2
String 3
String4
CommaText will return:
“Stri,ng 1”,”Stri””ng 2”,”String 3”,String4
When assigning CommaText, the value is parsed as SDF formatted text. For SDF format, strings
are separated by commas or spaces, and optionally enclosed in double quotes. Double quote
marks that are part of the string are repeated to distinguish them from the quotes that surround
the string. Spaces and commas that are not contained within double quote marks are delimiters.
Two commas next to each other will indicate an empty string, but spaces that appear next to
another delimiter are ignored. For example, suppose CommaText is set to:
“Stri,ng 1”, ”Stri””ng 2” , String 3,String4
The list will then contain:
Stri,ng 1
Stri”ng 2
String
3
String4
Note
Reading CommaText uses the Strings property to get the text. Setting CommaText uses the Add
method to set the text.

TStrings::Count
TStrings See also
TStrings introduces Count as an abstract property to represent the number of strings in the list.
__property int Count;
Description
Descendants of TStrings implement a Count property to indicate the number of strings in the list.
Use the Count property when iterating over all the strings in the list, or when trying to locate the
position of a string relative to the last string in the list.

TStrings::Names
TStrings See also
For strings in the list of the form Name=Value, Names returns the name part of the string.
__property System::AnsiString Names[int Index];
Description
When the list of strings for the TStrings object includes strings of the form Name=Value, read
Names to access the name part of a string. Names is the name part of the string at the position
indicated by Index. Index gives the position of the string, where 0 is the first string, 1 is the
second string, and so on. If the string at the specified position is not of the form Name=Value,
Names returns an empty string.
Strings of the form Name=Value are commonly found in .INI files. For example,
DisplayGrid=1
SnapToGrid=1
GridSizeX=8
GridSizeY=8
The strings that make up the Params property of a database component (TDatabase) have this
format as well.
The Name that identifies the string is to the left of the equal sign (=), and the current Value of the
Name identifier is on the right side. There should be no spaces present before or after the equal
sign.
Note
Names uses the Strings property to get the strings.

TStrings::Objects
TStrings See also
Objects is introduced as a property to represent a set of objects that are associated one with
each of the strings in the Strings property.
__property System::TObject* Objects[int Index];
Description
Setting the Objects property for TStrings does nothing. Reading the Objects property for
TStrings returns NULL. Descendent classes can associate objects with the strings in the set by
implementing the Objects property.
Use the Objects property of a descendent of TStrings to get or set the object associated with the
string at the position indicated by Index. Index gives the position of the string associated with the
object, where 0 is the first string, 1 is the second string, and so on. If a descendant of TStrings
does not support the Objects property, reading this property returns NULL.

TStrings::Strings
TStrings See also
TStrings introduces Strings as an abstract property to reference the strings in the list by their
positions.
__property System::AnsiString Strings[int Index]
Description
Descendants of TStrings must implement an accessor function for the Strings property to return
the string at the position indicated by Index. Index gives the position of the string, where 0 is the
first string, 1 is the second string, and so on.
Use the Strings property to get or set the string at a particular position. Strings is the default
property of TStrings objects. The Strings identifier can be omitted when accessing the Strings
property of a descendant of TStrings. For example, the following two lines of code are both
acceptable and do the same thing:
MyStrings.Strings[0] = "This is the first string";
MyStrings[0] = "This is the first string";

TStrings::Text
TStrings See also Example
Text is the list of strings in the TStrings object, represented as a single string with the individual
strings delimited by carriage returns and linefeeds.
__property System::AnsiString Text;
Description
Use Text to get or set all the strings in the TStrings object in a single string delimited by carriage
return, linefeed pairs.
When reading Text, the strings in the list will be separated by carriage return, linefeed pairs. If
any of the strings in the list contain a carriage return and linefeed pair, the resulting value of Text
will appear to contain more strings than is indicated by the Count property.
When setting Text, the value will be parsed by separating into substrings whenever a carriage
return or linefeed is encountered. (The two do not need to form pairs).
If the strings in the list contain carriage return or linefeed characters, a less ambiguous format for
the strings is available through the CommaText property.
Note
Reading Text uses the Strings property to get the text. Writing Text uses the Add method to set
the text.

TStrings::Values
TStrings See also
For strings in the list of the form Name=Value, Values returns the value part of the string
associated with a given Name.
__property System::AnsiString Values[System::AnsiString Name];
Description
When the list of strings for the TStrings object includes strings of the form Name=Value, use
Values to get or set the value part of a string associated with a specific name part. If the list does
not contain any strings of the proper Name=Value form, or if none of those strings matches the
Name index, Values returns an empty string.
Strings of the form Name=Value are commonly found in .INI files. For example,
DisplayGrid=1
SnapToGrid=1
GridSizeX=8
GridSizeY=8
The strings that make up the Params property of a database component (TDatabase) have this
format as well.
The Name that identifies the string is to the left of the equal sign (=), and the current Value of the
Name identifier is on the right side. There should be no spaces present before or after the equal
sign.
Note
Reading Values uses the Strings property to get the values. Writing Values uses the Insert
method to set the values.

TStrings methods
TStrings Alphabetically

In TStrings
~TStrings
Add
AddObject
AddStrings
Append
Assign
BeginUpdate
Clear
Delete
EndUpdate
Equals
Exchange
GetText
IndexOf
IndexOfName
IndexOfObject
Insert
InsertObject
LoadFromFile
LoadFromStream
Move
SaveToFile
SaveToStream
SetText
TStrings

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TStrings methods
TStrings By object

~TStrings
AddObject
AddStrings
Add
Append
Assign
BeginUpdate
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
Delete
Dispatch
EndUpdate
Equals
Exchange
FieldAddress
FreeInstance
Free
GetText
IndexOfName
IndexOfObject
IndexOf
InheritsFrom
InitInstance
InsertObject
Insert
InstanceSize
LoadFromFile
LoadFromStream
MethodAddress
MethodName
Move
NewInstance
SaveToFile
SaveToStream
SetText
TStrings

TStrings::~TStrings
TStrings See also
~TStrings frees the memory associated with the TStrings object. Do not call ~TStrings directly.
Instead, use the delete keyword on the object, which causes ~TStrings to be invoked
automatically.
__fastcall virtual ~TStrings(void);

TStrings::Add
TStrings See also
Add inserts a string at the end of the list.
virtual int __fastcall Add(const System::AnsiString S);
Description
Call Add to add a string to the end of the list. Add returns the index of the new string.
Note
Add uses the Insert method to add the string.

TStrings::AddObject
TStrings See also
AddObject inserts a string to the list, and associates an object with the string.
virtual int __fastcall AddObject(const System::AnsiString S, System::
TObject* AObject);

Description
Call AddObject to add a string and its associated object to the list. AddObject returns the index
of the new string and object.
Note
AddObject uses the Add method to add the string, and the Objects property to associate the
object.

TStrings::AddStrings
TStrings See also
AddStrings adds a group of strings to the list.
virtual void __fastcall AddStrings(TStrings* Strings);
Description
Call AddStrings to add the strings from another TStrings object to the list. If both the source and
destination TStrings objects support objects associated with their strings, references to the
associated objects will be added as well.
Note
AddStrings uses the Add method to add the strings, and the Objects property to associate the
objects.

TStrings::Append
TStrings See also
Append adds the string S to the list.
void __fastcall Append(const System::AnsiString S);
Description
Append is the same as the Add method, except that it does not return a value. Use Append
when there is no need to know the index of the string after it has been added, or with
descendants of TStrings for which the index returned is not meaningful.
For example, the TStrings descendant used by memo objects uses an index to determine where
to insert a string, but the inserted string does not necessarily end up as a single string in the list.
Part of the inserted text may become part of the previous string, and part may be broken off into
a subsequent string. The index returned by Add is not meaningful in this case.
Use Append rather than Add as a parameter for a function requiring a TGetStrProc.

TStrings::Assign
TStrings See also
Assign sets the strings in the list, and possibly associated objects, from a source object.
virtual void __fastcall Assign(TPersistent* Source);
Description
Use Assign to set the value of the TStrings object from another object. If Source is of type
TStrings, the list is set to the list of the source TStrings object, and if associated objects are
supported, any associated objects are copied from the Source as well.
If Source is not of type TStrings, the inherited Assign will set the value of the list from any object
that supports TStrings in its AssignTo method.

TStrings::BeginUpdate
TStrings See also
BeginUpdate enables the TStrings object to keep track of when the list of strings is in the
process of changing.
void __fastcall BeginUpdate(void);
Description
BeginUpdate is called automatically by any property or method that changes the list of strings.
Once the changes are complete, the property or method calls EndUpdate. Call BeginUpdate
before directly modifying the strings in the list, and EndUpdate after. When implementing
properties or methods that change the list in descendants of TStrings, call BeginUpdate before
the changes are made, and EndUpdate when the changes are complete.
TStrings simply keeps track of when the list of strings is being changed. Some descendants of
TStrings use this information to perform certain actions, such as telling a control to repaint, when
updates are complete.

TStrings::Clear
TStrings See also
TStrings introduces Clear as an abstract method to empty the list and any associated objects.
virtual void __fastcall Clear(void);
Description
Descendants of TStrings implement a Clear method to delete all the strings in the list, and to
remove any references to associated objects.

TStrings::Delete
TStrings See also
TStrings introduces Delete as an abstract method to delete a specified string from the list.
virtual void __fastcall Delete(int Index);
Description
Descendants of TStrings implement a Delete method to removes a specified string from the list.
If an object is associated with the string, the reference to the object is removed as well. Index
gives the position of the string, where 0 is the first string, 1 is the second string, and so on.

TStrings::EndUpdate
TStrings See also
EndUpdate enables the TStrings object to keep track of when the list of strings has finished
changing.
void __fastcall EndUpdate(void);
Description
EndUpdate is called automatically by any property or method that changes the list of strings. Call
BeginUpdate before directly modifying the strings in the list, and EndUpdate after. When
implementing properties or methods that change the list in descendants of TStrings, call
BeginUpdate before the changes are made, and EndUpdate when the changes are complete.
TStrings simply keeps track of when the list of strings is being changed. Some descendants of
TStrings use this information to perform certain actions, such as telling a control to repaint, when
updates are complete.

TStrings::Equals
TStrings See also
Equals compares the list of strings to the list from another TStrings object and returns true if the
two lists are the same.
bool __fastcall Equals(TStrings* Strings);
Description
Call Equals to compare the lists in two TStrings objects. Equals compares only the strings, not
any references to associated objects. Equals returns true if the lists for both TStrings objects
have the same number of strings and the strings in each list are identical. Equals returns false if
the lists are different in length, if they contain different strings, or if the order of the strings in the
two lists differ.

TStrings::Exchange
TStrings See also
Exchange swaps the position of two strings in the list.
virtual void __fastcall Exchange(int Index1, int Index2);
Description
Call Exchange to rearrange the strings in the list. The strings are specified by their index values
in the Index1 and Index2 parameters. Indexes are zero-based, so the first string in the list has an
index value of 0, the second has an index value of 1, and so on.
If either string has an associated object, Exchange changes the position of the object as well.

TStrings::GetText
TStrings See also
GetText allocates a text buffer and fills it with the value of the Text property.
virtual char * __fastcall GetText(void);
Description
Call GetText to obtain a dynamically allocated character buffer containing all of the strings in the
list. Individual strings are separated by a carriage return and line feed. The caller is responsible
for freeing the returned value.
Note
GetText uses the Strings property to obtain the strings.

TStrings::IndexOf
TStrings See also
IndexOf returns the position of a string in the list.
virtual int __fastcall IndexOf(const System::AnsiString S);
Description
Call IndexOf to obtain the position of the first occurrence of the string S. IndexOf returns the 0-
based index of the string. Thus, if S matches the first string in the list, IndexOf returns 0, if S is
the second string, IndexOf returns 1, and so on. If the string is not in the string list, IndexOf
returns -1.
Note
If the string appears in the list more than once, IndexOf returns the position of the first
occurrence.

TStrings::IndexOfName
TStrings See also
IndexOfName returns the position of the first string with the form Name=Value with the specified
name part.
int __fastcall IndexOfName(const System::AnsiString Name);
Description
Call IndexOfName to locate the first occurrence of a string with the form Name=Value where the
name part equal to the Name parameter. IndexOfName returns the 0-based index of the string. If
no string in the list has the indicated name, IndexOfName returns -1.
Strings of the form Name=Value are commonly found in .INI files. For example,
DisplayGrid=1
SnapToGrid=1
GridSizeX=8
GridSizeY=8
The strings that make up the Params property of a database component (TDatabase) have this
format as well.
The Name that identifies the string is to the left of the equal sign (=), and the current Value of the
Name identifier is on the right side. There should be no spaces present before or after the equal
sign.
Note
If there is more than one string with a name portion matching the Name parameter,
IndexOfName returns the position of the first such string.

TStrings::IndexOfObject
TStrings See also
IndexOfObject returns the index of the first string in the list associated with a given object.
int __fastcall IndexOfObject(System::TObject* AObject);
Description
Call IndexOfObject to locate the first string in the list associated with the object AObject. Specify
the object you want to locate as the value of the AObject parameter. IndexOfObject returns the
0-based index of the string and object. If the object is not associated with any of the strings,
IndexOfObject returns -1.

TStrings::Insert
TStrings See also
TStrings introduces Insert as an abstract method to insert a string at a specified position.
virtual void __fastcall Insert(int Index, const System::AnsiString S);
Description
Descendants of TStrings implement an Insert method to add the string S to the list at the position
specified by Index. If Index is 0, the string is inserted at the beginning of the list. If Index is 1, the
string is put in the second position of the list, and so on.
All methods that add strings to the list use the Insert method to add the string.
If the string has an associated object, use the InsertObject method instead.

TStrings::InsertObject
TStrings See also
InsertObject inserts a string into the list at the specified position, and associates it with an object.
void __fastcall InsertObject(int Index, const System::AnsiString S,
System::TObject* AObject);

Description
Call InsertObject to insert the string S into the list at the position identified by Index, and
associate it with the object AObject. If Index is 0, the string is inserted at the beginning of the list.
If Index is 1, the string is put in the second position of the list, and so on.

TStrings::LoadFromFile
TStrings See also
LoadFromFile fills the list with the lines of text in a specified file.
virtual void __fastcall LoadFromFile(const System::AnsiString FileName)
;

Description
Call LoadFromFile to fill the list of the TStrings object from the file specified by FileName. Each
line in the file, as indicated by carriage return or linefeed characters, is appended as a string in
the list.
Note
LoadFromFile uses the Add method to add the strings that are read from the file.

TStrings::LoadFromStream
TStrings See also
LoadFromStream fills the list with lines of text read from a stream.
virtual void __fastcall LoadFromStream(TStream* Stream);

Description
Call LoadFromStream to fill the list of the TStrings object from the stream specified by Stream.
The text read from the stream is parsed into strings separated by carriage return or linefeed
characters. Thus, LoadFromStream reads the value of the Text property.
If the stream is a file stream, LoadFromStream does the same thing as LoadFromFile, except
the application must create and destroy the file stream.
Note
LoadFromStream uses the Add method to add the strings that are streamed in.

TStrings::Move
TStrings See also
Move changes the position of a string in the list.
virtual void __fastcall Move(int CurIndex, int NewIndex);
Description
Use Move to move the string at position CurIndex so that it occupies the position NewIndex. The
positions are specified as 0-based indexes. For example, the following line of code moves the
string in the first position to the last position.
MyStringsObject->Move(0, MyStringsObject->Count - 1);
If the string has an associated object, the object remains associated with the string in its new
position.

TStrings::SaveToFile
TStrings See also
SaveToFile saves the strings in the list to the specified file.
virtual void __fastcall SaveToFile(const System::AnsiString FileName);
Description
Call SaveToFile to save the strings in the list to the file specified by FileName. Each string in the
list is written to a separate line in the file.
Note
SaveToFile uses the Strings property to get the strings that are saved.

TStrings::SaveToStream
TStrings See also
SaveToStream writes the value of the Text property to a stream object.
virtual void __fastcall SaveToStream(TStream* Stream);
Description
Call SaveToStream to save the strings in the list to the stream specified by the Stream
parameter. SaveToStream writes the strings delimited by carriage return, line feed pairs. If the
stream is a file stream, SaveToStream does the same thing as SaveToFile, except the
application must create and destroy the file stream.
Note
SaveToStream uses the Strings property to get the strings that are saved.

TStrings::SetText
TStrings See also
SetText sets the Text property.
virtual void __fastcall SetText(char * Text);
Description
Call SetText to replace the list with the strings specified by the Text parameter. SetText adds
strings one at a time to the list, using the carriage returns or linefeed characters in Text as
delimiters indicating when to add a new string.
Note
SetText uses the Add method to add the strings.

TStrings::TStrings
TStrings See also
TStrings creates a new TStrings object.
__fastcall TStrings(void);

Accessibility
Read-only

Hierarchy

TObject

TPersistent

TStrings example
TStrings

TStringStream
Hierarchy Properties Methods See also
TStringStream is a stream object that provides I/O access to a information stored as a long
string.
Header
vcl/classes.hpp
Description
Use TStringStream to store data as a long string enhanced with I/O capabilities. TStringStream
is useful as an intermediary object that can hold text as well as read it from or write it to another
storage medium. TStringStream provides a mechanism for manipulating text that is otherwise
obtained from a less accessible medium.

TStringStream properties
TStringStream Alphabetically Legend

In TStringStream
DataString

Derived from TStream
Position

Size

TStringStream properties
TStringStream By object Legend

DataString
Position

Size

TStringStream::DataString
TStringStream See also
DataString provides direct access to the string that stores the text represented by the
TStringStream object.
Description
Use DataString to get access to the text of the stream. The text represents the information that is
being transferred by means of the string stream. Size is the number of bytes in the string, and
Position is the current position within DataString.
Note
DataString is a read-only property. DataString can be used to change the contents of the string,
but applications can’t change the DataString itself.

TStringStream methods
TStringStream Alphabetically

In TStringStream
~TStringStream
Read
ReadString
Seek
TStringStream
Write
WriteString

Derived from TStream
CopyFrom
ReadBuffer
ReadComponent
ReadComponentRes
ReadResHeader
WriteBuffer
WriteComponent
WriteComponentRes
WriteDescendent
WriteDescendentRes

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TStringStream methods
TStringStream By object

~TStringStream
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
CopyFrom
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
ReadBuffer
ReadComponentRes
ReadComponent
ReadResHeader
ReadString
Read
Seek
TStringStream
WriteBuffer
WriteComponentRes
WriteComponent
WriteDescendentRes
WriteDescendent
WriteString
Write

TStringStream::~TStringStream
TStringStream See also
~TStringStream frees the memory associated with the TStringStream object. Do not call ~
TStringStream directly. Instead, use the delete keyword on the object, which causes ~
TStringStream to be invoked automatically.

TStringStream::Read
TStringStream See also
Read reads up to Count bytes from the string stream into Buffer, and advances the current
position of the stream by the number of bytes read.
Description
Use Read to read the contents of the string stream into a buffer, starting at the current position.
If Count extends beyond the end of the DataString, Read will only transfer the characters up to
the end of the DataString, and advances the current position accordingly. If the return value is
less than Count, it means that the end of the string was read.
The ReadBuffer method and ReadComponent method call Read to do the actual reading.
Note
Read treats Count as an upper bound. The ReadBuffer method, by contrast, raises an exception
if Count bytes cannot be read.

TStringStream::ReadString
TStringStream See also
ReadString returns a string that consists of up to Count bytes from the current position in the
string stream, and advances the current position of the stream by the number of bytes read.
Description
Use Read to read the contents of the string stream into a string, starting at the current position. If
Count extends beyond the end of the DataString, the returned string will only contain the
characters up to the end of DataString, and the current position is advanced accordingly. If the
return value is less than Count, it means that the end of the string was read.
Note
ReadString does the same thing as Read, except that it returns a string rather than filling a
buffer.

TStringStream::Seek
TStringStream See also
Seek moves the current position in the stream by Offset bytes, relative to the origin specified by
Origin.
Description
Use Seek to move the current position within the string stream by the indicated offset. Seek
allows an application to read from or write to a particular location within the DataString.
If Offset is a negative number, the seek is backwards from the specified origin. The following
table shows the different values of Origin and their meanings for seeking.
Table 0.2

Value Meaning
soFromBeginning Offset is from the beginning of DataString. Seek moves to the position

Offset. Offset must be >= 0.
soFromCurrent Offset is from the current position. Seek moves to Position + Offset.
soFromEnd Offset is from the end of Memory. Offset must be <= 0 to indicate a

number of bytes before the end of the DataString.
Seek returns the new value of the Position property.

TStringStream::TStringStream
TStringStream See also
TStringStream creates an instance of TStringStream.
Description
Call Create to instantiate a TStringStream object. Create initializes the DataString property to the
AString parameter.

TStringStream::Write
TStringStream See also
Write writes Count bytes from Buffer to the current position in the string stream and updates the
current position by Count bytes.
Description
Use Write to replace the end of the string from the current position on with the first Count bytes
of Buffer. Write will change the Size property to reflect the new length of the DataString.
Write always writes Count bytes from Buffer, even if a null character is included as one of the
Count bytes. Thus, Write is equivalent to the WriteBuffer method.

TStringStream::WriteString
TStringStream See also
WriteString writes up to Count bytes from AString to the current position in the string stream, and
updates the current position by the number of bytes written.
Description
Use WriteString to replace the end of the string from the current position on with the first Count
bytes of AString. If AString is shorter than Count bytes, WriteString will only write to the end of
AString. Write will change the Size property to reflect the new length of the DataString.

Accessibility
Read-only

Hierarchy

TObject

TStream

TStringStream example
TStringStream

TStringList
Hierarchy Properties Methods Events See also
TStringList maintains a list of strings.
Header
vcl/classes.hpp
Description
Use a string list object to store and manipulate a list of strings. TStringList implements the
abstract properties and methods introduced by TStrings, and introduces new properties, events,
and methods to
• Sort the strings in the list.
• Prohibit duplicate strings in sorted lists.
• Respond to changes in the contents of the list.

TStringList properties
TStringList Alphabetically Legend

In TStringList
Count

Duplicates
Objects
Sorted
Strings

Derived from TStrings
CommaText

Names
Text
Values

TStringList properties
TStringList By object Legend

CommaText
Count

Duplicates
Names

Objects
Sorted
Strings
Text
Values

TStringList::Count
TStringList See also
Count is the number of strings in the list.
Description
Use Count when iterating over all the strings in the list, or when trying to locate the position of a
string relative to the last string in the list.

TStringList::Duplicates
TStringList See also
For sorted lists, Duplicates specifies whether duplicate strings can be added.
__property TDuplicates Duplicates;
Description
Set Duplicates to specify what should happen when an attempt is made to add a duplicate string
to a sorted list. The value of Duplicates should be one of the following.
Value Meaning

dupIgnore Ignore attempts to add duplicate strings to the sorted list.
dupError Raise an EListError exception when an attempt is made to add duplicate

strings to the sorted list.
dupAccept Permit duplicate strings in the sorted list.
Set Duplicates before adding any strings to the list. Setting Duplicates to dupIgnore or dupError
does nothing about duplicate strings that are already in the list.
Note
Duplicates does nothing if the list is not sorted.

TStringList::Objects
TStringList See also
Objects is a set of objects associated one with each of the strings in the Strings property.
Description
Associate an object with an existing string by setting the Objects property using the same index
as that of the string in the Strings property. Look up the object associated with a string by
reading the Objects property with the index of the string. Index gives the position of the string
associated with the object, where 0 is the first string, 1 is the second string, and so on. Use the
IndexOf method to find the index of the string.
For example, use Objects to associate bitmap objects with the strings in the string list. The
Objects property then enables the application to quickly locate the bitmaps for display beside the
strings in a listbox, or for drawing when the associated string is selected in a control.

TStringList::Sorted
TStringList See also Example
Sorted specifies whether the strings in the list should be automatically sorted.
__property bool Sorted;
Description
Set Sorted to true to cause the strings in the list to be automatically sorted in ascending order.
Set Sorted to false to allow strings to remain where they are inserted. When Sorted is false, the
strings in the list can be put in ascending order at any time by calling the Sort method.
When Sorted is true, do not use Insert to add strings to the list. Instead, use Add, which will
insert the new strings in the appropriate position. When Sorted is false, use Insert to add strings
to an arbitrary position in the list, or Add to add strings to the end of the list.

TStringList::Strings
TStringList See also
Strings is the list of strings, referenced by a 0-based index.
Description
Use Strings to read or modify the string at a particular position. Index gives the position of the
string, where 0 is the position of the first string, 1 is the position of the second string, and so on.
To locate a particular string in the list, call the IndexOf method.
Strings is the default property of string list objects. The Strings identifier can be omitted when
accessing the Strings property of a string list object.

TStringList events
TStringList Alphabetically

In TStringList
OnChange
OnChanging

TStringList events
TStringList By object

OnChange
OnChanging

TStringList::OnChange
TStringList See also
OnChange occurs immediately after the list of strings changes.
__property TNotifyEvent OnChange;
Description
Write an OnChange event handler to respond to changes in the list of strings. For example, if the
string list is associated with a control, the OnChange event handler could tell the control to
repaint itself whenever the content of the list changes.
Whenever strings in the list are added, deleted, moved, or modified, the following events take
place.
1 An OnChanging event occurs before the change.
2 The strings are added, deleted, moved, or modified.
3 An OnChange event occurs.

TStringList::OnChanging
TStringList See also
OnChanging occurs immediately before the list of strings changes.
__property TNotifyEvent OnChanging;
Description
Write an OnChanging event handler to prepare for changes in the list of strings. For example, if
the string list is associated with a control, the OnChanging event handler could tell the control to
disable repaints until the OnChange event when the list has finished changing.
Whenever strings in the list are added, deleted, moved, or modified, the following events take
place.
1 An OnChanging event occurs.
2 The strings are added, deleted, moved, or modified.
3 An OnChange event occurs after the changes are complete.

TStringList methods
TStringList Alphabetically

In TStringList
~TStringList
Add
Clear
Delete
Exchange
Find
IndexOf
Insert
Sort
TStringList

Derived from TStrings
AddObject
AddStrings
Append
Assign
BeginUpdate
EndUpdate
Equals
GetText
IndexOfName
IndexOfObject
InsertObject
LoadFromFile
LoadFromStream
Move
SaveToFile
SaveToStream
SetText

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TStringList methods
TStringList By object

~TStringList
AddObject
AddStrings
Add
Append
Assign
BeginUpdate
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
Delete
Dispatch
EndUpdate
Equals
Exchange
FieldAddress
Find
FreeInstance
Free
GetText
IndexOfName
IndexOfObject
IndexOf
InheritsFrom
InitInstance
InsertObject
Insert
InstanceSize
LoadFromFile
LoadFromStream
MethodAddress
MethodName
Move
NewInstance
SaveToFile
SaveToStream
SetText
Sort
TStringList

TStringList::~TStringList
TStringList See also
~TStringList destroys an instance of TStringList.
__fastcall virtual ~TStringList(void);
Description
Do not call ~TStringList directly in an application. Instead, use the delete keyword on the object,
which causes ~TStringStream to be invoked automatically.
~TStringList frees the memory allocated to hold the list of strings and object references before
calling the inherited destructor.

TStringList::Add
TStringList See also
Add adds a new string to the list.
virtual int __fastcall Add(const System::AnsiString S);
Description
Call Add to add the string S to the list. If the list is sorted, S is added to the appropriate position
in the sort order. If the list is not sorted, S is added to the end of the list. Add returns the position
of the item in the list, where the first item in the list has a value of 0.
Note
For sorted lists, Add will raise an EListError exception if the string S already appears in the list
and Duplicates is set to dupError. If Duplicates is set to dupIgnore, trying to add a duplicate
string to a sorted list does nothing.

TStringList::Clear
TStringList See also
Clear deletes all the strings from the list.
virtual void __fastcall Clear(void);
Description
Call clear to empty the list of strings. All references to associated objects are also removed.

TStringList::Delete
TStringList See also
Delete removes the string specified by the Index parameter.
virtual void __fastcall Delete(int Index);

Call Delete to remove a single string from the list. If an object is associated with the string, the
reference to the object is removed as well. Index gives the position of the string, where 0 is the
first string, 1 is the second string, and so on.

TStringList::Exchange
TStringList See also
Exchange swaps the position of two strings in the list.
virtual void __fastcall Exchange(int Index1, int Index2);
Description
Call Exchange to rearrange the strings in the list. The strings are specified by their index values
in the Index1 and Index2 parameters. Indexes are zero-based, so the first string in the list has an
index value of 0, the second has an index value of 1, and so on.
If either string has an associated object, Exchange changes the index of the object as well.
Note
Do not call Exchange on a sorted list except to swap two identical strings with different
associated objects. Exchange does not check whether the list is sorted, and can destroy the sort
order of a sorted list.

TStringList::Find
TStringList See also
Find locates the index for a string in a sorted list and indicates whether a string with that value
already exists in the list.
virtual bool __fastcall Find(const System::AnsiString S, int &Index);
Description
Use Find to obtain the index in a sorted list where the string S should be added. If the string S
already exists in the list, Find returns true. If the list does not contain S, Find returns false. The
index where S should go is returned in the Index parameter. The value of Index is zero-based,
where the first string has the index 0, the second string has the index 1, and so on.
Note
Only use Find with sorted lists. For unsorted lists, use the IndexOf method instead.

TStringList::IndexOf
TStringList See also
IndexOf returns the position of a string in the list.
virtual int __fastcall IndexOf(const System::AnsiString S);
Description
Call IndexOf to obtain the position of the first occurrence of the string S. IndexOf returns the 0-
based index of the string. Thus, if S matches the first string in the list, IndexOf returns 0, if S is
the second string, IndexOf returns 1, and so on. If the string is not in the string list, IndexOf
returns -1.

TStringList::Insert
TStringList See also
Insert adds a string to the list at the position specified by Index.
virtual void __fastcall Insert(int Index, const System::AnsiString S);
Description
Call Insert to add the string S to the list at the position specified by Index. If Index is 0, the string
is inserted at the beginning of the list. If Index is 1, the string is put in the second position of the
list, and so on.
If the string has an associated object, use the InsertObject method instead.
Note
If the list is sorted, calling Insert or InsertObject will raise an EListError exception. Use Add or
AddObject with sorted lists.

TStringList::Sort
TStringList See also
Sort sorts the strings in the list in ascending order.
virtual void __fastcall Sort(void);
Description
Call Sort to sort the strings in a list that has the Sorted property set to false. String lists with the
Sorted property set to true are automatically sorted.

TStringList::TStringList
TStringList See also
TStringList creates a new TStringList object.
__fastcall TStringList(void);

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TStrings

TStringList example
TStringList

TStringField
Hierarchy Properties Methods Events See also
A TStringField object represents a string field in a dataset.
Header
vcl/dbtables.hpp
Description
A value of a string field is physically stored as a sequence of up to 8192 characters. Common
uses for string fields are to store text, such as names and addresses.
TStringField introduces properties to translate between string values and other data types, and
to manage language driver conversions. As a descendent of TField, TStringField inherits many
properties, methods, and events that are useful for managing the value and properties of a field
in a database.

TStringField properties
TStringField Alphabetically Legend

In TStringField
AsBoolean
AsDateTime
AsFloat
AsInteger
AsString

Transliterate
Value

Derived from TField
Alignment
AsCurrency
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TStringField properties
TStringField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditMask
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Transliterate
Value
Visible

TStringField::AsBoolean
TStringField See also
AsBoolean converts the value of the field to or from a Boolean value.
Description
Use AsBoolean to
• Assign the string field value to a Boolean variable.
• Assign a Boolean value to the string field.

AsBoolean returns true on reading the value of the field if its text begins with the letters Y, y, T or
t (for Yes or true), and false otherwise. Using AsBoolean to write a TStringField's value sets the
string to T or F.

TStringField::AsDateTime
TStringField See also
AsDateTime converts the value of the field to or from a date and time value.
Description
Use AsDateTime to
• Assign the string field value to a TDateTime value.
• Assign a TDateTime value to the string field.
Reading AsDateTime converts the value of the field to a date-time using the StrToDateTime
function. Setting AsDateTime converts the date-time value to a string using the DateTimeToStr
function.

TStringField::AsFloat
TStringField See also
AsFloat converts the value of the field to or from a floating-point value.
Description
Use AsFloat to
• Assign the string field value to a floating-point value.
• Assign a floating-point value to the string field.
For example, this code assigns a floating-point value to a string field value:
MyStringField.AsFloat := 7.345;
To assign a string field value to a floating-point value, use code similar to this:
FloatVariable := MyStringField.AsFloat;
Reading AsFloat converts the value of the field to a floating-point value using the StrToFloat
function. Setting AsFloat converts the floating-point value to a string using the FloatToStr
function.

TStringField::AsInteger
TStringField See also
AsInteger converts the value of the field to or from an integer value.
Description
Use AsInteger to
• Assign the string field value to an integer value.
• Assign an integer value to the string field.
For example, this code assigns integer value to a string field value:
MyStringField.AsInteger := 12;
To assign a string field value to an integer value, use code similar to this:
IntegerVariable := MyStringField.AsInteger;
Reading AsInteger converts the value of the field to an integer using the StrToInt function.
Setting AsInteger converts the integer to a string using the IntToStr function.

TStringField::AsString
TStringField See also
AsString gets or sets the value of the field.
Description
String values need no conversion, because the native format of a string field is a string. For
string fields, AsString is the same as the Value property. AsString provides a uniform interface
that allows applications to get or set string values with generic field components when the
internal format of the data is not known.
When setting the AsString property, TStringField converts the assigned string from ANSI, using
the language driver for the dataset, if the Transliterate property is true. Strings that have more
characters than permitted by the value of the Size property are truncated when setting AsString.

TStringField::Transliterate
TStringField See also
Transliterate determines whether to convert the value of the string field between the ANSI
character set and the character set identified by the dataset, when reading from or writing to the
physical database tables.
__property bool Transliterate;
Description
Use Transliterate when the physical database table identified by the dataset does not use an
ANSI language driver and the data may contain extended ASCII characters.
When Transliterate is true, the AnsiToNative function is called to translate the ANSI characters
to the character set used by the dataset when the string field value is set. When the string field
value is read, the NativeToAnsi function is called to translate the characters in the database
table to the ANSI character set.

TStringField::Value
TStringField See also
Value is the actual data in the string field.
__property System::AnsiString Value;
Description
Use Value to read data directly from and write data directly to a string field component at
runtime. Using the Value property is the same as using the AsString property. Use Value when
you know the field component is a string field. Use AsString when working with a generic field
component.
When setting the Value property, TStringField converts the assigned string from ANSI, using the
language driver for the dataset, if the Transliterate property is true. Strings that have more
characters than permitted by the value of the Size property are truncated when setting Value.

TStringField events
TStringField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TStringField events
TStringField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TStringField methods
TStringField Alphabetically

In TStringField
~TStringField
TStringField

Derived from TField
Assign
AssignValue
Clear
FocusControl
GetData
IsValidChar
SetData
SetFieldType

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TStringField methods
TStringField By object

~TStringField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TStringField

TStringField::~TStringField
TStringField
~TStringField frees the memory associated with the TStringField object. Do not call ~
TStringField directly. Instead, use the delete keyword on the object, which causes ~TStringField
to be invoked automatically.
__fastcall virtual ~TStringField(void);

TStringField::TStringField
TStringField See also
The TStringField method creates an instance of a TStringField object.
__fastcall virtual TStringField(Classes::TComponent* AOwner);
Description
It is seldom necessary to call TStringField directly, because a string field component is
instantiated automatically for all string fields in a dataset.
After calling the inherited constructor, TStringField sets
• DataType to ftString.
• Size to 20.
• Transliterate to true.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField

TStringField example
TStringField

TStatusPanel
Hierarchy Properties Methods See also
TStatusPanel represents a single panel of a status bar.
Header
vcl/comctrls.hpp
Description
Each TStatusBar uses a TStatusPanels to maintain a collection of TStatusPanel objects.

TStatusPanel properties
TStatusPanel Alphabetically Legend

In TStatusPanel
Alignment
Bevel
Style
Text
Width

Derived from TCollectionItem
Collection
Index

TStatusPanel properties
TStatusPanel By object Legend

Alignment
Bevel
Collection
Index
Style
Text
Width

TStatusPanel::Alignment
TStatusPanel See also Example
Specifies how text is aligned within the status panel.
__property Classes::TAlignment Alignment;
Description
These are the possible values of Alignment:
Value Meaning

taLeftJustify Align text on the left side of the panel.
taCenter Center the text in the panel.
taRightJustify Align text on the right side of the panel.
Note
If the status bar has a sizing grip, setting the Alignment of the last status panel to taRightJustify
truncates the panel’s text.

TStatusPanel::Bevel
TStatusPanel See also
Determines the style of the panel’s border.
__property TStatusPanelBevel Bevel;
Description
These are the possible values of Bevel:
Value Meaning

pbNone The panel has no bevel and appears flat.
pbLowered The panel appears recessed.
pbRaised The panel appears raised.

TStatusPanel::Style
TStatusPanel See also
Determines how the status panel’s text is displayed.
__property TStatusPanelStyle Style;
Description
If Style is set to psText (the default), the string contained in the Text property is displayed in the
status panel, using the alignment specified by Alignment. The font is determined by the status
bar’s Font property.
If Style is set to psOwnerDraw, the content displayed in the status panel is drawn at runtime on
the status bar’s canvas by code in a TStatusBar.OnDrawPanel event handler.

TStatusPanel::Text
TStatusPanel Example
The text appearing in the status panel.
__property System::AnsiString Text;
Description
The Text property contains a string that appears in the status panel if Style is set to psText.

TStatusPanel::Width
TStatusPanel Example
The width of the status panel.
__property int Width;
Description
The Width property determines the horizontal size of the status panel, in pixels.

TStatusPanel methods
TStatusPanel Alphabetically

In TStatusPanel
~TStatusPanel
Assign
TStatusPanel

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TStatusPanel methods
TStatusPanel By object

~TStatusPanel
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TStatusPanel

TStatusPanel::~TStatusPanel
TStatusPanel
~TStatusPanel frees the memory associated with the TStatusPanel object. Do not call ~
TStatusPanel directly. Instead, use the delete keyword on the object, which causes ~
TStatusPanel to be invoked automatically.
__fastcall virtual ~TStatusPanel(void);

TStatusPanel::Assign
TStatusPanel See also
Copies the contents of the source status panel to a new status panel.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
Assign creates a new status panel with the same Alignment, Bevel, Style, Text, and Width
values as the source object.

TStatusPanel::TStatusPanel
TStatusPanel See also
Creates and initializes a status panel.
__fastcall virtual TStatusPanel(Classes::TCollection* Collection);
Description
TStatusPanel should take a TStatusPanels instance as its argument.

Scope
Published

Hierarchy

TObject

TPersistent
TCollectionItem

TStatusPanel example
TStatusPanel

TStatusPanels
Hierarchy Properties Methods See also
TStatusPanels is a container for TStatusPanel objects.
Header
vcl/comctrls.hpp
Description
Each TStatusPanels holds a collection of TStatusPanel objects in a TStatusBar. TStatusPanels
maintains an index of the status panels in its Items array. The Count property contains the
number of status panels in the collection. At design time, use the status bar’s Panels editor to
add, remove, or modify status panels.

TStatusPanels properties
TStatusPanels Alphabetically Legend

In TStatusPanels
Items

Derived from TCollection
Count

TStatusPanels properties
TStatusPanels By object Legend

Count
Items

TStatusPanels::Items
TStatusPanels See also
An index of the status panels in the collection.
__property TStatusPanel* Items[int Index];
Description
The value of the Index parameter corresponds to the Index property of TStatusPanel. It
represents the position of the status panel in the status bar.

TStatusPanels methods
TStatusPanels Alphabetically

In TStatusPanels
~TStatusPanels
Add
TStatusPanels

Derived from TCollection
Assign
BeginUpdate
Clear
EndUpdate

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TStatusPanels methods
TStatusPanels By object

~TStatusPanels
Add
Assign
BeginUpdate
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
Dispatch
EndUpdate
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TStatusPanels

TStatusPanels::~TStatusPanels
TStatusPanels
~TStatusPanels frees the memory associated with the TStatusPanels object. Do not call ~
TStatusPanels directly. Instead, use the delete keyword on the object, which causes ~
TStatusPanels to be invoked automatically.
__fastcall virtual ~TStatusPanels(void);

TStatusPanels::Add
TStatusPanels See also
Creates a new TStatusPanel instance and adds it to the Items array.
TStatusPanel* __fastcall Add(void);
Description
Add returns the new status panel. At design time, use the Panels editor to add panels to the
status bar.

TStatusPanels::TStatusPanels
TStatusPanels See also
Creates and initializes a TStatusPanels object.
__fastcall TStatusPanels(TStatusBar* StatusBar);
Description
The TStatusPanels method takes a TStatusBar instance as a parameter.

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TCollection

TStatusPanels example
TStatusPanels

TStatusBar
Hierarchy Properties Methods Events See also
TStatusBar represents a Windows status bar.
Header
vcl/comctrls.hpp
Description
The TStatusBar component is a row of panels, usually aligned at the bottom of the form, that
display information about the application as it runs. Each panel is represented by a TStatusPanel
object listed in the Panels property. The SimplePanel property can be used to toggle the status
bar at runtime between a single-panel and multiple-panel display.

TStatusBar properties
TStatusBar Alphabetically Legend

In TStatusBar
Canvas

Panels
SimplePanel
SimpleText
SizeGrip

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name

Parent
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TStatusBar properties
TStatusBar By object Legend

Align
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
DragCursor
DragMode
Enabled
Font

Handle
Height
HelpContext
Hint
Left
Name

Owner
Panels
ParentFont
ParentShowHint
Parent
PopupMenu
ShowHint

Showing
SimplePanel
SimpleText
SizeGrip
TabOrder
TabStop
Tag
Top
Visible
Width

TStatusBar::Canvas
TStatusBar See also
Provides runtime access to the status bar’s drawing surface.
__property Graphics::TCanvas* Canvas;
Description
The read-only Canvas property provides access to the status bar’s drawing surface that you
can use when implementing a handler for the OnDrawPanel event.

TStatusBar::Panels
TStatusBar See also
A list of panels (TStatusPanel) in the status bar.
__property TStatusPanels* Panels;
Description
The Panels property holds a TStatusPanels—that is, a collection of TStatusPanel objects. At
design time, you can add, remove, or modify panels with the Panels editor. To open the Panels
editor, select the Panels property in the Object Inspector, then double-click in the Value column
to the right or click the ellipsis (...) button.

TStatusBar::SimplePanel
TStatusBar See also
Determines whether the status bar displays a single panel or multiple panels.
__property bool SimplePanel;
Description
If SimplePanel is set to true, the status bar consists of a single panel displaying the text in
SimpleText. If SimplePanel is set to false, the status bar displays a separate panel for each item
in its Panels property. To alter the appearance of the status bar at runtime, change the value of
SimplePanel programmatically.

TStatusBar::SimpleText
TStatusBar See also
Contains the string that is displayed in the status bar when SimplePanel is set to true.
__property System::AnsiString SimpleText;
Description
SimpleText contains a text string to be displayed in the status panel when SimplePanel is true.

TStatusBar::SizeGrip
TStatusBar See also
Determines whether the status bar is resizable at runtime.
__property bool SizeGrip;
Description
If SizeGrip is set to true, the status bar has a triangular grip on the lower right corner. The user
can resize the status bar by dragging the grip with the mouse.
Note
If Align is set to alBottom, alRight, or alClient, the sizing grip will not work. If the Alignment
property of the last panel in the status bar is set to taRightJustify, the sizing grip will truncate the
panel’s text.

TStatusBar events
TStatusBar Alphabetically Legend

In TStatusBar
OnDrawPanel
OnResize

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TStatusBar events
TStatusBar By object Legend

OnClick
OnDblClick
OnDragDrop
OnDragOver
OnDrawPanel
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnResize
OnStartDrag

TStatusBar::OnDrawPanel
TStatusBar See also
OnDrawPanel occurs when a status panel needs to be redrawn.
typedef void __fastcall (__closure *TDrawPanelEvent)(TStatusBar*
StatusBar, TStatusPanel* Panel, const Windows::TRect &Rect);

__property TDrawPanelEvent OnDrawPanel;
Description
The OnDrawPanel event occurs when a status panel needs to be redisplayed—for example,
when the user resizes the status bar. The Rect parameter gives the (new) dimensions of the
status panel. OnDrawPanel occurs only if the status panel’s Style property is set to
psOwnerDraw.
TDrawPanelEvent is the type of the OnDrawPanel property.

TStatusBar::OnResize
TStatusBar See also
OnResize occurs when the status panel is resized.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnResize;
Description
The OnResize event occurs whenever the entire status bar is resized at runtime.

TStatusBar methods
TStatusBar Alphabetically

In TStatusBar
~TStatusBar
TStatusBar

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TStatusBar methods
TStatusBar By object

~TStatusBar
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TStatusBar
UpdateControlState
Update

TStatusBar::~TStatusBar
TStatusBar See also
~TStatusBar frees the memory associated with the TStatusBar object. Do not call ~TStatusBar
directly. Instead, use the delete keyword on the object, which causes ~TStatusBar to be invoked
automatically.
__fastcall virtual ~TStatusBar(void);
Description
The ~TStatusBar method destroys the status bar along with its canvas and status panels.

TStatusBar::TStatusBar
TStatusBar See also
Creates and initializes a TStatusBar component.
__fastcall virtual TStatusBar(Classes::TComponent* AOwner);
Description
The TStatusBar method creates a status bar along with its canvas and status panels.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TStatusBar example
TStatusBar

TTabControl
Hierarchy Properties Methods Events
The TTabControl component is a tab set which functions similarly to a TTabSet and has the
appearance of notebook dividers.
Header
vcl/comctrls.hpp
Description
To create a multiple page dialog box, use a TPageControl. To use simply a tab set, use the
TTabControl. Disabling a TTabControl will disable all tabs because it is one control. To disable
individual tabs use a TPageControl and disable the individual TTabSheet controls that represent
the pages.

TTabControl properties
TTabControl Alphabetically Legend

Derived from TCustomTabControl
DisplayRect

MultiLine
TabHeight
TabIndex
Tabs
TabWidth

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name

Parent
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TTabControl properties
TTabControl By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo

DisplayRect
DragCursor
DragMode
Enabled
Font

Handle
Height
HelpContext
Hint
Left
MultiLine
Name

Owner
ParentFont
ParentShowHint
Parent
PopupMenu
ShowHint

Showing
TabHeight
TabIndex
TabOrder
Tabs
TabStop
TabWidth
Tag
Top
Visible
Width

TTabControl events
TTabControl Alphabetically Legend

Derived from TCustomTabControl
OnChange
OnChanging

Derived from TWinControl
OnEnter
OnExit

Derived from TControl
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TTabControl events
TTabControl By object Legend

OnChange
OnChanging
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TTabControl methods
TTabControl Alphabetically

In TTabControl
~TTabControl
TTabControl

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TTabControl methods
TTabControl By object

~TTabControl
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TTabControl
UpdateControlState
Update

TTabControl::~TTabControl
TTabControl
~TTabControl frees the memory associated with the TTabControl object. Do not call ~
TTabControl directly. Instead, use the delete keyword on the object, which causes ~
TTabControl to be invoked automatically.
__fastcall virtual ~TTabControl(void);

TTabControl::TTabControl
TTabControl
TTabControl creates a new TTabControl object.
__fastcall virtual TTabControl(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomTabControl

TTabControl example
TTabControl

TTable
Hierarchy Properties Methods Events See also
TTable is a dataset component that encapsulates a database table.
Header
vcl/dbtables.hpp
Description
Use TTable to access data in a single database table using the Borland Database Engine (BDE)
. TTable provides direct access to every record and field in an underlying database table,
whether it is from Paradox, dBASE, Access, FoxPro, an ODBC-compliant database, or an SQL
database on a remote server, such as InterBase, Oracle, Sybase, MS-SQL Server, Informix, or
DB2.
A table component can also work with a subset of records within a database table using ranges
and filters.

TTable properties
TTable Alphabetically Legend

In TTable
CanModify
DataSource

Exclusive
IndexDefs
IndexFieldCount

IndexFieldNames
IndexFields
IndexFiles
IndexName
KeyExclusive
KeyFieldCount
MasterFields
MasterSource
ReadOnly
TableLevel
TableName
TableType

Derived from TDBDataSet
Database

DatabaseName
DBHandle
DBLocale
DBSession

SessionName
UpdateMode

Derived from TDataSet
Active
AutoCalcFields

BOF
Bookmark

DefaultFields
Designer
EOF
FieldCount

FieldDefs
Fields
FieldValues

Found
Modified
State

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TTable properties
TTable By object Legend

Active
AutoCalcFields

BOF
Bookmark

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DatabaseName
Database
DataSource
DBHandle
DBLocale
DBSession
DefaultFields
Designer

DesignInfo
EOF

Exclusive
FieldCount

FieldDefs
Fields
FieldValues

Found
IndexDefs
IndexFieldCount

IndexFieldNames
IndexFields
IndexFiles
IndexName
KeyExclusive
KeyFieldCount
MasterFields
MasterSource

Modified
Owner

ReadOnly
SessionName

State
TableLevel
TableName
TableType
Tag
UpdateMode

TTable::CanModify
TTable See also
Indicates whether an application can insert, edit, or delete data in a table.
Description
Check the status of CanModify to determine if an application can modify a dataset in any way. If
CanModify is true, the dataset can be modified. If CanModify is false, the table is read-only.
CanModify is set automatically when an application opens a table. If the ReadOnly property of a
table component is true, then CanModify is set to false. CanModify can also be false because
• Another application currently has exclusive write access to the table.
• The table is read-only by database design.
Note
Even if CanModify is true, it is not a guarantee that a user will be able to insert or update records
in a table. Other factors may come in to play, for example, SQL access privileges.

TTable::DataSource
TTable See also
Specifies the data source for the table.
Description
Use the DataSource property to determine the data source currently assigned to the table. When
an application sets the DataSet property for a DataSource component to the name of this table
component, the DataSource property for the table is automatically updated to the name of the
data source component that uses it.

TTable::Exclusive
TTable See also
Enables an application to gain sole access to a Paradox or dBASE table.
__property bool Exclusive;
Description
Use Exclusive to prevent other applications from accessing a Paradox or dBASE table while this
application is using it. Before opening the table, set Exclusive to true.
When Exclusive is true, then when the application successfully opens the table, no other
application can access it. If the table for which the application has requested exclusive access is
already in use by another application, an exception is raised. To handle such exceptions, write
an exception handler.
A table must be closed before changing the setting of the Exclusive property. Do not set
Exclusive to true at design time if you also intend to set the Active property to true at design
time. In this case an exception is raised because the table is already in use by the IDE.
Note
An application can attempt to set Exclusive to true for SQL tables, but some SQL servers do not
support exclusive table-locking. Others may grant an exclusive read/write lock, but still permit
read-only access to other applications. For more information about exclusive locking of database
tables for a specific server, see the server’s documentation.

TTable::IndexDefs
TTable See also
Contains information about the indexes for a table.
__property TIndexDefs* IndexDefs;
Description
Examine IndexDefs for index information. IndexDefs is an array of index items, each of which
describes an available index for the table. Ordinarily an application accesses or specifies
indexes through the IndexFieldNames or IndexFields properties.
Note
The index items in IndexDefs may not always reflect the current indexes available for a table.
Before examining IndexDefs, call its Update method to refresh the item list.

TTable::IndexFieldCount
TTable See also
Indicates the number of fields that comprise the current key.
__property int IndexFieldCount;
Description
Examine IndexFieldCount to determine the number of fields that comprise the current key. For
indexes based on a single column, IndexFieldCount returns 1. For multi-column indexes,
IndexFieldCount indicates the number of fields upon which the index is based.

TTable::IndexFieldNames
TTable See also
Lists the columns to use as an index for a table.
__property System::AnsiString IndexFieldNames;
Description
Use IndexFieldNames as an alternative method of specifying the index to use for a table. In
IndexFieldNames specify the name of each column to use as an index for a table. Ordering of
column names is significant. Separate names with semicolon.
For Paradox and dBASE any column names specified in IndexFieldNames must already be
indexed. For SQL-based tables, the specified columns need not be indexed.
Note
The IndexFieldNames and IndexName properties are mutually exclusive. Setting one clears the
other.

TTable::IndexFields
TTable See also
Retrieves or sets a field for an index.
__property Db::TField* IndexFields[int Index];
Description
Use IndexFields to retrieve information about a specific field in an index, or to specify a field to
use in an index. IndexFields is an array of field components that comprise the index. Index is the
ordinal value of the field to retrieve or set.
Note
Ordinarily an application should only use IndexFields to retrieve field information. To create a
new index, use the AddIndex method.

TTable::IndexFiles
TTable See also
Specifies one or more dBASE index file to use for a dBASE table that uses non-production
indexes.
__property Classes::TStrings* IndexFiles;
Description
Use IndexFiles to specify dBASE index files to make available for the table that uses non-
production indexes. A dBASE index file can contain multiple indexes. Each index in an index file
becomes available as a selection for the IndexName property which specifies the actual index to
use at any given time.
When index files are added to the list of available indexes, the table component opens them.
Insertions and modifications made to the table are maintained in the index files. When files are
removed from the list, the table component closes them, and they are no longer maintained.
Note
At design time, use the Object Inspector to add or remove index file names for the IndexFiles
property. At runtime multiple index files can be specified by setting IndexFiles to a string that
contains a list of semicolon-delimited file names.

TTable::IndexName
TTable See also
Identifies a secondary index for the table.
__property System::AnsiString IndexName;
Description
Use IndexName to specify an alternative index for a table. Otherwise, if IndexName is empty, a
table’s sort order is based on its primary index, or, for dBASE tables, on its physical record
order.
If IndexName contains a valid index name, then that index is used to determine sort order of
records. For dBASE tables, an index name supplied to the IndexName property must either
reside in the table's master index file, or in another index file already specified in the IndexFiles
property.
Note
IndexFieldNames and IndexName are mutually exclusive. Setting one clears the other.

TTable::KeyExclusive
TTable See also
Specifies the upper and lower boundaries for a range.
__property bool KeyExclusive;
Description
Use KeyExclusive to specify whether or not a range includes or excludes the records that match
the specified starting and ending values for a range. By default, KeyExclusive is true, meaning
that matching values are included.
To restrict a range to those records that are greater than the specified starting value and less
than the specified ending value, set KeyExclusive to false.

TTable::KeyFieldCount
TTable See also
Indicates or sets the number of fields to use when searching on partial keys.
__property int KeyFieldCount;
Description
Use KeyFieldCount to restrict searches to a subset of available key fields if a key consists of
more than one field. Set KeyFieldCount to the number of fields to use. The specified value must
be less than or equal to the number of fields in the key. For example, if a table has a three-field
primary key, then to search for values based only on the first field, set KeyFieldCount to 1.
Searches may only be conducted on contiguous fields. For example, for a three-field key,
KeyFieldCount can be 1 to search only on the first field, 2 to search on the first and second
fields, or 3 to search on all fields.
Note
A default search is conducted on all fields, so there is no need to set KeyFieldCount except to
restrict a search to a subset of available fields.

TTable::MasterFields
TTable See also
Specifies one or more fields in a master table to link with corresponding fields in this table in
order to establish a master-detail relationship between the tables.
__property System::AnsiString MasterFields;
Description
Use MasterFields after setting the MasterSource property to specify the names of one or more
fields to use in establishing a detail-master relationship between this table and the one specified
in MasterSource.
MasterFields is a string containing one or more field names in the master table. Separate field
names with semicolons.
Each time the current record in the master table changes, the new values in those fields are
used to select corresponding records in this table for display.
Note
At design time, use the Field Link designer to establish the master-detail relationship between
two tables.

TTable::MasterSource
TTable See also
Specifies the name of the data source component for the dataset to use as a master table in
establishing a detail-master relationship between this table and another one.
__property Db::TDataSource* MasterSource;
Description
Use MasterSource to specify the name of the data source component whose DataSet property
identifies a dataset to use as a master table in establishing a detail-master relationship between
this table and another one.
Note
At design time choose an available data source from the MasterSource property’s drop-down
list in the Object Inspector.
After setting the MasterSource property, specify which fields to use in the master table by setting
the MasterFields property. At runtime each time the current record in the master table changes,
the new values in those fields are used to select corresponding records in this table for display.
Note
At design time, use the Field Link designer to establish the master-detail relationship between
two tables.

TTable::ReadOnly
TTable See also
Specifies whether a table is read-only for this application.
__property bool ReadOnly;
Description
Use the ReadOnly property to prevent users from updating, inserting, or deleting data in the
table. By default, ReadOnly is false, meaning users can potentially alter a table’s data.
Note
Even if ReadOnly is false, users may not be able to modify or add data to a table. Other factors,
such as insufficient SQL privileges for the application or its current user may prevent successful
alterations.
To guarantee that users cannot modify or add data to a table,
1 Set the Active property to false.
2 Set ReadOnly to true.
When ReadOnly is true, the table’s CanModify property is false.

TTable::TableLevel
TTable See also
Specifies the Borland Database Engine (BDE) driver-dependent table level.
Description
Use TableLevel to specify that the table associated with this dataset requires a specific level of
BDE driver. If TableLevel is 0, the default, this property is ignored.
For more information about BDE driver table level specification, see the online BDE help file,
BDE32.HLP.

TTable::TableName
TTable See also
Indicates the name of the database table that this component encapsulates.
__property System::AnsiString TableName;
Description
Use TableName to specify the name of the database table this component encapsulates. To set
TableName to a meaningful value, the DatabaseName property should already be set. If
DatabaseName is set at design time, then select a valid table name from the TableName drop-
down list in the Object Inspector.
Note
To set TableName, the Active property must be false.

TTable::TableType
TTable See also
Indicates the database table structure for the table that this component encapsulates.
__property TTableType TableType;
Description
Use TableType to specify the database table structure for a dBASE, Paradox, or ASCII table.
TableType does not apply to tables for remote SQL servers. TableType can be set to any of the
following values:
Value Meaning

ttDefault (Default) Determine table type based on file extension for the table.
ttParadox Table is a Paradox table.
ttDBase Table is a dBASE table.
ttASCII Table is a text file with comma-delimited, quoted strings for each field
If TableType is set to ttDefault, the table's file-name extension determines the table type:
Extension Meaning

DB or none Paradox table
DBF dBASE table
TXT ASCII table
If TableType is ttParadox, ttDBase, or ttASCII, the table type is assumed to be of the type
specified, regardless of the table’s file name extension.

TTable events
TTable Alphabetically Legend

Derived from TDataSet
AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
OnCalcFields
OnDeleteError
OnEditError
OnFilterRecord
OnNewRecord
OnPostError

TTable events
TTable By object Legend

AfterCancel
AfterClose
AfterDelete
AfterEdit
AfterInsert
AfterOpen
AfterPost
BeforeCancel
BeforeClose
BeforeDelete
BeforeEdit
BeforeInsert
BeforeOpen
BeforePost
OnCalcFields
OnDeleteError
OnEditError
OnFilterRecord
OnNewRecord
OnPostError

TTable methods
TTable Alphabetically

In TTable
~TTable
AddIndex
ApplyRange
BatchMove
CancelRange
CloseIndexFile
CreateTable
DeleteIndex
DeleteTable
EditKey
EditRangeEnd
EditRangeStart
EmptyTable
FindKey
FindNearest
GetIndexNames
GotoCurrent
GotoKey
GotoNearest
LockTable
OpenIndexFile
RenameTable
SetKey
SetRange
SetRangeEnd
SetRangeStart
TTable
UnlockTable

Derived from TDBDataSet
CheckOpen

Derived from TDataSet
ActiveBuffer
Append
AppendRecord
CheckBrowseMode
ClearFields
Close
ControlsDisabled
CursorPosChanged
Delete
DisableControls
Edit
EnableControls
FieldByName
FindField
FindFirst
FindLast
FindNext
FindPrior

First
FreeBookmark
GetBookmark
GetFieldList
GetFieldNames
GotoBookmark
Insert
InsertRecord
IsLinkedTo
Last
MoveBy
Next
Open
Post
Prior
Refresh
Resync
SetFields
UpdateCursorPos
UpdateRecord

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TTable methods
TTable By object

~TTable
ActiveBuffer
AddIndex
AppendRecord
Append
ApplyRange
Assign
BatchMove
CancelRange
CheckBrowseMode
CheckOpen
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClearFields
CloseIndexFile
Close
ControlsDisabled
CreateTable
CursorPosChanged
DefaultHandler
DeleteIndex
DeleteTable
Delete
DestroyComponents
Destroying
DisableControls
Dispatch
EditKey
EditRangeEnd
EditRangeStart
Edit
EmptyTable
EnableControls
FieldAddress
FieldByName
FindComponent
FindField
FindFirst
FindKey
FindLast
FindNearest
FindNext
FindPrior
First
FreeBookmark

FreeInstance
FreeNotification
Free
GetBookmark
GetFieldList
GetFieldNames
GetIndexNames
GetParentComponent
GotoBookmark
GotoCurrent
GotoKey
GotoNearest
HasParent
InheritsFrom
InitInstance
InsertComponent
InsertRecord
Insert
InstanceSize
IsLinkedTo
Last
LockTable
MethodAddress
MethodName
MoveBy
NewInstance
Next
OpenIndexFile
Open
Post
Prior
Refresh
RemoveComponent
RenameTable
Resync
SetFields
SetKey
SetRangeEnd
SetRangeStart
SetRange
TTable
UnlockTable
UpdateCursorPos
UpdateRecord

TTable::~TTable
TTable See also
~TTable frees the memory associated with the TTable object. Do not call ~TTable directly.
Instead, use the delete keyword on the object, which causes ~TTable to be invoked
automatically.
__fastcall virtual ~TTable(void);
Description
~TTable frees the index files list for the table, frees its data link, frees its index definitions, and
then calls the destructor of its parent object.

TTable::AddIndex
TTable See also
Creates a new index for the table.
void __fastcall AddIndex(const System::AnsiString Name, const System::
AnsiString Fields, TIndexOptions Options);

Description
Call AddIndex to create a new index for the table associated with a dataset. Name is the name
of the new index. Fields is a semicolon-delimited list of the fields to include in the index. Options
is a potentially restricted set of one or more of the following values:
Value Meaning Restrictions

ixPrimary Create a primary indexCannot be used with dBASE.
Cannot create more than one primary index per table.
isUnique Create a unique index
ixDescending Sort in descending alphanumeric order
ixCaseInsensitive Ignore case when sortingCannot be used with dBASE.
ixExpression Create an expression indexdBASE only
Attempting to create an index using options that are not applicable to the table raises an
exception.

TTable::ApplyRange
TTable See also
Apply a range to the dataset.
void __fastcall ApplyRange(void);
Description
Call ApplyRange to cause a range established with SetRangeStart and SetRangeEnd, or
EditRangeStart and EditRangeEnd, to take effect. When a range is in effect, only those records
that fall within the range are available to the application for viewing and editing.

TTable::BatchMove
TTable See also
Moves records from a dataset into this table.
long __fastcall BatchMove(Db::TDataSet* ASource, TBatchMode AMode);
Description
Call BatchMove to
• Copy records from another table into this table.
• Update records in this table that occur in another table.
• Append records from another table to the end of this table.
• Delete records in this table that occur in another table.
ASource is a dataset component containing the records to import for use in this table. AMode is
one of the following:
Value Meaning

batAppend Append all records from the source table to the end of this table.
batAppendUpdate Append all records from the source table to the end of this table and

update existing records in this table with the same records from the
source table

batCopy Copy all records from the source table into this table.
batDelete Delete all records in this table that also appear in the source table.
batUpdate Update existing records in this table with their counterparts in the source

table.
BatchMove returns the number of records operated on.

TTable::CancelRange
TTable See also
Removes any ranges currently in effect for the table.
void __fastcall CancelRange(void);
Description
Call CancelRange to remove a range currently applied to a table. Canceling a range reenables
access to all records in the dataset.

TTable::CloseIndexFile
TTable See also
Closes a specified dBASE non-production index file.
void __fastcall CloseIndexFile(const System::AnsiString IndexFileName)
;

Description
Call CloseIndexFile to shut down a specified dBASE non-production index file. IndexFileName is
the name of the file to close, and is either the name of an index file previously opened with a call
to OpenIndexFile or previously opened because the file’s name is listed in the IndexFiles
property.
Once closed, non-production index files are no longer maintained. Subsequent changes made to
the dataset are not reflected in the index.

TTable::CreateTable
TTable See also
Recreates the dataset using new structure information.
void __fastcall CreateTable(void);
Description
Call CreateTable at runtime to replace a dataset’s current definition with a new one.
If the FieldDefs property contains values, these values are used to create field definitions.
Otherwise the Fields property is used. One or both of these properties must contain values in
order to recreate a dataset.
If the IndexDefs property contain values, these values are used to create index definitions for the
dataset.

TTable::DeleteIndex
TTable See also
Deletes a secondary index for the table.
void __fastcall DeleteIndex(const System::AnsiString Name);
Description
Call DeleteIndex to remove a secondary index for a table. Name is the name of the index to
delete. DeleteIndex cannot remove a primary index.
Note
To delete an index, an application must first open the table for exclusive access.

TTable::DeleteTable
TTable See also
Deletes an existing database table.
void __fastcall DeleteTable(void);
Description
Call DeleteTable to delete an existing database table associated with the table component
through its DatabaseName and TableName properties. A table must be closed before it can be
deleted.
Warning
Deleting a table erases any data the table contains and destroys the table’s structure
information.

TTable::EditKey
TTable See also
Enables modification of the search key buffer.
void __fastcall EditKey(void);
Description
Call EditKey to put the dataset in dsSetKey state while preserving the current contents of the
Fields property. The Fields property array may then be edited prior to conducting a new search.
The Fields property is a zero-based, string list that specifies specific field values to search for.
During a search operation, the values in Fields are applied in an ordinal fashion to each column
in the table. Fields[0] corresponds to the first column in the table, Fields[1] corresponds to the
second column, and so on.
EditKey is especially useful when performing multiple searches where only one or two field
values among many change between each search.

TTable::EditRangeEnd
TTable See also
Enables changing the ending value for an existing range.
void __fastcall EditRangeEnd(void);
Description
Call EditRangeEnd to specify that subsequent field assignments to the FieldValues property
indicate a new set of ending values for a range to use in conjunction with previously existing
ending values for a range.
After assigning new values to FieldValues, call ApplyRange to activate the modified range.
Note
With Paradox or dBASE tables, EditRangeEnd works only on indexed fields. With SQL
databases, EditRangeEnd also works with any columns specified in the IndexFieldNames
property.

TTable::EditRangeStart
TTable See also
Enables changing the starting value for an existing range.
void __fastcall EditRangeStart(void);
Description
Call EditRangeStart to specify that subsequent field assignments to the FieldValues property
indicate a new set of starting values for a range to use in conjunction with previously existing
starting values for a range.
After assigning new values to FieldValues, call ApplyRange to activate the modified range.
Note
With Paradox or dBASE tables, EditRangeStart works only on indexed fields. With SQL
databases, EditRangeStart also works with any columns specified in the IndexFieldNames
property.

TTable::EmptyTable
TTable See also
Deletes all records from the table.
void __fastcall EmptyTable(void);
Description
The EmptyTable method deletes all records from the database table specified by the
DatabaseName and TableName properties.
Note
Deletion of records can fail if the user lacks sufficient privileges to perform the delete operation.

TTable::FindKey
TTable See also
Searches for a record containing specified field values.
bool __fastcall FindKey(const System::TVarRec *KeyValues, const int
KeyValues_Size);

Description
Call FindKey to search for a specific record in a dataset. KeyValues contains a comma-
delimited array of field values, called a key. Each value in the key can be a literal, a variable, a
null, or NULL. If the number of values passed in KeyValues is less than the number of columns
in the index used for the search, the missing values are assumed to be null.
KeyValues_Size is the zero-based index of the last element of the TVarRec array.
For Paradox and dBASE tables, the key must always be an index, which can be specified in the
IndexName property. If IndexName is empty, the table’s primary index.
For SQL tables, the key may correspond to a specified index in IndexName, or to a list of field
names in the IndexFieldNames property.
If a search is successful, FindKey positions the cursor on the matching record and returns true.
Otherwise the cursor is not moved, and FindKey returns false.

TTable::FindNearest
TTable See also
Moves the cursor to the record that most closely matches a specified set of key values.
void __fastcall FindNearest(const System::TVarRec *KeyValues, const int
KeyValues_Size);

Description
Call FindNearest to move the cursor to a specific record in a dataset or to the first record in the
dataset that is greater than the values specified in the KeyValues parameter. KeyValues
contains a comma-delimited array of field values, called a key. Each value in the key can be a
string literal, a string variable, a null, or NULL. If the number of values passed in KeyValues is
less than the number of columns in the index used for the search, the missing values are
assumed to be null.
Note
FindNearest works only with string data types.
For Paradox and dBASE tables, the key must always be an index, which can be specified in the
IndexName property. If IndexName is empty, the table’s primary index.
For SQL tables, the key may correspond to a specified index in IndexName, or to a list of field
names in the IndexFieldNames property.
FindNearest positions the cursor either on a record that exactly matches the search criteria, or
on the first record whose values are greater than those specified in the search criteria.

TTable::GetIndexNames
TTable See also
Retrieves a list of available indexes for a table.
void __fastcall GetIndexNames(Classes::TStrings* List);
Description
Call GetIndexNames to retrieve a list of all available indexes for a table. List is a string list object,
created and maintained by the application, into which to retrieve the index names.

TTable::GotoCurrent
TTable See also
Synchronizes the current record for this table with the current record of a specified table
component.
void __fastcall GotoCurrent(TTable* Table);
Description
Call GotoCurrent to synchronize the cursor position for this table based on the cursor position in
another dataset that uses a different data source component, but which is connected to the
same underlying database table. Table is the name of the table component whose cursor
position to use for synchronizing.
Note
This procedure works only for table components that have the same DatabaseName and
TableName properties. Otherwise an exception is raised.
GotoCurrent is mainly for use in applications that have two table components that are linked to
the same underlying database table through different data source components. It enables an
application to ensure that separate views of the data appear to be linked.

TTable::GotoKey
TTable See also
Moves the cursor to a record specified by the current key.
bool __fastcall GotoKey(void);
Description
Use GotoKey to move to a record specified by key values assigned with previous calls to SetKey
or EditKey and actual search values indicated in the Fields property.
If GotoKey finds a matching record, it positions the cursor on the record and returns true.
Otherwise the current cursor position remains unchanged, and GotoKey returns false.

TTable::GotoNearest
TTable See also
Moves the cursor to the record that most closely matches the current key.
void __fastcall GotoNearest(void);
Description
Call GotoNearest to position the cursor on the record that is either the exact record specified by
the current key values in the Fields property, or on the first record whose values exceed those
specified.
Before calling GotoNearest, an application must specify key values by calling SetKey or EditKey
to put the dataset is dsSetKey state, and then populate the Fields property with search values.

TTable::LockTable
TTable See also
Locks a Paradox or dBASE table.
void __fastcall LockTable(TLockType LockType);
Description
Call LockTable to lock a Paradox or dBASE table to prevent other applications from placing a
particular type of lock on the table. LockType specifies the lock requested by this application.
Requesting a read lock prevents other applications from reading a table. Requesting a write lock
prevents other application from writing to a table.
An application can request both types of lock by calling LockTable twice, once for each lock
type.

TTable::OpenIndexFile
TTable See also
Opens a specified dBASE non-production index file.
void __fastcall OpenIndexFile(const System::AnsiString IndexName);
Description
Call OpenIndexFile to open a specified dBASE non-production index file. IndexFileName is the
name of the file to open. OpenIndexFile opens the file and adds its name to the list of index files
in the IndexFiles property.
While a non-production index file is open, it is maintained.

TTable::RenameTable
TTable See also
Renames the Paradox or dBASE table associated with this table component.
void __fastcall RenameTable(const System::AnsiString NewTableName);
Description
Call RenameTable to give a new name to the Paradox or dBASE table underlying this table
component. RenameTable renames the table and any support files (for example, Paradox .DB
and .MB files).

TTable::SetKey
TTable See also
Enables setting of keys and ranges for a dataset prior to a search.
void __fastcall SetKey(void);
Description
Call SetKey to put the dataset into dsSetKey state and clear the current contents of the Fields
property. The Fields property array may then be supplied with a new set of values prior to
conducting a search.
The Fields property is a zero-based, string list that specifies specific field values to search for.
During a search operation, the values in Fields are applied in an ordinal fashion to each column
in the table. Fields[0] corresponds to the first column in the table, Fields[1] corresponds to the
second column, and so on.so that an application can create a new key or a new range.
Note
To modify an existing key or range, call EditKey.

TTable::SetRange
TTable See also
Sets the starting and ending values of a range, and applies it.
void __fastcall SetRange(const System::TVarRec *StartValues, const int
StartValues_Size, const System::TVarRec *EndValues, const int
EndValues_Size);

Description
Call SetRange to specify a range and apply it to the dataset. StartValues indicates the field
values that designate the first record in the range. EndValues indicates the field values that
designate the last record in the range.
SetRange combines the functionality of SetRangeStart, SetRangeEnd, and ApplyRange in a
single procedure call. SetRange performs the following functions:
1 Puts the dataset into dsSetKey state.
2 Erases any previously specified starting range values and ending range values.
3 Sets the start and end range values.
4 Applies the range to the dataset.
If either StartValues or EndValues has fewer elements than the number of fields in the current
index, then the remaining entries are set to NULL.
Note
With Paradox or dBASE tables, EditRangeStart works only on indexed fields. With SQL
databases, EditRangeStart also works with any columns specified in the IndexFieldNames
property.

TTable::SetRangeEnd
TTable See also
Indicates that subsequent assignments to field values specify the end of the range of rows to
include in the dataset.
void __fastcall SetRangeEnd(void);
Description
Call SetRangeEnd to put the dataset into dsSetKey state, erase any previous end range values,
and set them to NULL. Subsequent field assignments to the FieldValues property indicate the
actual set of ending values for a range.
After assigning end-range values to FieldValues, call ApplyRange to activate the modified range.
Note
With Paradox or dBASE tables, EditRangeEnd works only on indexed fields. With SQL
databases, EditRangeEnd also works with any columns specified in the IndexFieldNames
property.

TTable::SetRangeStart
TTable See also
Indicates that subsequent assignments to field values specify the start of the range of rows to
include in the dataset.
void __fastcall SetRangeStart(void);
Description
Call SetRangeStart to put the dataset into dsSetKey state, erase any previous start range
values, and set them to NULL. Subsequent field assignments to the FieldValues property
indicate the actual set of starting values for a range.
After assigning start-range values to FieldValues, call ApplyRange to activate the modified
range.
Note
With Paradox or dBASE tables, EditRangeEnd works only on indexed fields. With SQL
databases, EditRangeEnd also works with any columns specified in the IndexFieldNames
property.

TTable::TTable
TTable See also
Creates an instance of a table component.
__fastcall virtual TTable(Classes::TComponent* AOwner);
Description
Call TTable to instantiate a table declared in an application if it was not placed on a form at
design time. TTable calls the constructor of its parent object, creates an empty index definitions
list, creates an empty data link, and creates an empty list of index files.

TTable::UnlockTable
TTable See also
Removes a previously applied lock on a Paradox or dBASE table.
void __fastcall UnlockTable(TLockType LockType);
Description
Call UnlockTable to remove a lock previously applied to a Paradox or dBASE table to prevent
other applications from placing a particular type of lock on the table. LockType specifies the lock
to remove.
Removing a read lock enables other applications to read a table. Removing a write lock enables
other application to write to a table.
An application can remove both types of lock by calling UnlockTable twice, once for each lock
type.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TDataSet
TDBDataSet

TTable example
TTable

TTabbedNotebook
Hierarchy Properties Methods Events
The TTabbedNotebook component contains multiple pages, each with its own set of controls.
Header
vcl/tabnotbk.hpp
Description
The user selects a page by clicking the page’s tab that appears at the top of the control.
TTabbedNotebook is provided for backward compatibility. Use TPageControl component in
MicrosoftWindows95 and WindowsNT applications.
The pages available in the tabbed notebook control are the strings specified as the value of the
Pages property. You can access a particular page in the notebook either with the PageIndex
property or the ActivePage property.
If you need to determine the PageIndex value of a particular page, call the GetIndexForPage
method.
You determine how many tabs appear in a row by setting the TabsPerRow property. If there are
more pages than there are tabs in one row, multiple rows automatically appear in the control.
You can specify the font of the text on the tabs with the TabFont property.
In addition to these properties, methods, and events, this component also has the properties,
methods, and events that apply to all windowed controls.

TTabbedNotebook properties
TTabbedNotebook Alphabetically Legend

In TTabbedNotebook
ActivePage
PageIndex
Pages
TabFont
TabsPerRow

TopFont
Derived from TWinControl

Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle
Cursor
Enabled
Font
Height
Hint
Left
Name
Parent
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TTabbedNotebook properties
TTabbedNotebook By object Legend

ActivePage
Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled
Font

Handle
Height
HelpContext
Hint
Left
Name

Owner
PageIndex
Pages
ParentShowHint
Parent
PopupMenu
ShowHint

Showing
TabFont
TabOrder
TabsPerRow
TabStop
Tag

TopFont
Top
Visible
Width

TTabbedNotebook::ActivePage
TTabbedNotebook See also
Determines which page displays in the notebook or tabbed notebook control.
__property System::AnsiString ActivePage;
Description
The value of ActivePage must be one of the strings contained in the Pages property.

TTabbedNotebook::PageIndex
TTabbedNotebook See also
Determines which page displays in the tabbed notebook component.
__property int PageIndex;
Description
Changing the PageIndex value changes the page in the control.
Each string in the Pages property is automatically assigned a PageIndex value when the page is
created. The first page receives a value of 0, the second has a value of 1, and so on. If you
delete a string from the Pages property, the PageIndex values are reassigned so that the values
always begin with 0 and continue to increase without any gaps between values.

TTabbedNotebook::Pages
TTabbedNotebook See also
Contains the strings that identify the individual pages of the tabbed notebook control.
__property Classes::TStrings* Pages;
Description
Both these controls create a separate page for each string in the Pages property. For example, if
Pages contains three strings, First, Second, and Third, the control has three separate pages.
You can access the various pages in a notebook or tabbed notebook control with either the
ActivePage or PageIndex property.

TTabbedNotebook::TabFont
TTabbedNotebook See also
Determines the font used on the tabs of the tabbed notebook control.
__property Graphics::TFont* TabFont;
Description
The text on the selected tab is boldfaced if the selected font for the TabFont property is not also
boldfaced.

TTabbedNotebook::TabsPerRow
TTabbedNotebook See also
The TabsPerRow property is obsolete and retained only for backwards compatibility.
__property int TabsPerRow;
Description
The TabsPerRow property determines the number of tabs that can appear in a row at the top of
the tabbed notebook control. If there are more tabbed pages in the control than can fit in one
row, multiple rows are displayed. The number of tabs you specify affects the size of the tabs--
the more tabs per row--the smaller the tabs.

TTabbedNotebook::TopFont
TTabbedNotebook See also
Returns the current value of font used on the tabs of the tabbed notebook.
__property Graphics::TFont* TopFont;
Description
TopFont is a read-only property that reports the TabFont value.

TTabbedNotebook events
TTabbedNotebook Alphabetically Legend

In TTabbedNotebook
OnChange
OnClick

Derived from TWinControl
OnEnter
OnExit

TTabbedNotebook events
TTabbedNotebook By object Legend

OnChange
OnClick
OnEnter
OnExit

TTabbedNotebook::OnChange
TTabbedNotebook See also
Occurs when the page of a tabbed notebook changes.
__property TPageChangeEvent OnChange;
Description
The TPageChangeEvent points to the method that responds to a page change in a tabbed
notebook. The NewTab parameter is the tab that is about to become the selected or current tab.
The AllowChange parameter specifies whether the change to a new page is allowed. If
AllowChange is set to false, a new page change doesn’t occur.

TTabbedNotebook::OnClick
TTabbedNotebook See also Example
Occurs when a tab of a tabbed notebook is selected.
__property Classes::TNotifyEvent OnClick;

Description
The TNotifyEvent type points to the method that responds to the click event. Immediately after
the OnClick event occurs, the OnChange event occurs.

TTabbedNotebook methods
TTabbedNotebook Alphabetically

In TTabbedNotebook
~TTabbedNotebook
GetIndexForPage
TTabbedNotebook

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent

InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TTabbedNotebook methods
TTabbedNotebook By object

~TTabbedNotebook
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetIndexForPage
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo

Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TTabbedNotebook
UpdateControlState
Update

TTabbedNotebook::~TTabbedNotebook
TTabbedNotebook See also
Destroys a tabbed notebook component.
__fastcall virtual ~TTabbedNotebook(void);
Description
~TTabbedNotebook frees the list object that holds the pages in the tabbed notebook, frees the
font object, and calls the destructor of its parent object.

TTabbedNotebook::GetIndexForPage
TTabbedNotebook See also
Returns the PageIndex value of the specified page.
int __fastcall GetIndexForPage(const System::AnsiString PageName);
Description
The PageIndex property value is determined by the page's position in the Pages property array.
Specify the name of the page as the value of the PageName parameter. The name you specify
must be one of the strings in the Pages property.

TabFontChange
Sends out the CM_TABFONTCHANGED message.
Description
TabFontChanged calls the Perform method, sending out the CM_TABFONTCHANGED
message in response to a change in the font for the tabbed notebook.

TTabbedNotebook::TTabbedNotebook
TTabbedNotebook See also
Constructs a tabbed notebook component.
__fastcall virtual TTabbedNotebook(Classes::TComponent* AOwner);
Description
TTabbedNotebook calls the constructor of its parent object, and then sets the initial values of the
tabbed notbook, including creating a TList object that holds the pages in the tabbed notebook,
and a TFont object for the font used on the tabs.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomTabControl

TTabbedNotebook example
TTabbedNotebook

TTabPage
Hierarchy Properties Methods See also
The TTabPage component implements the individual tab page behavior of a tabbed notebook
control.
Header
vcl/tabnotbk.hpp
Description
Each instance of this class holds the controls to be displayed when it is the active page of a
tabbed notebook.

TTabPage properties
TTabPage Alphabetically Legend

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect

Caption
ClientHeight
ClientWidth
ControlState
ControlStyle
Cursor
Enabled
Height
Hint
Left
Name
Parent
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TTabPage properties
TTabPage By object Legend

Align
BoundsRect

Brush
Caption
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
Left
Name

Owner
Parent
ShowHint

Showing
TabOrder
TabStop
Tag
Top
Visible
Width

TTabPage methods
TTabPage Alphabetically

In TTabPage
~TTabPage
TTabPage

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TTabPage methods
TTabPage By object

~TTabPage
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TTabPage
UpdateControlState
Update

TTabPage::~TTabPage
TTabPage
~TTabPage frees the memory associated with the TTabPage object. Do not call ~TTabPage
directly. Instead, use the delete keyword on the object, which causes ~TTabPage to be invoked
automatically.
__fastcall virtual ~TTabPage(void);

TTabPage::TTabPage
TTabPage
Constructs a page for a tabbed notebook control.
__fastcall virtual TTabPage(Classes::TComponent* AOwner);
Description
TTabPage calls the constructor of its parent object, then sets the initial values for the tab page.

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TTabPage example
TTabPage

TTabSet
Hierarchy Properties Methods Events
The TTabSet component presents horizontal tabs users can click to initiate actions.
Header
vcl/tabs.hpp
Description
Tab set controls are commonly used with TNotebook controls to display pages within the same
dialog box. TTabSet is provided for backward compatibility. Use TTabControl component in
MicrosoftWindows95 and WindowsNT applications.
You create a set of tabs for the tab set control when you specify a list of strings as the value of
the Tabs property. One tab is created for each string. If you are using a tab set control to work
with a notebook control (TNotebook), this line of code creates a tab for each page of the
notebook control:
Then, in the OnClick event handler of the tab set control, this line of code changes the current
page in the notebook control when the user clicks a tab.
To determine which tab is currently selected or to use code to select a tab, use the TabIndex
property. To find out which tab is the first visible tab in the tab set control or to make a tab the
first visible tab, use the FirstIndex property.

TTabSet properties
TTabSet Alphabetically Legend

In TTabSet
AutoScroll
BackgroundColor
DitherBackground
EndMargin
FirstIndex
SelectedColor
StartMargin
Style
TabHeight
TabIndex
Tabs
UnselectedColor

VisibleTabs
Derived from TCustomControl

Canvas
Derived from TWinControl

Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle
Cursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TTabSet properties
TTabSet By object Legend

Align
AutoScroll
BackgroundColor
BoundsRect

Brush
Canvas

ClientHeight
ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
DitherBackground
DragMode
Enabled
EndMargin
FirstIndex
Font

Handle
Height
HelpContext
Hint
Left
Name

Owner
ParentShowHint
Parent
PopupMenu
SelectedColor
ShowHint

Showing
StartMargin
Style
TabHeight
TabIndex
TabOrder
TabStop
Tabs
Tag
Top
UnselectedColor

VisibleTabs
Visible
Width

TTabSet::AutoScroll
TTabSet See also
Determines if scroll buttons automatically appear in a tab set control if there isn’t room in the
control to display all the tabs.
__property bool AutoScroll;
Description
If AutoScroll is false, your application can still access tabs that aren’t visible by using the
FirstIndex or TabIndex properties at design time or runtime, but the user can’t click on the tabs
with the mouse at runtime.

TTabSet::BackgroundColor
TTabSet See also
Determines the background color of the tab set control.
__property Graphics::TColor BackgroundColor;
Description
The background area of the tab set control is the area between the tabs and the border of the
control. For a list of possible color values, see the Color property.

TTabSet::DitherBackground
TTabSet See also
Determines whether the selected background color set with the BackgroundColor property is
dithered.
__property bool DitherBackground;
Description
Dithering means the background is lightened by 50%, which is intended to make the tabs easier
to see. If DitherBackground is true, the tab set control background is dithered. If it is false, there
is no dithering.

TTabSet::EndMargin
TTabSet See also
Determines how far in pixels the rightmost tab appears from the right edge of the tab set control.
__property int EndMargin;
Description
The EndMargin property determines how far in pixels the rightmost tab appears from the right
edge of the tab set control. Together with the StartMargin property, EndMargin can play a role in
determining how many tabs can fit within the tab set control.
If AutoScroll is true and scroll buttons appear in the tab set control, EndMargin determines how
far in pixels the rightmost tab appears from the left edge of the scroll buttons, rather than the
edge of the tab set control.

TTabSet::FirstIndex
TTabSet See also
Specifies the tab that appears in the leftmost visible position in the tab set control.
__property int FirstIndex;
Description
Any tabs with a lower value in the FirstIndex property scroll to the left in the tab set control and
don’t appear until the user scrolls the tabs.
The default value of FirstIndex is 0 indicating that the tab with an index of 0 is in the leftmost
position. For example, if you have three tabs labeled First, Second, and Third with TabIndex
values of 0, 1, and 2, respectively, First appears first, by default, because it has an index value
of 0. If you want to shift the tabs so the Second or Third tab appears leftmost in the tab set
control, change the FirstIndex value to 1 or 2.

TTabSet::SelectedColor
TTabSet See also
Determines the color of the selected tab in the tab set control.
__property Graphics::TColor SelectedColor;
Description
The SelectedColor property determines the color of the selected tab in the tab set control. To
view a list of available color values, see the Color property.

TTabSet::StartMargin
TTabSet See also
Determines how far in pixels the first tab appears from the left edge of the tab set control.
__property int StartMargin;
Description
Together with the EndMargin property, StartMargin can play a role in determining how many
tabs can fit within the tab set control.

TTabSet::Style
TTabSet See also
Determines how a tab appears.
__property TTabStyle Style;
Description
These are the possible values:
Value Meaning

tsStandard Each tab has the standard size and look.
tsOwnerDraw Each tab has the height specified with the TabHeight property and width

needed to hold the text or glyph.
Owner-draw tabs can display objects other than strings, such as graphical images. Owner-draw
tabs require more programming, however, as the application needs information on how to render
the image for each tab in the tab set control.
Each time an item is displayed in an tsOwnerDraw tab, two events occur. The first is the
OnMeasureTab event. In the OnMeasureTab event handler, you write the code that calculates
the width of the tab needed to hold the text or graphical image. After the OnMeasureTab event,
the OnDrawTab event occurs. The code you write for the OnDrawTab event draws the tab and
its contents using the width found with the OnMeasureTab event and the height specified as the
value of the TabHeight property.

TTabSet::TabHeight
TTabSet See also
Determines the height of the tabs in a tab set control when the tab set control’s Style property
value is tsOwnerDraw.
__property int TabHeight;
Description
If the Style property value is tsStandard, the TabHeight property value is ignored.

TTabSet::TabIndex
TTabSet See also
Determines which tab of a tab set control is currently selected.
__property int TabIndex;
Description
The value can be from –1 to one less than the number of strings in the Tabs property array
(Tabs.Count – 1). A value of 0 indicates the first tab in the tab set control, 1 is the second tab,
and so on. If no tabs are selected, TabIndex has a value of –1.
TabIndex can be used as an index to the Tabs array property.
When a value is assigned to TabIndex, the OnClick event for the tab set occurs, followed by the
OnChange event, just as if the user had clicked on a new tab.

TTabSet::Tabs
TTabSet See also Example
Contains the list of text strings that appear on the tabs.
__property Classes::TStrings* Tabs;
Description
For each string in the Tabs property, a new tab is created to display the text string. At design
time, you enter the text strings you want to appear on the tabs using the String List editor.
Double-click the value column of the Tabs property to display the String List editor. You can also
change strings in the Tabs property at runtime.

TTabSet::UnselectedColor
TTabSet See also
Determines the color of the tabs that aren’t currently selected in the tab set control.
__property Graphics::TColor UnselectedColor;
Description
The UnselectedColor property determines the color of the tabs that aren’t currently selected in
the tab set control.

TTabSet::VisibleTabs
TTabSet See also
Contains the number of tabs currently visible in the tab set control.
__property int VisibleTabs;
Description
Use the VisibleTabs property to determine how many tabs are visible in the tab set.

TTabSet events
TTabSet Alphabetically Legend

In TTabSet
OnChange
OnDrawTab
OnMeasureTab

Derived from TWinControl
OnEnter
OnExit

Derived from TControl
OnClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TTabSet events
TTabSet By object Legend

OnChange
OnClick
OnDragDrop
OnDragOver
OnDrawTab
OnEndDrag
OnEnter
OnExit
OnMeasureTab
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TTabSet::OnChange
TTabSet
Occurs just before a new tab is selected.
__property TTabChangeEvent OnChange;
Description
OnChange occurs just as the TabIndex value is about to change. To prevent the TabIndex value
from changing, write code in the OnChange event handler to stop it from doing so.
The TTabChangeEvent type points to a method that is called when the selected tab is about to
change in a tab set control. The NewTab parameter is the tab that is about to become the
selected tab. The AllowChange variable determines whether the change is permitted. If
AllowChange is false, the user won’t be able to select the new tab, in effect disabling it.

TTabSet::OnDrawTab
TTabSet See also
Occurs when a tab needs to redisplay if the tab set is an owner-draw tab set control.
__property TDrawTabEvent OnDrawTab;
Description
OnDrawTab occurs when a tab redisplays if the Style property value is tsOwnerDraw. For
example, it happens when the user selects a tab or scrolls the tabs.
You must write the code in the OnDrawTab event handler to draw the tab.
OnDrawTab occurs just after the OnMeasureTab event, which contains the code to calculate the
width of the tab needed. The height of the tab is determined by the value of the TabHeight
property of the tab set control. The code you write in the OnDrawTab event handler, therefore,
must use the width determined with the OnMeasureTab event to draw the tab.
The TDrawTabEvent type points to a method that handles the drawing of an item in an owner-
draw tab. The TabCanvas parameter is the canvas on which the item is drawn, the Index
parameter is the position of the tab in the tab set control, R is the area in the tab where the item
is to be drawn, and Selected indicates whether the tab is current selected or not.

TTabSet::OnMeasureTab
TTabSet See also
Occurs when an application needs to redisplay a tab in an owner-draw tab set.
__property TMeasureTabEvent OnMeasureTab;
Description
OnMeasureTab occurs only if the Style property is tsOwnerDraw. In the OwnerMeasureTab
event handler, you write the code to calculate the width needed to draw the tab. After the
OnMeasureTab event occurs, the OnDrawTab event occurs, You write the code to draw the tab
using the width calculated in OnMeasureTab in the OnDrawTab event handler.
The TMeasureTabEvent type points to a method that handles the measuring of a tab in an
owner-draw tab set control. Your code is responsible for calculating and returning the tab width,
depending on what you have drawn in the tab (if the tab is of Style tsOwnerDraw). The Index
parameter identifies the position of the tab in the tab set control and TabWidth is the width of the
tab.

TTabSet methods
TTabSet Alphabetically

In TTabSet
~TTabSet
ItemAtPos
ItemRect
SelectNext
TTabSet

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification

GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TTabSet methods
TTabSet By object

~TTabSet
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
ItemAtPos
ItemRect
MethodAddress
MethodName
NewInstance

PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SelectNext
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TTabSet
UpdateControlState
Update

TTabSet::~TTabSet
TTabSet See also
~TTabSet frees the memory associated with the TTabSet object. Do not call ~TTabSet directly.
Instead, use the delete keyword on the object, which causes ~TTabSet to be invoked
automatically.
__fastcall virtual ~TTabSet(void);
Description
~TTabSet frees the TTabList object that holds the list of tabs, and then calls the destructor of its
parent object.

TTabSet::ItemAtPos
TTabSet See also
Returns the index of the tab indicated by the coordinates of a point on the control.
int __fastcall ItemAtPos(const POINT &Pos);
Description
The Pos parameter is the point in the control in window coordinates. If the returned index is 0,
the tab is the first tab in the tab set, if the index is 1, the tab is the second tab, and so on.
ItemAtPos is useful for determining which tab is located at a particular position in the tab set
control.

TTabSet::ItemRect
TTabSet See also
Returns the rectangle that surrounds the item specified in the Item parameter.
Windows::TRect __fastcall ItemRect(int Item);
Description
Use ItemRect to return the rectangle that surrounds the tab when you are drawing on an owner-
draw tab set.

TTabSet::SelectNext
TTabSet See also
Selects the next tab in a tab set control, and scrolls that tab set control if necessary to bring the
selected tab into view.
void __fastcall SelectNext(bool Direction);
Description
The value of the Direction parameters determines if the tab to the left or right is selected. If
Direction is true, the tab to the right is selected. If Direction is false, the tab to the left is selected.
When the last tab in either direction is selected, calling SelectNext using the same direction
wraps around to the beginning of the tab order. For example, if your application has three tabs,
First, Second, and Third, and Third is the current tab, calling SelectNext(true) selects First.
Likewise, if First is the current tab, SelectNext(false) selects Third.
When SelectNext is called, the OnClick event of the tab set occurs, followed by the OnChange
event, just as if the user had clicked on a new tab.

TTabSet::TTabSet
TTabSet See also
Constructs a tab set control.
__fastcall virtual TTabSet(Classes::TComponent* AOwner);
Description
TTabSet calls the constructor of its parent object, and then sets the initial values of the control,
including creating a TTabList object that holds the list of tabs for the control.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomControl

TTabSet example
TTabSet

TTabSheet
Hierarchy Properties Methods Events
The TTabSheet component is an individual page in a TPageControl component.
Header
vcl/comctrls.hpp
Description
Tab sheets are typically referred to as pages. The TPageControl maintains a zero-based
indexed array of its tab sheets in its Pages property. The page control’s PageCount property
specifies the number of tab sheets in the page control and its ActivePage property indicates the
currently active tab sheet. Click on a tab to activate the tab sheet or use FindNextPage and
SelectNextPage to sequentially page through the tab sheets in the page control.
At design-time a tab sheet is automatically assigned a PageIndex value according to a zero-
based index and the TabVisible property is true by default. At runtime use the read-only
TabIndex property to return the index of the tab in the page control; if TabIndex is -1 the tab is
not visible. The PageControl property determines to which page control the tab sheet is
associated.
In addition to these properties, methods, and events, this component also has the properties,
methods, and events that apply to all windowed controls.

TTabSheet properties
TTabSheet Alphabetically Legend

In TTabSheet
PageControl

PageIndex
TabIndex

TabVisible
Derived from TWinControl

Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect

Caption
ClientHeight
ClientWidth
ControlState
ControlStyle
Cursor
Enabled
Font
Height
Hint
Left
Name
Parent
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TTabSheet properties
TTabSheet By object Legend

Align
BoundsRect

Brush
Caption
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled
Font

Handle
Height
HelpContext
Hint
Left
Name

Owner
PageControl
PageIndex
ParentFont
ParentShowHint
Parent
PopupMenu
ShowHint

Showing
TabIndex

TabOrder
TabStop
TabVisible
Tag
Top
Visible
Width

TTabSheet::PageControl
TTabSheet See also
Returns the TPageControl object that is associated with the TTabSheet.
__property TPageControl* PageControl;

Tab sheets represent the individual pages of a page control.

TTabSheet::PageIndex
TTabSheet See also
Provides access to the index value given the tab sheet.
__property int PageIndex;
Description
Tab sheets represent the pages of a TPageControl. Each tab sheet in a page control is
automatically assigned a PageIndex when it is created. The first tab sheet receives a value of 0,
the second has a value of 1, and so on. PageIndex values are reassigned if tab sheets are
deleted.
Use PageIndex to access the index value given the tab sheet. To access a particular tab sheet
given its index value, use the indexed Pages property of the TPageControl.

TTabSheet::TabIndex
TTabSheet See also
Returns the index value of a tab sheet according to its index into an array of visible tabs in a
TPageControl.
__property int TabIndex;
Description
For example, a tab sheet may have a PageIndex of 3 but a TabIndex of 2 if one of the previous
tab sheets in the page control is not visible. If a tab sheet's TabVisible property is false, the
TabIndex property is -1.

TTabSheet::TabVisible
TTabSheet See also
Determines whether the tab of a TTabSheet component is visible in a TPageControl.
__property bool TabVisible;
Description
If TabVisible is false, its TabIndex property is -1. Clicking on a tab activates the tab sheet. If
TabVisible is false, the tab does not appear; in which case, you can use FindNextPage with the
CheckTabVisible set to false to increment through both visible and non-visible page controls and
activate the tab sheet. For example, to hide a tab at runtime, you could use the following code:

TTabSheet events
TTabSheet Alphabetically Legend

Derived from TWinControl
OnEnter
OnExit

Derived from TControl
OnDragDrop
OnDragOver
OnMouseDown
OnMouseMove
OnMouseUp

TTabSheet events
TTabSheet By object Legend

OnDragDrop
OnDragOver
OnEnter
OnExit
OnMouseDown
OnMouseMove
OnMouseUp

TTabSheet methods
TTabSheet Alphabetically

In TTabSheet
~TTabSheet
TTabSheet

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TTabSheet methods
TTabSheet By object

~TTabSheet
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TTabSheet
UpdateControlState
Update

TTabSheet::~TTabSheet
TTabSheet See also
~TTabSheet frees the memory associated with the TTabSheet object. Do not call ~TTabSheet
directly. Instead, use the delete keyword on the object, which causes ~TTabSheet to be invoked
automatically.
__fastcall virtual ~TTabSheet(void);
Description
~TTabSheet removes the tab sheet from the page control and then calls the destructor of its
parent object.

TTabSheet::TTabSheet
TTabSheet See also
Constructs a tab sheet component.
__fastcall virtual TTabSheet(Classes::TComponent* AOwner);
Description
TTabSheet calls the constructor of its parent object, then sets the initial values for the tab sheet
component.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TTabSheet example
TTabSheet

TTableDataLink
Hierarchy Properties Methods See also
TTableDataLink is a helper object that allows a TTable object to represent the records from
another data source instead of the records of a physical database table.
Header
vcl/dbtables.hpp
Description
TTableDataLink is tailored to work with a TTable object. It should only be used by the TTable
class.

TTableDataLink properties
TTableDataLink Alphabetically Legend

Derived from TDataLink
Active

ActiveRecord
BufferCount

DataSet
DataSource
DataSourceFixed

Editing
ReadOnly

RecordCount

TTableDataLink properties
TTableDataLink By object Legend

ActiveRecord
Active

BufferCount
DataSet

DataSourceFixed
DataSource

Editing
ReadOnly

RecordCount

TTableDataLink methods
TTableDataLink Alphabetically Legend

In TTableDataLink
~TTableDataLink

ActiveChanged
CheckBrowseMode
LayoutChanged
RecordChanged
TTableDataLink

Derived from TDataLink
Edit
UpdateRecord

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TTableDataLink methods
TTableDataLink By object Legend

~TTableDataLink
ActiveChanged
Assign
CheckBrowseMode
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
Edit
FieldAddress
FreeInstance
Free
InheritsFrom

InitInstance
InstanceSize

LayoutChanged
MethodAddress
MethodName
NewInstance
RecordChanged
TTableDataLink
UpdateRecord

TTableDataLink::~TTableDataLink
TTableDataLink See also
~TTableDataLink frees the memory associated with the TTableDataLink object. Do not call ~
TTableDataLink directly. Instead, use the delete keyword on the object, which causes ~
TTableDataLink to be invoked automatically.
__fastcall virtual ~TTableDataLink(void);

TTableDataLink::ActiveChanged
TTableDataLink See also
ActiveChanged helps the TTable respond to changes in the Active property by regenerating the
field list.
virtual void __fastcall ActiveChanged(void);
Description
Applications can not call the ActiveChanged procedure directly. Changes in the Active property
trigger this procedure. ActiveChanged regenerates the field list and then calls the
MasterChanged method of the TTable object that owns this TTableDataLink. The TTableLink
can not have receive any data events while the dataset is not active. ActiveChanged ensures
that the field list reflects any changes to the underlying database that may have occurred while
the dataset was not Active.

TTableDataLink::CheckBrowseMode
TTableDataLink See also
CheckBrowseMode informs the TTable that the dataset is about to change.
virtual void __fastcall CheckBrowseMode(void);
Description
CheckBrowseMode is called just prior to changes to the dataset for the TTableDataLink.
CheckBrowseMode passes these events on to the TTable by calling the TTable.
CheckBrowseMode method.

TTableDataLink::LayoutChanged
TTableDataLink See also
LayoutChanged helps the TTable respond to changes in the layout of whatever control
represents the TTable.
virtual void __fastcall LayoutChanged(void);
Description
LayoutChanged is called automatically, following a change in the layout of any object that
represents TTable, if the change affects the order or number of fields in the field list.
LayoutChanged regenerates the field list to reflect the changes, and then calls the
MasterChanged method of the TTable object that owns this TTableDataLink.

TTableDataLink::RecordChanged
TTableDataLink See also
RecordChanged informs the TTable of changes to the current record or field of the dataset.
virtual void __fastcall RecordChanged(Db::TField* Field);
Description
RecordChanged is called when the contents of the active record in the dataset are changed.
RecordChanged allows the TTable to respond to these changes by calling its MasterChanged
method.

TTableDataLink::TTableDataLink
TTableDataLink See also
TTableDataLink creates an instance of TTableDataLink.
__fastcall TTableDataLink(TTable* Table);
Description
Applications should not call the TTableDataLink directly. The TTable that owns the
TTableDataLink object calls TTableDataLink from its constructor.

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent
TDataLink

TTableDataLink example
TTableDataLink

TTextAttributes
Hierarchy Properties Methods See also
TTextAttributes is a helper object that represents the font characteristics of a section of text in a
rich edit control.
Header
vcl/comctrls.hpp
Description
TTextAttributes includes a number of properties that describe the font characteristics of some
text in a rich text document. TTextAttributes is tailored to allow a descendant of
TCustomRichEdit to read and write the default text characteristics (via its DefAttributes property)
or the characteristics of the selected text (via its SelAttributes property). The properties of a
TTextAttributes object are invalid unless it is owned by a descendant of TCustomRichEdit.
Most of the font characteristics represented by a TTextAttributes object are the same as the
properties of a TFont object with the same names.You can assign fonts to text attributes and
vice versa.

TTextAttributes properties
TTextAttributes Alphabetically Legend

In TTextAttributes
Color

ConsistentAttributes
Height
Name
Pitch
Protected
Size
Style

TTextAttributes properties
TTextAttributes By object Legend

Color
ConsistentAttributes

Height
Name
Pitch
Protected
Size
Style

TTextAttributes::Color
TTextAttributes See also
Color indicates the foreground color of the text.
__property Graphics::TColor Color;
Description
Use color to indicate the color of the actual characters. Background color is a property of the rich
edit control that uses the TTextAttributes object, and should be set by the Color property of the
rich edit control.
Color can take one of the following values:
Value Meaning

clBlack Black
clMaroon Maroon
clGreen Green
clOlive Olive green
clNavy Navy blue
clPurple Purple
clTeal Teal
clGray Gray
clSilver Silver
clRed Red
clLime Lime green
clBlue Blue
clFuchsia Fuchsia
clAqua Aqua
clWhite White
clBackground Current color of your Windows background
clActiveCaption Current color of the title bar of the active window
clInactiveCaption Current color of the title bar of inactive windows
clMenu Current background color of menus
clWindow Current background color of windows
clWindowFrame Current color of window frames
clMenuText Current color of text on menus
clWindowText Current color of text in windows
clCaptionText Current color of the text on the title bar of the active window
clActiveBorder Current border color of the active window
clInactiveBorder Current border color of inactive windows
clAppWorkSpace Current color of the application workspace
clHighlight Current background color of selected text
clHightlightText Current color of selected text
clBtnFace Current color of a button face
clBtnShadow Current color of a shadow cast by a button
clGrayText Current color of text that is dimmed
clBtnText Current color of text on a button
clInactiveCaptionText Current color of the text on the title bar of an inactive window
clBtnHighlight Current color of the highlighting on a button
cl3DDkShadow Windows 95 only: Dark shadow for three-dimensional display elements
cl3DLight Windows 95 only: Light color for three-dimensional display elements (for

edges facing the light source)
clInfoText Windows 95 only: Text color for tooltip controls
clInfoBk Windows 95 only: Background color for tooltip controls
The second half of the colors listed here are Windows system colors. The color that appears
depends on the color scheme users are using for Windows. Users can change these colors

using the Control Panel in Program Manager. However, unless the Color is set to clWindowText,
changing the color through the Control Panel will not update the color of the text in the rich edit
control. The actual color that appears will vary from system to system. For example, the color
fuchsia may appear more blue on one system than another.

TTextAttributes::ConsistentAttributes
TTextAttributes See also
ConsistentAttributes indicates which of the properties of the TTextAttributes object are consistent
throughout the text of the current selection in the rich edit object.
__property TConsistentAttributes ConsistentAttributes;
Description
Read the ConsistentAttributes of the SelAttributes property of a rich text object to discover which
of the properties of the TTextAttributes are meaningful for the current selection. This information
is relevant if you want to then read the text characteristics of the current selection. Setting a
property of TTextAttributes will cause that property to become a consistent attribute until the
selection changes.
ConsistentAttributes is a set drawn from the following values:
Value Meaning

caBold Characters are consistently either bold or not bold throughout the
selection.

caColor The color of character font is consistent throughout the selection.
caFace The typeface of the character font is consistent throughout the selection.
caItalic Characters are consistently either italic or not italic throughout the

selection.
caSize The size of the character font is consistent throughout the selection.
caStrikeout Characters consistently either have the strikeout style or they do not have

the strikeout style throughout the selection.
caUnderline Characters are consistently either underlined or not underlined throughout

the selection.
caProtected Text is consistently either protected or not protected.
Note
Use ConsistentAttributes with the SelAttributes property of the rich edit control. The
ConsistentAttributes of the DefAttributes property of the rich edit control is the empty set, even
though all attributes are consistent in the section of text that has the default attributes.

TTextAttributes::Height
TTextAttributes See also Example
Height is the height of the font in pixels.
__property int Height;
Description
To specify a font height in pixels, use the Height property. To specify the size of the font in points
instead, use the Size property. Users usually specify font size in points within an application,
while programmers are usually concerned with the actual size of the font in pixels when
displaying a font on the screen.
The relationship between the Height and Size properties is expressed by the formula:

Height = Size * 72 / ScreenPixelsPerInch
Note
Unlike the Height property of a TFont object, the Height property of a TTextAttributes object
always includes the internal leading that appears at the top of the font.

TTextAttributes::Name
TTextAttributes See also Example
Name specifies the typeface of the font described by the TTextAttributes object.
__property Graphics::TFontName Name;
Description
Use Name to specify the typeface of the font. Typefaces are strings of up to 32 characters used
by Windows to identify a font. The Name is the identifier for the font that most font selection
controls show.

TTextAttributes::Pitch
TTextAttributes See also
Pitch specifies whether the characters in the font all have the same width.
__property Graphics::TFontPitch Pitch;
Description
Each typeface has an associated pitch. The characters in fixed-pitch fonts are all the same
width. The characters in variable-pitch fonts differ in width. Fixed pitch fonts are generally used
for representing source code, because they allow the indentation to line up properly. Variable
pitch fonts are generally used to give text a more natural appearance.
Here are the possible values for Pitch:
Value Meaning

fpDefault The font pitch is set to the default value, which depends on the font
specified in the Name property.

fpFixed The font pitch is set to fixed. All characters in the font have the same
width.

fpVariable The font pitch is set to variable. The characters in the font have different
widths.

Setting the Pitch of a fixed-pitch font to fpVariable or a variable-pitch font to fpFixed will cause
Windows to find what it considers the best match to all of the font characteristics that have been
specified. This might have no effect on the appearance of a font, or might cause Windows to
substitute a different font with the appropriate pitch. For example, setting the pitch of MS Serif (a
variable-pitch font) to fpFixed causes Courier to be displayed.

TTextAttributes::Protected
TTextAttributes See also
Protected indicates whether the text represented by the TTextAttributes object is protected.
__property bool Protected = {read=GetProtected, write=SetProtected,
nodefault};

Description
Protected text can’t be changed by the user. When the user attempts to edit a selection that
includes protected text, the rich edit control calls the OnProtectChange event handler. The
OnProtectChange event handler can then permit or disallow the editing of the protected text. If
there is no OnProtectChange event handler, protected text is read-only.

TTextAttributes::Size
TTextAttributes See also
Size is the height of the font in points.
__property int Size;
Description
To specify a font height in points, use the Size property. To specify the size of the font in pixels
instead, use the Height property. Users usually specify font size in points within an application,
while programmers are usually concerned with the actual size of the font in pixels when
displaying a font on the screen.
The relationship between the Height and Size properties is expressed by the formula:

Height = Size * 72 / ScreenPixelsPerInch
Note
Unlike the Size property of a TFont object, the Size property of a TTextAttributes object always
includes the internal leading that appears at the top of the font.

TTextAttributes::Style
TTextAttributes See also
Style determines whether the font is normal, italic, underlined, bold, or strikeout.
__property Graphics::TFontStyles Style;
Description
The Style property is a set drawn from the following values:
Value Meaning

fsBold The font is boldfaced.
fsItalic The font is italicized.
fsUnderline The font is underlined.
fsStrikeout The font is displayed with a horizontal line through it.
Because the Style property is a set, it can contain multiple values. For example, a font could be
both boldfaced and italicized.

TTextAttributes methods
TTextAttributes Alphabetically Legend

In TTextAttributes
~TTextAttributes
Assign

AssignTo
InitFormat
TTextAttributes

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TTextAttributes methods
TTextAttributes By object Legend

~TTextAttributes
AssignTo
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
FreeInstance
Free
InheritsFrom
InitFormat
InitInstance

InstanceSize
MethodAddress
MethodName
NewInstance
TTextAttributes

TTextAttributes::~TTextAttributes
TTextAttributes
~TTextAttributes frees the memory associated with the TTextAttributes object. Do not call ~
TTextAttributes directly. Instead, use the delete keyword on the object, which causes ~
TTextAttributes to be invoked automatically.
__fastcall virtual ~TTextAttributes(void);

TTextAttributes::Assign
TTextAttributes See also
Assign sets the properties of a TTextAttributes object to match the properties specified in
another TTextAttributes object or in a TFont object.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
Use Assign to change all the text attributes at once. Assign can set the font characteristics of the
selected text to match the default font characteristics or vice versa. When the Source is a
TTextAttributes object, Assign matches only the Color, Name, Style, and Pitch properties. When
the Source is a TFont object, Assign matches the Size as well.
Note
Assign only succeeds at runtime when the Source is a TTextAttributes object, a TFont object, or
an object that has implemented an AssignTo method that deals with the TTextAttributes object.
Other source objects will raise an EConvertError exception.

TTextAttributes::AssignTo
TTextAttributes See also
AssignTo enables the properties of a TTextAttributes object to be assigned to a TFont object.
virtual void __fastcall AssignTo(Classes::TPersistent* Dest);
Description
TTextAttributes overrides the inherited AssignTo to enable its font properties to be assigned to a
TFont object. Applications should not call AssignTo. It is called when the Assign method of the
TFont object is called. AssignTo copies the Color, Name, Style, Size, and Pitch properties to the
TFont object.

TTextAttributes::InitFormat
TTextAttributes See also
InitFormat initializes a TCharFormat structure.
void __fastcall InitFormat(CHARFORMAT &Format);
Description
TTextAttributes uses the TCharFormat structure to communicate with the rich edit control
window when it gets and sets properties. InitFormat initializes this structure before any particular
properties are read or set. InitFormat is exposed as a protected method so that derived classes
can use the TCharFormat structure in the implementation of any other text properties.

TTextAttributes::TTextAttributes
TTextAttributes See also
TTextAttributes creates an instance of TTextAttributes.
__fastcall TTextAttributes(TCustomRichEdit* AOwner, TAttributeType
AttributeType);

Description
Do not call the constructor for TTextAttributes. TTextAttributes is called from the constructor of
the rich edit control. The rich edit control uses an attribute type of atDefaultText to implement its
DefAttributes property, and an attribute type of atSelected to implement its SelAttributes
property.

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TPersistent

TTextAttributes example
TTextAttributes

TThread
Hierarchy Properties Methods Events See also
TThread is an abstract class that enables creation of separate threads of execution in an
application.
Header
vcl/classes.hpp
Description
Each new instance of a subclassed TThread object is a new thread of execution. Multiple
instances of a TThread derived class make a Borland C++Builder application multi-threaded. To
use threads in an application, derive a new class from TThread and override its methods.
When an application is run, it’s loaded into memory ready for execution. At this point it
becomes a process containing one or more threads that contain the data, code and other
system resources for the program. A thread executes one part of an application and is allocated
CPU time by the operating system. All threads of a process share the same address space and
can access the process’s global variables.
Use threads to improve application performance by
• Managing input from several communication devices
• Distinguishing among tasks of varying priority. For example, a high priority thread handles

time critical tasks, and a low priority thread performs other tasks
Following are issues and recommendations to be aware of when using threads:
• Keeping track of too many threads consumes CPU time; the recommended limit is 16 threads

per process on single processor systems
• With multiple threads updating the same resources, keep threads synchronized to avoid

conflicts
• Any methods that access a VCL component and update a form must only be called from

within the main VCL thread
To create and use a new thread object:
• Choose File | New | Thread Object to create a new unit that contains an object derived from

the TThread class.
• Define the new thread object’s constructor.
• Define the thread object’s Execute method by inserting the code to execute when the thread

is executed.
• Pass any calls that use a VCL component to the Synchronize method which causes the main

VCL thread to execute the call, avoiding multi-thread conflicts.

TThread properties
TThread Alphabetically Legend

In TThread
FreeOnTerminate

Handle
Priority
ReturnValue
Suspended

Terminated
ThreadID

TThread properties
TThread By object Legend

FreeOnTerminate
Handle

Priority
ReturnValue
Suspended

Terminated
ThreadID

TThread::FreeOnTerminate
TThread See also
FreeOnTerminate determines whether the thread object is automatically destroyed when the
thread terminates.
__property bool FreeOnTerminate;
Description
FreeOnTerminate is false by default. If the default is used, the thread object must be explicitly
destroyed in the application code.

TThread::Handle
TThread See also
The Handle property contains the thread’s handle.
__property int Handle;
Description
Use Handle when calling Win32 API functions for thread manipulation.

TThread::Priority
TThread See also
Priority determines the thread’s scheduling priority relative to other threads in the process.
__property TThreadPriority Priority;
Description
The Priority property is an enumerated type whose default is tpNormal; adjust the priority higher
or lower as needed.
TThreadPriority type defines the possible values for the Priority property of the TThread
component, as defined in the following table. Windows schedules CPU cycles to each thread
based on a priority scale; the Priority property adjusts a thread’s priority higher or lower on the
scale.
Values Meaning

tpIdle The thread executes only when the system is idle-Windows won’t
interrupt other threads to execute a thread with tpIdle priority.

tpLowest The thread’s priority is two points below normal.
tpLower The thread’s priority is one point below normal.
tpNormal The thread has normal priority.
tpHigher The thread’s priority is one point above normal.
tpHighest The thread’s priority is two points above normal.
tpTimeCritical The thread gets highest priority.
Warning
Boosting the thread priority of a CPU intensive operation may “starve” the other threads in the
application. Only apply priority boosts to threads that spend most of their time waiting for
external events.

TThread::ReturnValue
TThread See also
The ReturnValue property is the thread’s equivalent a function’s return value.
__property int ReturnValue;
Description
Use ReturnValue to indicate success/failure or numeric result/output of the thread to the
application or other threads. The WaitFor method returns the value stored in ReturnValue.

TThread::Suspended
TThread See also
The Suspended property indicates whether a thread is suspended.
__property bool Suspended;
Description
Suspended threads don’t continue execution until they’re resumed. Set Suspended to true to
suspend a thread; set it to false to resume it.

TThread::Terminated
TThread See also
The Terminated property indicates that the thread has been asked to terminate. The Terminate
method sets the Terminated property to true.
__property bool Terminated;
Description
The thread’s Execute method and any methods that Execute calls should check Terminated
periodically and exit when it’s true.
The Terminate method is the polite way to abort the execution of a thread, but it requires
cooperation from the thread’s Execute code. Using terminate is recommended over the
TerminateThread Win32 API call.

TThread::ThreadID
TThread See also
The ThreadID is a thread identifier that uniquely identifies the thread throughout the system.
ThreadID is different than its handle in the Handle property.
__property int ThreadID;
Description
ThreadID is useful when calling Win32 API functions for manipulating the thread.

TThread events
TThread Alphabetically

In TThread
OnTerminate

TThread events
TThread By object

OnTerminate

TThread::OnTerminate
TThread See also
The OnTerminate event is triggered after the thread’s Execute method has returned and before
the thread is destroyed.
__property TNotifyEvent OnTerminate;
Description
The OnTerminate event handler is called in the context of the main VCL thread, which means
VCL methods and properties can be called freely. The thread object may also be freed within the
event handler.
The TNotifyEvent type is the type for events that have no parameters. These events simply
notify the component that a specific event occurred, in this case an OnTerminate event.

TThread methods
TThread Alphabetically Legend

In TThread
~TThread

DoTerminate
Execute
Resume
Suspend
Synchronize
Terminate
TThread
WaitFor

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TThread methods
TThread By object Legend

~TThread
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch

DoTerminate
Execute
FieldAddress
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize

MethodAddress
MethodName
NewInstance
Resume
Suspend

Synchronize
Terminate
TThread
WaitFor

TThread::~TThread
TThread See also
The ~TThread method destroys the thread object and releases the memory allocated to it.
__fastcall virtual ~TThread(void);
Description
~TThread signals the thread to terminate and then waits for the thread to return before calling
the inherited destructor.

TThread::DoTerminate
TThread See also
The DoTerminate method triggers the thread’s OnTerminate event handler if one has been
assigned.
virtual void __fastcall DoTerminate(void);
Description
DoTerminate calls the OnTerminate event handler, but does not terminate the thread.

TThread::Execute
TThread See also
Execute is an abstract method that must be overridden; it contains the code to execute when the
thread begins.
virtual void __fastcall Execute(void);
Description
A thread begins when its constructor is called with CreateSuspended set to false, and when
Resume is first called after the constructor is called with CreateSuspended set to true. Override
this method and insert the code to be executed when the thread begins. Execute is responsible
for checking the value of the Terminated property to determine if the thread needs to exit.

TThread::Resume
TThread See also
The Resume method resumes the execution of a suspended thread.
void __fastcall Resume(void);
Description
Calls to Suspend can be nested; Resume must be called the same number of times Suspend was
called before the thread will resume execution.

TThread::Suspend
TThread See also
The Suspend method pauses a running thread.
void __fastcall Suspend(void);
Description
Call Resume to resume execution. Calls to Suspend can be nested; Resume must be called the
same number of times Suspend was called before the thread will resume execution.

TThread::Synchronize
TThread See also
The Synchronize method executes Method within the main VCL thread.
void __fastcall Synchronize(TThreadMethod Method);
Description
The Synchronize method causes the call specified by Method to be executed by the main VCL
thread, avoiding multi-thread conflicts. Call any methods that access a VCL component and
update a form only from within the main VCL thread by passing them to the Synchronize
method.
Note
Execution of the thread is suspended while Method is executing in the main VCL thread.

TThread::Terminate
TThread See also
Terminate signals the thread to terminate by setting the Terminated property to true.
void __fastcall Terminate(void);
Description
The thread’s Execute method and any methods that Execute calls should check Terminated
periodically and exit when it’s true.

TThread::TThread
TThread See also
The TThread method creates an instance of a thread object.
__fastcall TThread(bool CreateSuspended);
Description
If CreateSuspended is false, Execute is called immediately. In this case, the derived class'
Execute function (in the new thread) will usually execute at the same time as the derived
thread's constructor (in the creator thread). However, there are times when the Execute function
will be run before the constructor. Therefore, it is recommended that CreateSuspended be set to
true and the thread started manually.
If CreateSuspended is true, Execute won’t be called until after Resume is called. In this case,
call Resume in the last statement of the derived thread's constructor.

TThread::WaitFor
TThread See also
The WaitFor method waits for the thread to terminate and then returns the value of the
ReturnValue property.
int __fastcall WaitFor(void);
Description
WaitFor doesn’t return until the thread terminates, so the thread must exit either by finishing the
Execute method or by exiting when the Terminated property is true. Don’t call WaitFor in the
context of the main VCL thread if the thread uses Synchronize. Doing so will either cause a
deadlock, making it appear that the application has hung, or raise an EThread exception.
Synchronize waits for the main VCL thread to enter the message loop before allowing the
method it is trying to synchronize to execute. If the main VCL thread has called WaitFor, it won’t
enter the message loop and Synchronize will never return. TThread detects that case and will
raise an EThread exception in the thread causing it to terminate and, if not caught in the Execute
method, the application will terminate as well. If Synchronize is already waiting on the main VCL
thread when WaitFor is called, TThread can’t intervene, and the application will deadlock.

Scope
Protected

Accessibility
Read-only

Scope
Protected

Hierarchy

TObject

TThread example
TThread

TTimeField
Hierarchy Properties Methods Events See also
A TTimeField object represents a date field in a dataset.
Header
vcl/dbtables.hpp
Description
Time fields contain time values.
TTimeField differs from its immediate ancestor TDateTimeField only in having a DataType of
ftTime. While the underlying physical format for a time field in a database differs from that of a
date-time field, TTimeField uses a TDateTime value to store and manipulate time values.
As a descendant of TDateTimeField, TTimeField includes many properties, methods, and events
that are useful for managing the value and properties of a temporal field in a database.

TTimeField properties
TTimeField Alphabetically Legend

Derived from TDateTimeField
DisplayFormat
Value

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TTimeField properties
TTimeField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayFormat
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditMaskPtr

EditMask
FieldKind

FieldName
FieldNo

Index
IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Value
Visible

TTimeField events
TTimeField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TTimeField events
TTimeField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TTimeField methods
TTimeField Alphabetically

In TTimeField
~TTimeField
TTimeField

Derived from TField
Assign
AssignValue
Clear
FocusControl
GetData
IsValidChar
SetData
SetFieldType

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TTimeField methods
TTimeField By object

~TTimeField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TTimeField

TTimeField::~TTimeField
TTimeField
~TTimeField frees the memory associated with the TTimeField object. Do not call ~TTimeField
directly. Instead, use the delete keyword on the object, which causes ~TTimeField to be invoked
automatically.
__fastcall virtual ~TTimeField(void);

TTimeField::TTimeField
TTimeField
The TTimeField method creates and initializes an instance of TTimeField.

__fastcall virtual TTimeField(Classes::TComponent* AOwner);

It is seldom necessary to call TTimeField directly, because a time field object is instantiated
automatically for all time fields in a dataset.
After calling the constructor of its parent object, TTimeField sets the DataType property to
ftTime.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField
TDateTimeField

TTimeField example
TTimeField

TTimer
Hierarchy Properties Methods Events
TTimer is an object that encapsulates the Windows API timer functions.
Header
vcl/extctrls.hpp
Description
TTimer is a design-time only component that is used to simplify calling the Windows API timer
functions SetTimer and KillTimer, and to simplify processing the WM_TIMER messages. Use
one timer component for each timer in the application.
Timer properties and methods affect the functionality of the timer by providing information for the
timer event. This information includes the timer interval, which corresponds to the parameter for
the Windows API SetTimer function. The actual execution of the timer occurs through its
OnTimer event.
Caution
Limitations on the total number of timers system-wide are system dependent.

TTimer properties
TTimer Alphabetically Legend

In TTimer
Enabled
Interval

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TTimer properties
TTimer By object Legend

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

DesignInfo
Enabled
Interval
Name

Owner
Tag

TTimer::Enabled
TTimer See also Example
Enabled controls whether the timer responds to timer events.
__property bool Enabled;
Description
Use Enabled to enable or disable the timer. If Enabled is true, the timer responds normally. If
Enabled is false, the timer ignores the OnTimer event. The default is true.

TTimer::Interval
TTimer See also
Interval determines the amount of time, in milliseconds, that passes before the timer component
initiates another OnTimer event.
__property unsigned int Interval;
Description
Interval determines how frequently the OnTimer event occurs. Each time the specified interval
passes, the OnTimer event occurs.
Use Interval to specify any cardinal value as the interval between OnTimer events. The default
value is 1000 (one second).
Note
A 0 value is valid, however the timer won't call an OnTimer event for a value of 0.
Example
The code in this OnTimer event handler moves a ball, the shape component (TShape) slowly
across a form.
void TForm1::Timer1Timer(TObject Sender) {

Timer1->Interval = 100;
Shape1->Shape = stCircle;
Shape1->Left = Shape1->Lft +1;

}

TTimer events
TTimer Alphabetically Legend

In TTimer
OnTimer

TTimer events
TTimer By object Legend

OnTimer

TTimer::OnTimer
TTimer See also
OnTimer occurs when a specified amount of time, determined by the Interval property, has
passed.
__property Classes::TNotifyEvent OnTimer;
Description
Use OnTimer to write an event handler to execute an action at regular intervals.
The Interval property of a timer determines how frequently the OnTimer event occurs. Each time
the specified interval passes, the OnTimer event occurs.

TTimer methods
TTimer Alphabetically

In TTimer
~TTimer
TTimer

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TTimer methods
TTimer By object

~TTimer
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
TTimer

TTimer::~TTimer
TTimer
~TTimer frees the memory associated with the TTimer object. Do not call ~TTimer directly.
Instead, use the delete keyword on the object, which causes ~TTimer to be invoked
automatically.
__fastcall virtual ~TTimer(void);
Description
TTimer deactivates the timer by setting Enabled to false. Then it kills the timer by calling the
Windows API KillTimer function and deallocates the timer HWND before calling the destructor of
its parent object.

TTimer::TTimer
TTimer
TTimer instantiates a timer object.
__fastcall virtual TTimer(Classes::TComponent* AOwner);
Description
Call TTimer to instantiate a timer at runtime. For timers created at design time, TTimer is called
automatically.
TTimer allocates memory for a timer, and calls the constructor of its parent object. Then it:
• Initializes the Enabled property to true.
• Initializes the Interval property to 1000.
• Allocates a window handle for the timer passing it the timer window procedure which

processes the WM_TIMER messages.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent

TTimer example
TTimer

TTrackBar
Hierarchy Properties Methods Events
TTrackBar is a visual component that contains a slider graphically depicting a relative position
within the track and may provide optional tick marks.
Header
vcl/comctrls.hpp
Description
During program execution, the slider can be moved to the desired Position by dragging it with
the mouse or by clicking the mouse on the bar. To use the keyboard to move the slider, press
the arrow keys or the PageUp and PageDown keys. The LineSize property specifies the number
of ticks moved by arrow keys. The PageSize property specifies the number of ticks moved by the
PageUp and PageDown keys, or by mouse clicks on the bar.
To customize the number and placement of tick marks use the TickStyle and TickMarks
properties.
A TTrackBar can also display a selected range marked by triangular ticks at the starting and
ending positions of the selection range. Set the selection range using the SelStart and SelEnd
properties.

TTrackBar properties
TTrackBar Alphabetically Legend

In TTrackBar
Frequency
LineSize
Max
Min
Orientation
PageSize
Position
SelEnd
SelStart
TickMarks
TickStyle

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
DragCursor
DragMode
Enabled
Height
Hint
Left
Name
Parent
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TTrackBar properties
TTrackBar By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
Enabled
Frequency

Handle
Height
HelpContext
Hint
Left
LineSize
Max
Min
Name
Orientation

Owner
PageSize
ParentCtl3D
ParentShowHint
Parent
PopupMenu
Position
SelEnd
SelStart
ShowHint

Showing
TabOrder
TabStop
Tag
TickMarks
TickStyle
Top
Visible
Width

TTrackBar::Frequency
TTrackBar
The Frequency property specifies the increment between tick marks on the track bar.
__property int Frequency;
Description
For example, a Frequency of 2 sets a tick mark at every other increment.
To use this property you must set the TickStyle of the TickMarks property to tsAuto.

TTrackBar::LineSize
TTrackBar
The LineSize property specifies the number of ticks moved when an arrow key is pressed.
__property int LineSize;
Description
The current Position is marked by a slider. The right and down arrow keys increment the value of
Position by LineSize, and the left and up arrow keys decrement the value of Position by
LineSize.
Use the PageSize property to set the number of ticks moved using the PageUp and PageDown
keys.

TTrackBar::Max
TTrackBar
The Max property specifies the maximum Position of a TTrackBar.
__property int Max;
Description
A slider indicates the current Position in a range between Min and Max.

TTrackBar::Min
TTrackBar
The Min property specifies the minimum Position of a TTrackBar.
__property int Min;
Description
A slider indicates the current Position in a range between Min and Max.

TTrackBar::Orientation
TTrackBar
The Orientation property specifies the relative positions of the Min and Max positions.
__property TTrackBarOrientation Orientation;
Description
The Orientation property has these possible values:
Value Meaning

tbHorizontal The long edge of the track is parallel to the top of the form. The Min
position is on the left and as the slider moves to the right, it approaches
the Max position.

tbVertical The long edge of the track is parallel to the side of the form. The Min
position is on the top and as the slider moves to the bottom, it approaches
the Max position.

TTrackBar::PageSize
TTrackBar
The PageSize property specifies the number of ticks moved when the PageUp or PageDown key
is pressed, or when the bar is clicked.
__property int PageSize;
Description
The current Position is marked by a slider. The PageUp key increments the value of Position by
PageSize, and PageDown key decrements the value of Position by PageSize.
Use the LineSize property to set the number of ticks moved using the arrow keys.

TTrackBar::Position
TTrackBar Example
The Position property contains the current position of the slider of a TTrackBar.
__property int Position;
Description
The Position property is a value in the range between Min and Max (inclusive) that indicates the
current position of the slider of a TTrackBar.
Use the LineSize and PageSize properties to specify the amount added to or subtracted from
Position when the bar is clicked, or the arrow keys or paging keys are pressed.

TTrackBar::SelEnd
TTrackBar
The SelEnd property specifies the position of the end point of the optional selection range of a
TTrackBar.
__property int SelEnd;
Description
A track bar can indicate a selection range on the bar by placing special tick marks at the
positions specified by the SelStart and SelEnd properties and high-lighting the indicated portion
of the bar. The SelEnd property indicates the point of this selection range with the highest value.

TTrackBar::SelStart
TTrackBar
The SelStart property specifies the position of the starting point of the optional selection range of
a TTrackBar.
__property int SelStart;
Description
A track bar can indicate a selection range on the bar by placing special tick marks at the
positions specified by the SelStart and SelEnd properties and high-lighting the indicated portion
of the bar. The SelStart property indicates the point of this selection range with the lowest value.

TTrackBar::TickMarks
TTrackBar
The TickMarks property specifies the location of the optional tick marks on a TTrackBar.
__property TTickMark TickMarks;
Description
The TickMarks property has these possible values:
Value Meaning

tmBottomRight Tick marks are on the bottom or the right of the track bar, depending of
the value of the Orientation property.

tmTopLeft Tick marks are on the top or the left of the track bar, depending of the
value of the Orientation property.

tmBoth Tick marks are on both sides of the track bar.

TTrackBar::TickStyle
TTrackBar
The TickStyle property specifies the visual appearance of the optional tick marks of a TTrackBar.
__property TTickStyle TickStyle;
Description
The TickStyle property has these possible values:
Value Meaning

tsAuto Tick marks are automatically displayed at each increment equal to the
value of the Frequency property.

tsManual Tick marks are displayed at the Min and Max values. Additional tick
marks can be set using the SetTick method.

tsNone No tick marks are displayed.

TTrackBar events
TTrackBar Alphabetically Legend

In TTrackBar
OnChange

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnDragDrop
OnDragOver
OnEndDrag
OnStartDrag

TTrackBar events
TTrackBar By object Legend

OnChange
OnDragDrop
OnDragOver
OnEndDrag
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp
OnStartDrag

TTrackBar::OnChange
TTrackBar
The OnChange event occurs whenever the value of the position of the slider may have changed.
__property Classes::TNotifyEvent OnChange;
Description
Write an OnChange event handler to take specific action whenever the position of the slider may
have changed. This event provides the first opportunity to respond to changes to the track bar.

TTrackBar methods
TTrackBar Alphabetically

In TTrackBar
~TTrackBar
SetTick
TTrackBar

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent

InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TTrackBar methods
TTrackBar By object

~TTrackBar
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
SetTick
Show
TTrackBar
UpdateControlState
Update

TTrackBar::~TTrackBar
TTrackBar
~TTrackBar frees the memory associated with the TTrackBar object. Do not call ~TTrackBar
directly. Instead, use the delete keyword on the object, which causes ~TTrackBar to be invoked
automatically.
__fastcall virtual ~TTrackBar(void);

TTrackBar::SetTick
TTrackBar
The SetTick method is used to specify the location an individual tick mark.
void __fastcall SetTick(int Value);
Description
Use the SetTick method to place a tick mark on the bar at the position specified by the Value
parameter. Tick marks specified in this manner are only displayed when the TickStyle is set to
tsManual.

TTrackBar::TTrackBar
TTrackBar
Creates an instance of a TTrackBar object for an application
__fastcall virtual TTrackBar(Classes::TComponent* AOwner);
Description
Call TTrackBar to instantiate a TTrackBar object at runtime. During design, TTrackBar is called
automatically.
TTrackBar allocates memory and sets the default values for the instance of the TTrackBar
object.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl

TTrackBar example
TTrackBar

TTreeNode
Hierarchy Properties Methods See also
The TTreeNode object is an individual item of a TTreeView control.
Header
vcl/comctrls.hpp
Description
Each item in a tree view control consists of a label and an optional bitmapped image, and each
item can have a list of subitems associated with it. By clicking an item, the user can expand and
collapse the associated list of subitems. Each node is identified by a unique index.

TTreeNode properties
TTreeNode Alphabetically Legend

In TTreeNode
AbsoluteIndex
Count

Cut
Data

Deleting
DropTarget
Expanded
Focused

Handle
HasChildren
ImageIndex

Index
IsVisible

Item
ItemId
Level

OverlayIndex
Owner
Parent

Selected
SelectedIndex
StateIndex
Text

TreeView

TTreeNode properties
TTreeNode By object Legend

AbsoluteIndex
Count

Cut
Data

Deleting
DropTarget
Expanded
Focused

Handle
HasChildren
ImageIndex

Index
IsVisible
ItemId

Item
Level

OverlayIndex
Owner
Parent

SelectedIndex
Selected
StateIndex
Text

TreeView

TTreeNode::AbsoluteIndex
TTreeNode See also
The AbsoluteIndex property is the index of the tree node relative to the first tree node in a tree
node.
__property int AbsoluteIndex;
Description
Use the AbsoluteIndex property to determine absolute position of a node in a tree nodes object.
The first tree node in a tree nodes object has an index of 0 and subsequent nodes are numbered
sequentially. If a node has any children, its AbsoluteIndex is one less than the index of its first
child.

TTreeNode::Count
TTreeNode See also
The Count property contains the number children a tree node contains.
__property int Count;
Description
Use the Count property to determine how many child nodes belong to a tree node. This
information can be useful when iterating through the children of a tree node.

TTreeNode::Cut
TTreeNode See also
The Cut property indicates if the tree node object is currently selected as part of a cut and paste
operation.
__property bool Cut;
Description
Use Cut to determine if a node is currently involved in a cut and paste operation.

TTreeNode::Data
TTreeNode See also
The Data property contains a pointer to some data associated with the tree node.
__property void * Data;
Description
Use the Data property to associate some data with a tree node such as a memo or a bitmap.

TTreeNode::Deleting
TTreeNode See also
The Deleting property indicates whether a node's Destroy method has been called and is in the
process of being deleted.
__property bool Deleting;
Description
Use the Deleting property to determine if a node is being deleted.

TTreeNode::DropTarget
TTreeNode See also
The DropTarget property indicates whether a tree node has been selected as a drag and drop
target.
__property bool DropTarget;
Description
Use DropTarget to determine if a node has been selected as a drag and drop target. When
DropTarget is true, the node is drawn in a style used to indicate a drag and drop target.

TTreeNode::Expanded
TTreeNode See also
The Expanded property specifies whether the tree node is expanded.
__property bool Expanded;
Description
When a tree node is expanded, the minus button is shown if the ShowButtons property of the
tree view is true and child nodes are displayed.
Expanded is true if the node is expanded, false if it isn't expanded.

TTreeNode::Focused
TTreeNode See also
The Focused property indicates whether the node has focus, that is, if it's surrounded by a
standard focus rectangle. Only one node at a time can have the focus.
__property bool Focused;
Description
Use the Focused property to determine if a particular node in a tree view has the focus.

TTreeNode::Handle
TTreeNode See also Example
The Handle property returns the Handle property of the tree view control that owns the tree
node.
__property HWND Handle;
Description
Use the Handle property to obtain the handle of the tree view that owns the node.

TTreeNode::HasChildren
TTreeNode See also
The HasChildren property indicates whether a node has any children.
__property bool HasChildren;
Description
Child nodes appear below and indented from their parent node when the parent is expanded.
HasChildren is true if the node has subnodes, or false if the node has no subnodes. If
ShowButtons of the tree view is true, and HasChildren is true, a plus (+) button will appear to the
left of the node. However, if a node has no children, setting HasChildren to true will show a (+)
plus button, but will not add any child nodes and the node cannot be expanded.

TTreeNode::ImageIndex
TTreeNode See also
The ImageIndex property specifies which image from the image list is displayed when a node is
at its normal state and is not currently selected.
__property int ImageIndex;
Description
Use the ImageIndex property with the Images property of the tree view to obtain the image for
the node at it’s normal state.

TTreeNode::Index
TTreeNode See also
The Index property uniquely identifies each node in a tree view.
__property int Index;
Description
The first node has an Index value of 1, and subsequent nodes are indexed sequentially. If a
node has subnodes, the Index value of the parent node is one less than the Index value of its
first subnode.

TTreeNode::IsVisible
TTreeNode See also
The IsVisible property indicates whether the tree node is visible within the TTreeView
component.
__property bool IsVisible;
Description
A node is visible if it is on level 0 or if all its parents are expanded.

TTreeNode::Item
TTreeNode See also
The Item property provides access to a child node (TTreeNode object) by its Index position in
the list of child nodes.
__property TTreeNode* Item[int Index];
Description
The first child node has an index of 0, the second an index of 1, and so on.
Example
The following example adds to a list box the text for all the immediate child nodes of the selected
node.
void __fastcall TForm1::Button1CLick(TObject Sender) {

for(int i=0; i < (TreeView->Selected->Count - 1); i++)
ListBox1->Items->Add(TreeView1->Selected->Item[i]->Text);

}

TTreeNode::ItemId
TTreeNode See also
The ItemID property is a handle to a TTreeNode of type HTreeItem and uniquely identifies each
node in a tree view.
__property Commctrl::HTreeItem ItemId;
Description
Use this property when to access nodes in a tree view from outside of the tree view control.

TTreeNode::Level
TTreeNode See also
The Level property indicates the level of indentation of a node within the tree view control.
__property int Level;
Description
The value of Level is 0 for nodes on the top level. The value of Level is 1 for their children, and
so on.

TTreeNode::OverlayIndex
TTreeNode See also
The OverlayIndex property determines which image from the image list is to be used as an
overlay mask.
__property int OverlayIndex;
Description
An overlay mask is an image drawn transparently over another image in the tree view. For
example, to indicate that a node is no longer available, use an overlay image that puts an X over
the current node's image.

TTreeNode::Owner
TTreeNode See also
The Owner property indicates which tree nodes object owns the tree node.
__property TTreeNodes* Owner;
Description
Use the Owner property to determine the owner of the tree node

TTreeNode::Parent
TTreeNode See also Example
The Parent property identifies the parent node of the tree node.
__property TTreeNode* Parent;
Description
A Parent node is one level higher than the node and contains the node as a subnode.

TTreeNode::Selected
TTreeNode See also Example
The Selected property determines whether the node is selected.
__property bool Selected;
Description
Setting Selected to true selects the node. The appearance of a selected node depends on
whether it has the focus and on whether the system colors are used for selection. If a node
becomes selected, the tree view's OnChanging and OnChanged events are triggered.

TTreeNode::SelectedIndex
TTreeNode See also
The SelectedIndex property contains the index in the image list (TImageList) to be used when
the node is selected.
__property int SelectedIndex;
Description
Use the SelectedIndex property to specify an image to display when the tree node is selected.

TTreeNode::StateIndex
TTreeNode See also
The StateIndex property indicates which image from the StateImages image list to display for the
node.
__property int StateIndex;
Description
If StateIndex is -1 then no state image is drawn.

TTreeNode::Text
TTreeNode See also Example
The Text property contains the string that identifies a tree node.
__property System::AnsiString Text;
Description
The Text string is displayed in the tree view. The value of Text can be assigned directly at
runtime or can be set within the TreeView Items Editor while modifying the Items property of the
TTreeView component.

TTreeNode::TreeView
TTreeNode See also
The TreeView property for a tree node specifies the tree view that is the owner of the node
(TTreeNode).
__property TCustomTreeView* TreeView;
Description
Use the TreeView property to determine the tree view associated with the tree node.

TTreeNode methods
TTreeNode Alphabetically

In TTreeNode
~TTreeNode
AlphaSort
Assign
Collapse
CustomSort
Delete
DeleteChildren
DisplayRect
EditText
EndEdit
Expand
getFirstChild
GetHandle
GetLastChild
GetNext
GetNextChild
getNextSibling
GetNextVisible
GetPrev
GetPrevChild
getPrevSibling
GetPrevVisible
HasAsParent
IndexOf
MakeVisible
MoveTo
TTreeNode

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TTreeNode methods
TTreeNode By object

~TTreeNode
AlphaSort
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Collapse
CustomSort
DefaultHandler
DeleteChildren
Delete
Dispatch
DisplayRect
EditText
EndEdit
Expand
FieldAddress
FreeInstance
Free
getFirstChild
GetHandle
GetLastChild
GetNextChild
getNextSibling
GetNext
GetNextVisible
GetPrevChild
getPrevSibling
GetPrev
GetPrevVisible
HasAsParent
IndexOf
InheritsFrom
InitInstance
InstanceSize
MakeVisible
MethodAddress
MethodName
MoveTo
NewInstance
TTreeNode

TTreeNode::~TTreeNode
TTreeNode See also
~TTreeNode frees the memory associated with the TTreeNode object. Do not call ~TTreeNode
directly. Instead, use the delete keyword on the object, which causes ~TTreeNode to be invoked
automatically.
__fastcall virtual ~TTreeNode(void);
Description
The Delete method should be used to delete the tree node.

TTreeNode::AlphaSort
TTreeNode See also
The AlphaSort method sorts all root nodes and each node alphabetically by label in the tree view
control.
bool __fastcall AlphaSort(void);
Description
Specifically AlphaSort sorts the node's list of immediate children alphabetically. If successful, the
method returns true.

TTreeNode::Assign
TTreeNode See also
Discards any current property information and replaces it with the information from the Source.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
If Source is any other type of object, Assign calls its inherited method. Use this method to copy
information from one node to another.

TTreeNode::Collapse
TTreeNode See also
Collapses a node.
void __fastcall Collapse(bool Recurse);
Description
When a node is collapsed, its subnodes are hidden and the plus button might be displayed,
depending on whether the tree view's ShowButtons property is set. If Recurse is true, then all
subnodes will be collapsed as well and when the node is next expanded the children will be
collapsed. If Recurse is false, the child nodes won't be collapse and the next time the node is
expanded, the children will be in the same state as when Collapse was called.

TTreeNode::CustomSort
TTreeNode See also
Allows you to sort child nodes based on criteria that you define.
bool __fastcall CustomSort(Commctrl::TTVCompare SortProc, long Data);
Description
When you use this method, you specify an application-defined callback function that the tree
view and tree node can call whenever the relative order of two child nodes needs to be decided.
The parameter SortProc is a pointer to the application defined callback function. The Data
parameter is optional for passing a data value into the function.
The tree node's CustomSort will sort all child nodes of the node that called it. The tree view's
CustomSort method will sort all nodes in the tree view.
The callback function receives two nodes for the nodes being compared and a third 32-bit value
that you specify.
The callback function has the following form:
The callback function must return a negative value if the first node should precede the second, a
positive value if the first node should follow the second, or zero if the two nodes are equivalent.
The Node1 and Node2 parameters are the two nodes being compared.
If the parameter SortProc is NULL, the default AlphaSort method is called. This can be useful
since CustomSort has the Data parameter which AlphaSort doesn't.
Example
The following example orders a tree view in reverse alphabetical order on the click of a button.
The callback function CustomSortProc calls the Windows API function lstrcmp and negates its
return value.
int __fastcall CustomSortProc(TTreeNode* Node1, TTreeNode* Node2, int
ParamSort) {
Result = -lstrcmp(PChar(Item1->Text), PChar(Item2->Text));

}

TTreeNode::Delete
TTreeNode See also
Deletes the node (TTreeNode object) that calls it.
void __fastcall Delete(void);
Description
Use the Delete method to delete a tree node.

TTreeNode::DeleteChildren
TTreeNode See also
Deletes all children of the node (TTreeNode object) that calls it.
void __fastcall DeleteChildren(void);
Description
Use the DeleteChildren method to delete all children of a tree node.

TTreeNode::DisplayRect
TTreeNode See also
Returns the bounding rectangle (TRect record) for a tree node.
Windows::TRect __fastcall DisplayRect(bool TextOnly);
Description
If the TextOnly parameter is true, the bounding rectangle includes only the text of the node.
Otherwise, it includes the entire line that the node occupies in the tree-view control.

TTreeNode::EditText
TTreeNode See also
Begins in-place editing of the specified node's text, replacing the text of the node with a single-
line edit control containing the text.
bool __fastcall EditText(void);
Description
This message implicitly selects and focuses the specified node. The tree view's OnEditing event
will be triggered.

TTreeNode::EndEdit
TTreeNode See also
Ends the editing of a node's (TTreeNode object) label in a tree view.
void __fastcall EndEdit(bool Cancel);
Description
The tree views OnEdited event will be triggered if the user has made changes and if Cancel is
false.

TTreeNode::Expand
TTreeNode See also
Expands a node's list of child nodes.
void __fastcall Expand(bool Recurse);
Description
When a node is expanded, its subnodes are displayed and the minus '-' button might be
displayed, depending on whether the tree view's ShowButtons property is set. If Recurse is true,
all child nodes are expanded as well.

TTreeNode::GetFirstChild
TTreeNode See also
Returns the first child node (TTreeNode object) of the calling node.
TTreeNode* __fastcall getFirstChild(void);
Description
If the calling node has no children, getFirstChild returns NULL.

TTreeNode::GetHandle
TTreeNode See also
Gets the Handle property.
HWND __fastcall GetHandle(void);
Description
To retrieve the handle of the tree node, use the Handle property.

TTreeNode::GetLastChild
TTreeNode See also
Returns the last immediate child node (TTreeNode object) of the calling node.
TTreeNode* __fastcall GetLastChild(void);
Description
If the calling node has no children, GetLastChild returns NULL.

TTreeNode::GetNext
TTreeNode See also
Returns the next node (TTreeNode object) after the calling node in the tree view.
TTreeNode* __fastcall GetNext(void);
Description
If the calling node is the last node, GetNext returns NULL. It will return the next node including
nodes that aren't visible and child nodes. To get the next node at the same level as the calling
node, use getNextSibling. To get the next visible node, use GetNextVisible.

TTreeNode::GetNextChild
TTreeNode See also
Returns the next child node (TTreeNode object) after Value of the calling node.
TTreeNode* __fastcall GetNextChild(TTreeNode* Value);
Description
If the calling node has no children or there is no node after Value, GetNextChild returns NULL.

TTreeNode::GetNextSibling
TTreeNode See also
Returns the next node (TTreeNode object) in the tree view at the same level as the calling node.
TTreeNode* __fastcall getNextSibling(void);
Description
getNextSibling will return the next node, regardless if it's visible. To find the next node in the tree
view including child nodes, use GetNext.

TTreeNode::GetNextVisible
TTreeNode See also
Returns the next visible node (TTreeNode object) in the tree view after the calling node.
TTreeNode* __fastcall GetNextVisible(void);
Description
A node is visible if its parent node is expanded.

TTreeNode::GetPrev
TTreeNode See also
Returns the previous node (TTreeNode object) in the tree view before the calling node.
TTreeNode* __fastcall GetPrev(void);
Description
GetPrev will return the previous node whether or not it is visible. To get the previous visible
node, use GetPrevVisible.

TTreeNode::GetPrevChild
TTreeNode See also
Returns the previous child node before the child node specified by the parameter Value of the
calling node.
TTreeNode* __fastcall GetPrevChild(TTreeNode* Value);
Description
If there is no node before Value, GetPrevChild returns NULL.

TTreeNode::GetPrevSibling
TTreeNode See also
Returns the previous node (TTreeNode object) before the calling node and at the same level.
TTreeNode* __fastcall getPrevSibling(void);
Description
To find the previous visible sibling node, use getPrevSibling.

TTreeNode::GetPrevVisible
TTreeNode See also
Returns the previous visible node (TTreeNode object) before the calling node.
TTreeNode* __fastcall GetPrevVisible(void);
Description
To get the previous node, including non-visible, use GetPrev.

TTreeNode::HasAsParent
TTreeNode See also
Returns true if Value is a parent node (TTreeNode object) of the calling node.
bool __fastcall HasAsParent(TTreeNode* Value);
Description
Use the HasAsParent method to determine if a node is a parent to a particular node.

TTreeNode::IndexOf
TTreeNode See also
Returns the position of an immediate child node (Value parameter) of the calling node.
int __fastcall IndexOf(TTreeNode* Value);
Description
If Value isn't an immediate child of the calling node, IndexOf returns -1. The first child node has
an index on 0, the second an index of 1, and so on.

TTreeNode::MakeVisible
TTreeNode See also
Makes a node visible in a tree view.
void __fastcall MakeVisible(void);
Description
If a node's parent node(s) are collapsed and the node isn't visible, MakeVisible will expand the
nodes parents to make the node visible.

TTreeNode::MoveTo
TTreeNode See also
Moves the node to another location in the tree view.
void __fastcall MoveTo(TTreeNode* Destination, TNodeAttachMode Mode);
Description
The Destination parameter determines where to move the node. The Mode parameter is of type
TNodeAttachMode and specifies how the node is to be reattached. These are the possible
values for the Mode parameter:
Table Part 0.2

Value Meaning
naAdd Adds the node to the end of the list.
naAddFirst Adds the node at the beginning of the list.
naAddChild Adds the node as a child of the destination at the end of the child list.
naAddChildFirst Adds the node as a child at the beginning of the child list of the

destination.
naInsert Insert the node after the destination node.
Example
void __fastcall TForm1::TreeView1DragDrop(TObject *Sender, TObject *
Source, int X, int Y) {

TTreeNode* AnItem = new TTreeNode(TreeNodes1);
TNodeAttachMode AttachMode;
THitTests HT;
if(TreeView1->Selected == NULL) return;
HT = TreeView1->GetHitTestInfoAt(X, Y);
AnItem = TreeView1->GetNodeAt(X, Y);
if(HT >> htOnItem >> htOnIcon >> htNowhere >> htOnIndent != HT) {
if((HT >> htOnItem != HT) || (HT >> htOnIcon != HT)) AttachMode <<

naAddChild;
else if(HT >> htNowhere != HT) AttachMode << naAdd;
else if(HT >> htOnIndent != HT) AttachMode << naInsert;
TreeView1->Selected->MoveTo(AnItem, AttachMode);
}

}

TTreeNode::TTreeNode
TTreeNode See also
The TTreeNode method creates an instance of a TTreeNode object.
__fastcall TTreeNode(TTreeNodes* AOwner);
Description
The TTreeNode method first calls the constructor of its parent object, sets the OverlayIndex and
StateIndex properties to -1, and then sets the Owner property of the tree node to the AOwner
TTreeNodes object.

Accessibility
Read-only

Hierarchy

TObject

TPersistent

TTreeNode example
TTreeNode

TTreeNodes
Hierarchy Properties Methods See also

Header
vcl/comctrls.hpp
The TTreeNodes object maintains a list of tree nodes in a tree view control.
Description
The Items property of the tree view control is a TTreeNodes object and maintains the collection
of nodes in the tree view. Nodes can be added, deleted, inserted and moved within the tree
view. Access to the nodes in the tree view is through the Items property of the tree view.

TTreeNodes properties
TTreeNodes Alphabetically Legend

In TTreeNodes
Count
Handle
Item
Owner

TTreeNodes properties
TTreeNodes By object Legend

Count
Handle
Item
Owner

TTreeNodes::Count
TTreeNodes See also
Contains the number of nodes in the tree view.
__property int Count;
Description
Use the Count property to determine the number of tree nodes in the tree view that owns the
tree nodes object.

TTreeNodes::Handle
TTreeNodes See also Example
The Handle property returns the Handle property of the tree view control that owns the tree
nodes object.
__property HWND Handle;
Description
Use the Handle property to obtain the handle of the tree view that owns the tree nodes object.

TTreeNodes::Item
TTreeNodes See also
Provides access to a node by its position in the tree view. The first node has an index of 0, the
second an index of 1, and so on.
Commctrl::HTreeItem __fastcall AddItem(Commctrl::HTreeItem Parent,
Commctrl::HTreeItem Target, const TV_ITEMA &Item, TAddMode AddMode);

Description
Use the Item property to access a node by its Index position in the tree view. The first node has
an index of 0, the second an index of 1, and so on.
Note
Accessing tree view items by index can be time-intensive, particularly when the tree view
contains many items. For optimal performance, try to design your application so that it has as
few dependencies on the tree view’s item index as possible.

TTreeNodes::Owner
TTreeNodes See also
Indicates the tree view control that owns the tree nodes object.
__property TCustomTreeView* Owner;
Description
Use the Owner property to determine the tree view control that owns the tree nodes.

TTreeNodes methods
TTreeNodes Alphabetically

In TTreeNodes
~TTreeNodes
Add
AddChild
AddChildFirst
AddChildObject
AddChildObjectFirst
AddFirst
AddObject
AddObjectFirst
Assign
BeginUpdate
Clear
Delete
EndUpdate
GetFirstNode
GetNode
Insert
InsertObject
TTreeNodes

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TTreeNodes methods
TTreeNodes By object

~TTreeNodes
AddChildFirst
AddChildObjectFirst
AddChildObject
AddChild
AddFirst
AddObjectFirst
AddObject
Add
Assign
BeginUpdate
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
Delete
Dispatch
EndUpdate
FieldAddress
FreeInstance
Free
GetFirstNode
GetNode
InheritsFrom
InitInstance
InsertObject
Insert
InstanceSize
MethodAddress
MethodName
NewInstance
TTreeNodes

TTreeNodes::~TTreeNodes
TTreeNodes See also
~TTreeNodes frees the memory associated with the TTreeNodes object. Do not call ~
TTreeNodes directly. Instead, use the delete keyword on the object, which causes ~
TTreeNodes to be invoked automatically.
__fastcall virtual ~TTreeNodes(void);

TTreeNodes::Add
TTreeNodes See also
The Add method adds a new tree node to a tree view control.
TTreeNode* __fastcall Add(TTreeNode* Node, const System::AnsiString S)
;

Description
The node is added last in the list to which the node specified by the Node parameter belongs.
The S parameter specifies the Text property of the new node. Add returns the node that has
been added.
Example
The following example adds a node last in the list to which the selected node belongs in the tree
view control.
TreeView1->Items->Add(TreeView1->Selected,"Sub Item1");

TTreeNodes::AddChild
TTreeNodes See also
Adds a new tree node to a tree view.
TTreeNode* __fastcall AddChild(TTreeNode* Node, const System::
AnsiString S);

Description
The node is added as a child of the node specified by the Node parameter. It is added to the end
of Node's list of child nodes. The S parameter specifies the Text property of the new node.
AddChild returns the node that has been added.
Example
The following example adds a child to the selected node's list of child nodes in the tree view
control.
TreeView1->Items->AddChild(TreeView1->Selected,'SubItem1');

TTreeNodes::AddChildFirst
TTreeNodes See also
The AddChildFirst method adds a new tree node to a tree view.
TTreeNode* __fastcall AddChildFirst(TTreeNode* Node, const System::
AnsiString S);

Description
The node is added as a child of the node specified by the Node parameter. It is added to the
beginning of Node's list of child nodes. The S parameter specifies the Text property of the new
node. Nodes that appear after the added node are moved down one row and reindexed with
valid Index values. AddChildFirst returns the node that has been added.
Example
The following example adds a child to the beginning of the selected item's list of child items in
the tree view control.
TreeView1->Items->AddChildFirst(TreeView1->Selected,'SubItem1');

TTreeNodes::AddChildObject
TTreeNodes See also
Adds a new tree node containing data to a tree view.
TTreeNode* __fastcall AddChildObject(TTreeNode* Node, const System::
AnsiString S, void * Ptr);

Description
The node is added as a child of the node specified by the Node parameter. It is added to the end
of Node's list of child nodes. The S parameter specifies the Text property of the new node. The
Ptr parameter specifies the Data property value of the new node. AddChildObject returns the
node that has been added.

TTreeNodes::AddChildObjectFirst
TTreeNodes See also
Adds a new tree node containing data to a tree view.
TTreeNode* __fastcall AddChildObjectFirst(TTreeNode* Node, const
System::AnsiString S, void * Ptr);

Description
The node is added as a child of the node specified by the Node parameter. It is added to the
beginning of Node's list of child nodes. nodes that appear after the added node are moved down
one row and reindexed with valid Index values. The S parameter specifies the Text property of
the new node. The Ptr parameter specifies the Data property value of the new node.
AddChildObjectFirst returns the node that has been added.

TTreeNodes::AddFirst
TTreeNodes See also
Adds a new tree node to a tree view.
TTreeNode* __fastcall AddFirst(TTreeNode* Node, const System::
AnsiString S);

Description
The node is added first to the list to which the node specified by the Node parameter belongs.
nodes that appear after the added node are moved down one row and reindexed with valid
Index values. The S parameter specifies the Text property of the new node. AddFirst returns the
node that has been added.

TTreeNodes::AddObject
TTreeNodes See also
Adds a new node containing data to a tree view.
TTreeNode* __fastcall AddObject(TTreeNode* Node, const System::
AnsiString S, void * Ptr);

Description
The node is added last in the list to which the node specified by the Node parameter belongs.
The S parameter specifies the Text property of the new node. The Ptr parameter specifies the
Data property value of the new node. AddObject returns the node that has been added. The
memory referenced by Ptr is not freed when the tree nodes object is freed.

TTreeNodes::AddObjectFirst
TTreeNodes See also
Adds a new node containing data to a tree view.
TTreeNode* __fastcall AddObjectFirst(TTreeNode* Node, const System::
AnsiString S, void * Ptr);

Description
The node is added first to the list to which the node specified by the Node parameter belongs.
nodes that appear after the added node are moved down one row and reindexed with valid
Index values. The S parameter specifies the Text property of the new node. The Ptr parameter
specifies the Data property value of the new node. AddObjectFirst returns the node that has
been added.

TTreeNodes::Assign
TTreeNodes See also
If Source is another TTreeNodes object, Assign discards any current property information and
replaces it with the information from the Source. If Source is any other type of object, Assign
calls its inherited method.
virtual void __fastcall Assign(Classes::TPersistent* Source);
Description
Use the Assign method to copy information from one tree nodes object to another.

TTreeNodes::BeginUpdate
TTreeNodes See also
The BeginUpdate method prevents the updating of the tree view until the EndUpdate method is
called.
void __fastcall BeginUpdate(void);
Description
BeginUpdate prevents the screen from being repainted when new nodes are added, deleted, or
inserted. Tree node nodes affected by the changes will have invalid Index values until
EndUpdate is called.
Use BeginUpdate to prevent screen repaints and to speed processing time while you are adding
nodes to the tree view.
Note:
Calls to BeginUpdate are cumulative; for every call to BeginUpdate there must be a
corresponding call to EndUpdate.

TTreeNodes::Clear
TTreeNodes See also
The Clear method deletes all tree nodes contained in the tree nodes object.
void __fastcall Clear(void);
Description
Use the Clear method to remove all the nodes of a tree view.

TTreeNodes::Delete
TTreeNodes

The Delete method deletes a tree node from the tree nodes object.
void __fastcall Delete(TTreeNode* Node);

TTreeNodes::EndUpdate
TTreeNodes See also
The EndUpdate method re-enables screen repainting and tree view node reindexing that was
turned off with the BeginUpdate method.
void __fastcall EndUpdate(void);
Description
Use the EndUpdate method to enable screen updating after BeginUpdate has been called.

TTreeNodes::GetFirstNode
TTreeNodes See also
Returns the first tree node in the tree view.
TTreeNode* __fastcall GetFirstNode(void);
Description
Use the GetFirstNode method to retrieve the first node in the tree view.

TTreeNodes::GetNode
TTreeNodes See also
Returns the tree node given the ItemId of the tree node.
TTreeNode* __fastcall GetNode(Commctrl::HTreeItem ItemId);
Description
ItemId is a handle to the node in the tree view.

TTreeNodes::Insert
TTreeNodes See also
Inserts a tree node into the tree view after the node specified by the Node parameter.
TTreeNode* __fastcall Insert(TTreeNode* Node, const System::AnsiString
S);

Description
The S parameter specifies the Text property of the new node. Insert returns the new node.

TTreeNodes::InsertObject
TTreeNodes See also
Inserts a tree node containing data into the tree view after the node specified by the Node
parameter.
TTreeNode* __fastcall InsertObject(TTreeNode* Node, const System::
AnsiString S, void * Ptr);

Description
The S parameter specifies the Text property of the new node. Insert returns the new node. The
Ptr parameter specifies the Data property of the new node.

TTreeNodes::TTreeNodes
TTreeNodes See also
The TTreeNodes method creates an instance of a TTreeNodes object
__fastcall TTreeNodes(TCustomTreeView* AOwner);
The TTreeNodes method first calls the constructor of its parent object, then sets the Owner
property of the tree nodes object to the AOwner tree view control.

Accessibility
Read-only

Hierarchy

TObject

TPersistent

TTreeNodes example
TTreeNodes

TTreeView
Hierarchy Properties Methods Events See also
A tree view control is a window that displays a hierarchical list of items, such as the headings in
a document, the entries in an index, or the files and directories on a disk.
Header
vcl/comctrls.hpp
Description
Each node in a tree view control consists of a label and a number of optional bitmapped images.
Each node can have a list of subnodes associated with it. By clicking on a node, the user can
expand and collapse the associated list of subnodes. This control can be seen as the left pane
of the Database Explorer.

TTreeView properties
TTreeView Alphabetically Legend

In TTreeView
ReadOnly

Derived from TCustomTreeView
BorderStyle
DropTarget
HideSelection
Images
Indent
Items
Selected
ShowButtons
ShowLines
ShowRoot
SortType
StateImages
TopItem

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
Handle

HelpContext
ParentCtl3D

Showing
TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
Color
ControlState
ControlStyle
Cursor
DragCursor
DragMode
Enabled
Font
Height
Hint
Left
Name
Parent
ParentColor
ParentFont
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components

ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TTreeView properties
TTreeView By object Legend

Align
BorderStyle
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
Color

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DesignInfo
DragCursor
DragMode
DropTarget
Enabled
Font

Handle
Height
HelpContext
HideSelection
Hint
Images
Indent
Items
Left
Name

Owner
ParentColor
ParentCtl3D
ParentFont
ParentShowHint
Parent
PopupMenu

ReadOnly
Selected
ShowButtons
ShowHint

Showing
ShowLines
ShowRoot
SortType
StateImages
TabOrder
TabStop
Tag
TopItem
Top
Visible
Width

TTreeView::ReadOnly
TTreeView See also
Determines if the user can change the contents of the control.
__property ReadOnly;
Description
If ReadOnly is true, the user can't change the contents. If ReadOnly is false, the user can modify
the contents. The default value is false.

TTreeView events
TTreeView Alphabetically Legend

Derived from TCustomTreeView
OnChange
OnChanging
OnCollapsed
OnCollapsing
OnCompare
OnDeletion
OnEdited
OnEditing
OnExpanded
OnExpanding
OnGetImageIndex
OnGetSelectedIndex

Derived from TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

Derived from TControl
OnClick
OnDblClick
OnDragDrop
OnDragOver
OnEndDrag
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TTreeView events
TTreeView By object Legend

OnChange
OnChanging
OnClick
OnCollapsed
OnCollapsing
OnCompare
OnDblClick
OnDeletion
OnDragDrop
OnDragOver
OnEdited
OnEditing
OnEndDrag
OnEnter
OnExit
OnExpanded
OnExpanding
OnGetImageIndex
OnGetSelectedIndex
OnKeyDown
OnKeyPress
OnKeyUp
OnMouseDown
OnMouseMove
OnMouseUp
OnStartDrag

TTreeView methods
TTreeView Alphabetically

In TTreeView
~TTreeView
TTreeView

Derived from TCustomTreeView
AlphaSort
CustomSort
FullCollapse
FullExpand
GetHitTestInfoAt
GetNodeAt
IsEditing
LoadFromFile
LoadFromStream
SaveToFile
SaveToStream

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh

ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TTreeView methods
TTreeView By object

~TTreeView
AlphaSort
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
CustomSort
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
FullCollapse
FullExpand
GetHitTestInfoAt
GetNodeAt
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize

Invalidate
IsEditing
LoadFromFile
LoadFromStream
MethodAddress
MethodName
NewInstance
PaintTo
Perform
Realign
Refresh
RemoveComponent
RemoveControl
Repaint
SaveToFile
SaveToStream
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TTreeView
UpdateControlState
Update

TTreeView::~TTreeView
TTreeView
~TTreeView frees the memory associated with the TTreeView object. Do not call ~TTreeView
directly. Instead, use the delete keyword on the object, which causes ~TTreeView to be invoked
automatically.
__fastcall virtual ~TTreeView(void);

TTreeView::TTreeView
TTreeView
TTreeView creates a new TTreeView object.
__fastcall virtual TTreeView(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomTreeView

TTreeView example
TTreeView

TUpdateSQL
Hierarchy Properties Methods See also
Provides an object for updating read-only datasets when cached updates are enabled.
Header
vcl/dbtables.hpp
Description
Use a TUpdateSQL object to provide SQL statements used to update read-only datasets
represented by TQuery components when cached updates are enabled. A dataset is read-only
either by design or circumstance. If a dataset is read-only by design, the application itself does
not provide a user interface for updating data, but may institute a programmatic scheme behind
the scenes. If a dataset is read-only by circumstance, it indicates that the Borland Database
Engine (BDE) returned a read-only result set. This usually happens for queries made against
multiple tables. Such queries are, by SQL-92 definitions, read-only.
TUpdateSQL provides a mechanism for circumventing what some developers consider an SQL-
92 limitation. It enables a developer to provide INSERT, UPDATE, and DELETE statements for
performing separate update queries that are transparent to the end user.
In practical application, a TUpdateSQL object is placed on a data module or form, and linked to
a TQuery component through that component’s UpdateSQL property. If the UpdateSQL
property points to a valid TUpdateSQL object, the SQL statements belonging to the update
object are automatically applied when cached updates are applied.

TUpdateSQL properties
TUpdateSQL Alphabetically Legend

In TUpdateSQL
DataSet

DeleteSQL
InsertSQL
ModifySQL

Query
SQL

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TUpdateSQL properties
TUpdateSQL By object Legend

ComponentCount
ComponentIndex

ComponentState
Components
ComponentStyle

DataSet
DeleteSQL
DesignInfo
InsertSQL
ModifySQL
Name

Owner
Query

SQL
Tag

TUpdateSQL::DataSet
TUpdateSQL See also
Identifies the dataset to which a TUpdateSQL component belongs.
__property DataSet;
Description
At design time DataSet is automatically set to identify the dataset object that uses it when setting
the dataset object’s UpdateSQL property to the name of the update object. An application
should only need to set this property if it creates a new update component at runtime.

TUpdateSQL::DeleteSQL
TUpdateSQL See also
Specifies the SQL DELETE statement to use when applying a cached deletion of a record.
__property Classes::TStrings* DeleteSQL;
Description
Set DeleteSQL to the SQL DELETE statement to use when applying a deletion to a record.
Statements can be parameterized queries. To create a DELETE statement at design time, use
the UpdateSQL editor to create statements, such as”
delete from "COUNTRY.DB"
where
Name = :OLD_Name

At runtime, an application can write a statement directly to this property to set or change the
DELETE statement.
Note
As the example illustrates, DeleteSQL supports an extension to normal parameter binding. To
retrieve the value of a field as it exists prior to application of cached updates, the field name with
‘OLD_’. This is especially useful when doing field comparisons in the WHERE clause of the
statement.

TUpdateSQL::InsertSQL
TUpdateSQL See also
Specifies the SQL INSERT statement to use when applying a cached insertion of a record.
__property Classes::TStrings* InsertSQL;
Description
Set InsertSQL to the SQL INSERT statement to use when applying an insertion to a dataset.
Statements can be parameterized queries. To create a INSERT statement at design time, use
the UpdateSQL editor to create statements, such as”
insert into "COUNTRY.DB"
(Name, Capital, Continent)
value (:Name, :Capital, :Continent)
where :OLD_Name = 'Rangoon'
At runtime, an application can write a statement directly to this property to set or change the
INSERT statement.
Note
As the example illustrates, InsertSQL supports an extension to normal parameter binding. To
retrieve the value of a field as it exists prior to application of cached updates, the field name with
‘OLD_’. This is especially useful when doing field comparisons in the WHERE clause of the
statement.

TUpdateSQL::ModifySQL
TUpdateSQL See also
Specifies the SQL UPDATE statement to use when applying an update to a record and cached
updates is enabled.
__property Classes::TStrings* ModifySQL;
Description
Set ModifySQL to the SQL UPDATE statement to use when applying an updated record to a
dataset. Statements can be parameterized queries. To create a UPDATE statement at design
time, use the UpdateSQL editor to create statements, such as”
update "COUNTRY.DB"
set Name = :Name, Capital = :Capital, Continent = :Continent
where Name = :OLD_Name
At runtime, an application can write a statement directly to this property to set or change the
UPDATE statement.
Note
As the example illustrates, ModifySQL supports an extension to normal parameter binding. To
retrieve the value of a field as it exists prior to application of cached updates, the field name with
‘OLD_’. This is especially useful when doing field comparisons in the WHERE clause of the
statement.

TUpdateSQL::Query
TUpdateSQL See also
Returns the query object used to perform a specified kind of update.
__property TQuery* Query[Db::TUpdateKind UpdateKind];
Description
Set Query to return the TQuery object used to perform a particular form of SQL update.
UpdateKind specifies which query object to retrieve. UpdateKind can be one of the following:
Value Meaning

ukModify Return the query object used to execute UPDATE statements.
ukInsert Return the query object used to execute INSERT statements.
ukDelete Return the query object used to execute DELETE statements
Each query object executes a particular kind of SQL statement. The contents of the SQL
statements executed by these objects can be accessed directly using the ModifySQL,
InsertSQL, and DeleteSQL properties.
The main purpose of Query is to provide a a way for an application to set the properties for an
update query object or to call the query object’s methods.
Note
If a particular kind of update statement is not provided, then its corresponding query object is
NULL. For example, if an application does not provide an SQL statement for the DeleteSQL
property, then setting Query[ukDelete] returns NULL.

TUpdateSQL::SQL
TUpdateSQL See also
Returns a specified SQL statement used when applying cached updates.
__property Classes::TStrings* SQL[Db::TUpdateKind UpdateKind];
Description
Returns the SQL statement in the ModifySQL, InsertSQL, or DeleteSQL property, depending on
the setting of UpdateKind. UpdateKind can be any of the following:
Value Meaning

ukModify Return the SQL statement used to update records in the dataset
ukInsert Return the SQL statement used to insert new records into the dataset
ukDelete Return the SQL statement used to delete records in the dataset.

TUpdateSQL methods
TUpdateSQL Alphabetically

In TUpdateSQL
~TUpdateSQL
Apply
ExecSQL
SetParams
TUpdateSQL

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TUpdateSQL methods
TUpdateSQL By object

~TUpdateSQL
Apply
Assign
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DestroyComponents
Destroying
Dispatch
ExecSQL
FieldAddress
FindComponent
FreeInstance
FreeNotification
Free
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
MethodAddress
MethodName
NewInstance
RemoveComponent
SetParams
TUpdateSQL

TUpdateSQL::~TUpdateSQL
TUpdateSQL
~TUpdateSQL frees the memory associated with the TUpdateSQL object. Do not call ~
TUpdateSQL directly. Instead, use the delete keyword on the object, which causes ~
TUpdateSQL to be invoked automatically.
__fastcall virtual ~TUpdateSQL(void);

TUpdateSQL::Apply
TUpdateSQL See also
Sets the parameters for a specified SQL statement type, and executes the resulting statement.
virtual void __fastcall Apply(Db::TUpdateKind UpdateKind);
Description
Call Apply to set parameters for an SQL statement and execute it to update a record.
UpdateKind indicates which SQL statement to bind and execute, and can be one of the following
values:
Value Meaning

ukModify Bind and execute the SQL statement in the ModifySQL property
ukInsert Bind and execute the SQL statement in the InsertSQL property
ukDelete Bind and execute the SQL statement in the DeleteSQL property
Apply is primarily intended for manually executing update statements from an OnUpdateRecord
event handler.
Note
If an SQL statement does not contain parameters, it is more efficient to call ExecSQL instead of
Apply.

TUpdateSQL::ExecSQL
TUpdateSQL See also
Executes a specified type of SQL statement to perform an update for an otherwise read-only
results set when cached updates is enabled.
void __fastcall ExecSQL(Db::TUpdateKind UpdateKind);
Description
Call ExecSQL to execute the SQL statement necessary for updating the records belonging to a
read-only result set when cached updates is enabled. UpdateKind specifies the statement to
execute, and can be one of the following values:
Value Meaning

ukModify Execute the SQL statement used to update records in the dataset
ukInsert Execute the SQL statement used to insert new records into the dataset
ukDelete Execute the SQL statement used to delete records in the dataset.
If the statement to execute contains any parameters, an application must call SetParams to bind
the parameters before calling ExecSQL. To determine if a statement contains parameters,
examine the appropriate ModifySQL, InsertSQL, or DeleteSQL property, depending on the
statement type intended for execution.
Note
To both bind parameters and execute a statement, call Apply.

TUpdateSQL::SetParams
TUpdateSQL See also
Binds parameters in an SQL statement prior to statement execution.
void __fastcall SetParams(Db::TUpdateKind UpdateKind);
Description
Call SetParams to bind parameters in an SQL statement associated with the update object prior
to executing the statement. UpdateKind indicates the type of statement for which to bind
parameters, and can be one of the following values:
Value Meaning

ukModify Bind parameters for SQL statement used to update records
ukInsert Bind parameters for the SQL statement used to insert new records
ukDelete Bind parameters for the SQL statement used to delete records
Parameters are indicated in an SQL statement by a colon. Except for the leading colon in the
parameter name, the parameter name must exactly match the name of an existing field name for
the dataset.
Note
Parameter names can be prefaced by the ‘OLD_’ indicator. If so, the old value of the field is
used to perform the update instead of any updates in the cache.

TUpdateSQL::TUpdateSQL
TUpdateSQL
TUpdateSQL creates a new TUpdateSQL object.
__fastcall virtual TUpdateSQL(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Hierarchy

TObject

TPersistent
TComponent

TUpdateSQL example
TUpdateSQL

TUpDown
Hierarchy Properties Methods Events
TUpDown is a visual component containing a pair of arrow buttons that allow applications to
capture incremental numeric input.
Header
vcl/comctrls.hpp
Description
The TUpDown component consists of a pair of arrow buttons that point away from each other.
Clicking on these buttons increments and decrements a numeric value held in the Position
property.
TUpDown is typically used with a companion control, called a buddy window. Use the Associate
property to specify the buddy window. When associated with an edit control, the value of
Position sets the text of the edit as a formatted string. This combination is similar to using a
TSpinButton or spinner control and is convenient for prompting numeric user input.
If Associate is not specified, Position can be used as an assigned numeric value.

TUpDown properties
TUpDown Alphabetically Legend

Derived from TCustomUpDown
AlignButton
ArrowKeys
Associate
Increment
Max
Min
Orientation
Position
Thousands
Wrap

Derived from TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls
Handle

HelpContext
Showing

TabOrder
TabStop

Derived from TControl
Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
ParentShowHint
PopupMenu
ShowHint
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TUpDown properties
TUpDown By object Legend

AlignButton
Align
ArrowKeys
Associate
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Cursor
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
Increment
Left
Max
Min
Name
Orientation

Owner
ParentShowHint
Parent
PopupMenu
Position
ShowHint

Showing
TabOrder
TabStop
Tag
Thousands
Top
Visible
Width
Wrap

TUpDown events
TUpDown Alphabetically Legend

Derived from TCustomUpDown
OnChanging
OnClick

Derived from TWinControl
OnEnter
OnExit

Derived from TControl
OnMouseDown
OnMouseMove
OnMouseUp

TUpDown events
TUpDown By object Legend

OnChanging
OnClick
OnEnter
OnExit
OnMouseDown
OnMouseMove
OnMouseUp

TUpDown methods
TUpDown Alphabetically

In TUpDown
~TUpDown
TUpDown

Derived from TWinControl
Broadcast
CanFocus
ContainsControl
ControlAtPos
DisableAlign
EnableAlign
Focused
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
PaintTo
Realign
RemoveControl
Repaint
ScaleBy
ScrollBy
SetBounds
SetFocus
Update
UpdateControlState

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent

RemoveComponent
Derived from TPersistent

Assign
Derived from TObject

ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TUpDown methods
TUpDown By object

~TUpDown
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl
ControlAtPos
DefaultHandler
DestroyComponents
Destroying
DisableAlign
Dispatch
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
Focused
FreeInstance
FreeNotification
Free
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide
InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate
MethodAddress
MethodName
NewInstance
PaintTo
Perform

Realign
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScreenToClient
ScrollBy
SendToBack
SetBounds
SetFocus
SetTextBuf
Show
TUpDown
UpdateControlState
Update

TUpDown::~TUpDown
TUpDown
~TUpDown frees the memory associated with the TUpDown object. Do not call ~TUpDown
directly. Instead, use the delete keyword on the object, which causes ~TUpDown to be invoked
automatically.
__fastcall virtual ~TUpDown(void);

TUpDown::TUpDown
TUpDown
TUpDown creates a new TUpDown object.
__fastcall virtual TUpDown(Classes::TComponent* AOwner);

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TControl
TWinControl
TCustomUpDown

TUpDown example
TUpDown

TVarBytesField
Hierarchy Properties Methods Events See also
A TVarBytesField object represents a variable-length untyped binary field in a dataset.
Header
vcl/dbtables.hpp
Description
A variable bytes field value is a set of bytes of variable size, with the actual length of the value
stored in the first two bytes.
TVarBytesField differs from its immediate ancestor TBinaryField only in its Create method,
where it sets the data type to ftVarBytes. As a descendant of TBinaryField, it inherits many
properties, events, and methods useful for managing unformatted binary data fields in a dataset.

TVarBytesField properties
TVarBytesField Alphabetically Legend

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Value
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TVarBytesField properties
TVarBytesField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditMaskPtr

EditMask
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Value
Visible

TVarBytesField events
TVarBytesField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TVarBytesField events
TVarBytesField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TVarBytesField methods
TVarBytesField Alphabetically

In TVarBytesField
~TVarBytesField
TVarBytesField

Derived from TField
Assign
AssignValue
Clear
FocusControl
GetData
IsValidChar
SetData
SetFieldType

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TVarBytesField methods
TVarBytesField By object

~TVarBytesField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TVarBytesField

TVarBytesField::~TVarBytesField
TVarBytesField
~TVarBytesField frees the memory associated with the TVarBytesField object. Do not call ~
TVarBytesField directly. Instead, use the delete keyword on the object, which causes ~
TVarBytesField to be invoked automatically.
__fastcall virtual ~TVarBytesField(void);

TVarBytesField::TVarBytesField
TVarBytesField
The TVarBytesField method creates an instance of TVarBytesField.

__fastcall virtual TVarBytesField(Classes::TComponent* AOwner);

It is seldom necessary to call TVarBytesField directly, because a TVarBytesField field object is
instantiated automatically for all variable bytes fields in a dataset.
After calling the constructor of its parent object, TVarBytesField sets the DataType to ftVarBytes
and initializes the Size to 16.

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField
TBinaryField
TBytesField

TVarBytesField example
TVarBytesField

TWinControl
Hierarchy Properties Methods Events See also
TWinControl is the abstract base class for all windowed controls.
Header
vcl/controls.hpp
Description
Windowed controls are controls that
• Can receive focus while the application is running

Other controls may display data, but the user can use the keyboard to interact with a control
only if the control is a windowed control.

• Can contain other controls
A control that contains other controls is a parent. Only a windowed control can be a parent of
one or more other child controls.

• Have a window handle
Newly created components are seldom derived directly from TWinControl. Base most new
controls on TCustomControl, which provides a canvas and handles paint messages, or on any of
several more specialized controls, such as TButtonControl, TCustomComboBox, TCustomEdit,
or TCustomListBox.

TWinControl properties
TWinControl Alphabetically Legend

In TWinControl
Brush
ClientOrigin
ClientRect
ControlCount
Controls

Ctl3D
DefWndProc

Handle
HelpContext
ImeMode
ImeName
ParentCtl3D
ParentWindow

Showing
TabOrder
TabStop

WindowHandle
Derived from TControl

Align
BoundsRect
ClientHeight
ClientWidth
ControlState
ControlStyle

Cursor
Enabled
Height
Hint
Left
Name
Parent
Top
Visible
Width

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Owner

Tag

TWinControl properties
TWinControl By object Legend

Align
BoundsRect

Brush
ClientHeight

ClientOrigin
ClientRect

ClientWidth
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle
ControlCount

ControlState
Controls

ControlStyle
Ctl3D
Cursor
DefWndProc
DesignInfo
Enabled

Handle
Height
HelpContext
Hint
ImeMode
ImeName
Left
Name

Owner
ParentCtl3D
Parent
ParentWindow

Showing
TabOrder
TabStop
Tag
Top
Visible
Width
WindowHandle

TWinControl::Brush
TWinControl See also Example
The Brush property determines what color and pattern is used for painting the background of the
control.
__property Graphics::TBrush* Brush;
Description
Read the Brush property to determine the style and color of the control’s background. Brush is
a read-only property, because a windowed control owns a single Brush object to handle the
painting of its background. The attributes of the brush can be changed, however, by using the
Color and Style properties of the TBrush object. Further, all of the attributes of the brush can be
changed to match those of another brush, by using the Assign method of the TBrush object.

TWinControl::ClientOrigin
TWinControl See also Example
The ClientOrigin property determines the screen coordinates (in pixels) of the top left corner of a
windowed control.
Description
Read ClientOrigin to discover where the top-left corner of the control is on the screen.
ClientOrigin returns X and Y coordinates in a record of type TPoint. The TPoint type defines a
pixel location onscreen, with the origin in the top left corner of the control. X specifies the
horizontal coordinate of the point, Y specifies the vertical coordinate.

TWinControl::ClientRect
TWinControl See also Example
The ClientRect property specifies the size (in pixels) of a windowed control’s client area.
Description
Read ClientRect to learn the size of the client area of a windowed control. ClientRect returns a
rectangle defining the client area of the control. It is equivalent to Rect(0, 0, ClientWidth,
ClientHeight).

TWinControl::ControlCount
TWinControl See also Example
The ControlCount property indicates the number of controls that are children of the windowed
control.
__property int ControlCount;
Description
Use ControlCount when iterating over all the children of this control. The children of the control
are listed in the Controls property array.
ControlCount is a read-only property.
Note
The value of ControlCount is always 1 greater than the highest Controls index, because the first
Controls index is 0.

TWinControl::Controls
TWinControl See also Example
The Controls property is an array of all controls that are children of the windowed control.
__property TControl* Controls[int Index];
Description
Controls is an array of all the child controls of the windowed control. All of the child controls of
the windowed control list the windowed control as their Parent property. The Controls property is
convenient for referring to the children of a control by number rather than name. For example,
Controls may be used to iterate over all the children of the windowed control.
Don't confuse the Controls property with the Components property. The Controls property lists
all the controls that are child windows of the control, while the Components property lists all
components that are owned by the component. All components put on a form are owned by the
form, and therefore, they appear in the form's Components property list, even when they are
child windows of a control on the form.
Controls is a read-only property. To add or delete a child control, use the InsertControl or
RemoveControl methods. To move a child control from one parent to another, set the Parent of
the child control, as that will handle both the RemoveControl from the original parent and the
InsertControl to the new parent.

TWinControl::Ctl3D
TWinControl See also Example
The Ctl3D property determines whether a control has a three-dimensional (3-D) or two-
dimensional look.
__property bool Ctl3D;
Description
Use Ctl3D when to control the appearance of the control. If Ctl3D is true, the control has a 3-D
appearance. If Ctl3D is false, the control appears flat. The default value of Ctl3D is true.
If a control's ParentCtl3D property is true, then changes in the Ctl3D property of the control's
parent automatically changes the Ctl3D property of the control. When assigning a value directly
to a control's Ctl3D property, the control's ParentCtl3D property is automatically set to false.
Note
For Ctl3D to work with radio buttons, check boxes, and any of the common dialog boxes on
Windows NT 3.51, CTL3D32.DLL must be installed in the System32 directory. Neither Windows
95 nor NT 4.0 require CTL3D32.DLL.

TWinControl::DefWndProc
TWinControl See also
The DefWndProc property specifies the default window procedure for the windowed control.
__property void * DefWndProc;
Description
Use the Windows Api function CallWindowProc with DefWndProc to invoke the standard
Windows message handling for a window message. Use DefWndProc instead of the WndProc
method to avoid any message processing introduced by the WndProc method.
DefWndProc fills the role for windowed controls that DefaultHandler fills for all objects. The
DefaultHandler for TWinControl uses DefWndProc to pass messages to Windows for
processing.
For windowed controls, DefWndProc is initially set to the window procedure of the window class
specified in the Params parameter in the CreateParams method. Change DefWndProc to
subclass the window class of a windowed control.

TWinControl::Handle
TWinControl See also Example
The Handle property provides access to the window handle of the control.
__property HWND Handle;
Description
Use the Handle in Windows API function calls that requires a window handle.
If a window handle for the control doesn’t exist, the Handle property creates one by calling the
HandleNeeded method when your application reads the Handle property value. Therefore , do
not use the Handle property during component creation or streaming.
Handle is a read-only property.

TWinControl::HelpContext
TWinControl See also
The HelpContext provides a context number for use in calling context-sensitive online Help.
__property Classes::THelpContext HelpContext;
Description
Assign a value to HelpContext to determine which help screen appears when the user presses
F1 to request help.
Each screen in the Help system should have a unique context number. When a control is
selected in the application, pressing F1 displays a Help screen. Which Help screen appears
depends on the value of the HelpContext property.
If HelpContext is zero, then the control inherits the help context of its parent control. For
example, if a button with a HelpContext of zero is contained in a form with a non-zero help
context and F1 is pressed, the context screen for the form will be shown.

TWinControl::ImeMode
TWinControl See also
The ImeMode property specifies the input method editor (IME) mode for the control.
enum TImeMode { imDisable, imClose, imOpen, imDontCare, imSAlpha,
imAlpha, imHira, imSKata, imKata, imChinese, imSHanguel, imHanguel };

__property TImeMode ImeMode;
Description
The input method editor (IME), available in Asian versions of the Microsoft Windows operating
system, helps minimize the effort needed by users to enter text containing characters from
Unicode and double-byte character sets.

TWinControl::ImeName
TWinControl See also
The ImeName property specifies the input method editor (IME) name for the control.
__property System::AnsiString ImeName;
Description
The input method editor (IME), available in Asian versions of the Microsoft Windows operating
system, helps minimize the effort needed by users to enter text containing characters from
Unicode and double-byte character sets.

TWinControl::ParentCtl3D
TWinControl See also Example
The ParentCtl3D property determines where a component looks to determine if it should appear
three dimensional.
__property bool ParentCtl3D;
Description
Use ParentCtl3D to ensure that all the components on a form have a uniform appearance. For
example, to make all components on a form appear three dimensional, set the form's Ctl3D
property to true and each control's ParentCtl3D property to true. Not only will all components
have a three-dimensional appearance, but to change to a uniform two-dimensional appearance,
you only have to change the Ctl3D property of the form and all the components will become two
dimensional.
If ParentCtl3D is true, the component uses the value of its parent component's Ctl3D property. If
ParentCtl3D is false, the control uses the value of its own Ctl3D property. The default value is
true.
To specify either a 2D or 3D appearance for a particular component, set Ctl3D to true (for 3D) or
false (for 2D). When setting the Ctl3D proprty of a control, ParentCtl3D automatically gets set to
false.

TWinControl::ParentWindow
TWinControl
The ParentWindow property is the handle to the parent window.
__property HWND ParentWindow;

TWinControl::Showing
TWinControl See also
The Showing property specifies whether the control is currently showing on the screen.
__property bool Showing;
Description
Use the Showing property to determine if the user can see the control on the screen, assuming
that another control is not obstructing it from view.
If the Visible properties of a component and all the parents in its parent hierarchy are true,
Showing is true. If one of the parents containing the component has a Visible property value of
false, Showing is false.
Showing is a read-only property.

TWinControl::TabOrder
TWinControl See also Example
The TabOrder property indicates the position of the control in its parent's tab order.
__property TTabOrder TabOrder;
Description
Tab order is the order in which child windows are visited when the user presses the Tab key. The control
with the TabOrder value of 0 is the control that has the focus when the form first appears.
Initially, the tab order is always the order in which the controls were added to the form. The first
control added to the form has a TabOrder value of 0, the second is 1, the third is 2, and so on.
Change this by changing the TabOrder property. A control with a TabOrder of -1 is outside the
tab order, and cannot be reached by pressing the Tab key.
Each control has a unique tab-order value within its parent. If you change the TabOrder property
value of one control to be the same as the value of a second control, the TabOrder value for all
the other controls changes. For example, suppose a control is sixth in the tab order. If you
change the control's TabOrder property value to 3 (making the control fourth in the tab order),
the control that was originally fourth in the tab order now becomes fifth, and the control that was
fifth becomes sixth.
Assigning TabOrder a value greater than the number of controls contained the parent control
moves the control to the end of the tab order. The control does not take on the assigned value of
TabOrder, but instead is given the number that assures the control is the last in the tab order.
Note
TabOrder is meaningful only if the TabStop property is true and if the control has a parent. The
TabOrder property of a form is not used unless the form assigns another form to be its parent.

TWinControl::TabStop
TWinControl See also Example
The TabStop property determines if the user can tab to a control.
__property bool TabStop;
Description
Use the TabStop to allow or disallow access to the control using the Tab key.
If TabStop is true, the control is in the tab order. If TabStop is false, the control is not in the tab
order and the user can't press the Tab key to move to the control.
Note
TabStop is not meaningful for a form unless the form assigns another form to be its parent.

TWinControl::WindowHandle
TWinControl See also
The WindowHandle provides access to a window handle for the control.
__property HWND WindowHandle;
Description
The WindowHandle property provides access to the same window handle as the Handle
property, but WindowHandle is protected, and therefore only accessible to code inside the
control.
The advantage to using WindowHandle is that it can be read and written to, while the Handle
property is read-only. WindowHandle is intended to be used when implementing methods that
need to change the value of the controls window handle. Unlike the Handle property, reading the
value of WindowHandle doesn’t automatically create a valid handle. Reading WindowHandle
can return a zero value.

TWinControl events
TWinControl Alphabetically Legend

In TWinControl
OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

TWinControl events
TWinControl By object Legend

OnEnter
OnExit
OnKeyDown
OnKeyPress
OnKeyUp

TWinControl::OnEnter
TWinControl See also Example
The OnEnter event occurs when a control receives the input focus.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnEnter;
Description
Use the OnEnter event handler to cause any special processing to occur when a windowed
component becomes active.
The OnEnter event does not occur when switching between forms or between another Windows
application and the application that includes the windowed control.
When switching between controls in separate container controls such as the TPanel and the
TGroupBox controls, an OnEnter event occurs for the container before the OnEnter event of the
contained control.
Similarly, an OnExit event of the container occurs after the OnExit event of the control in a
container when focus moves to another control outside the container.
For example, consider a form with an OK button and a group box that contains three radio
buttons, where focus is currently on the OK button. When the user clicks one of the radio
buttons, an OnExit event of the button occurs, followed by an OnEnter event on the group box,
and finally an OnEnter event on the radio button that was clicked. If the user then clicks on the
OK button, an OnExit event for the radio button occurs followed by an OnExit event for the group
box, and then the button’s OnEnter event occurs.

TWinControl::OnExit
TWinControl See also Example
The OnExit event occurs when the input focus shifts away from one control to another.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

__property Classes::TNotifyEvent OnExit;
Description
Use the OnExit event handler to provide special processing that occurs when the control ceases
to be active.
The OnExit event does not occur when switching between forms or between another Windows
application and your application.
When switching between controls in separate container controls such as the TPanel and the
TGroupBox controls, an OnExit event occurs for the control inside the container before the
OnExit event of the container.
Similarly, an OnEnter event of the container occurs before the OnEnter event of the control in a
container when focus moves to a control inside a container.
For example, consider a form with an OK button and a group box that contains three radio
buttons, where focus is currently on the OK button. When the user clicks one of the radio
buttons, an OnExit event of the button occurs, followed by an OnEnter event on the group box,
and finally an OnEnter event on the radio button that was clicked. If the user then clicks on the
OK button, an OnExit event for the radio button occurs followed by an OnExit event for the group
box, and then the button’s OnEnter event occurs.
Note
The value of the ActiveControl property updates before the OnExit event occurs.

TWinControl::OnKeyDown
TWinControl See also
The OnKeyDown event occurs when a user presses any key while the control has focus.
typedef Set<Classes_1, ssShift, ssDouble> TShiftState;
typedef void __fastcall (__closure *TKeyEvent)(System::TObject* Sender,
unsigned short &Key, Classes::TShiftState Shift);

__property TKeyEvent OnKeyDown;
Description
Use the OnKeyDown event handler to specify special processing to occur when a key is
pressed. The OnKeyDown handler can respond to all keyboard keys, including function keys and
keys combined with the Shift, Alt, and Ctrl keys, and pressed mouse buttons.
The TKeyEvent type points to a method that handles keyboard events. The Key parameter is the
key on the keyboard. For non-alphanumeric keys, use WinAPI virtual key codes to determine the
key pressed. For more information, search for VkKeyScan and VkKeyScanEx in the Win32
Developer's Reference (WIN32.HLP).
The Shift parameter includes zero or more of the following values:
State Meaning

ssShift The Shift key is held down.
ssAlt The Alt key is held down.
ssCtrl The Ctrl key is held down.
ssLeft The left mouse button is held down.
ssMiddle The middle mouse button is held down.
ssDouble Both the right and left mouse buttons are held down.

TWinControl::OnKeyPress
TWinControl See also Example
The OnKeyPress event occurs when a user presses a single character key.
typedef void __fastcall (__closure *TKeyPressEvent)(System::TObject*
Sender, char &Key);

__property TKeyPressEvent OnKeyPress;
Description
Use the OnKeyPress event handler to make something happen as a result of a single character
key press.
The Key parameter in the OnKeyPress event handler is of type Char; therefore, the OnKeyPress
event registers the ASCII character of the key pressed. Keys that don't correspond to an ASCII
Char value (Shift or F1, for example) don't generate an OnKeyPress event. Key combinations
(such as Shift+A), generate only one OnKeyPress event (for this example, Shift+A results in a
Key value of "A" if Caps Lock is off). To respond to non-ASCII keys or key combinations, use the
OnKeyDown or OnKeyUp event handlers.

TWinControl::OnKeyUp
TWinControl See also Example
The OnKeyUp event occurs when the user releases a key that has been pressed.
typedef Set<Classes_1, ssShift, ssDouble> TShiftState;
typedef void __fastcall (__closure *TKeyEvent)(System::TObject* Sender,
unsigned short &Key, Classes::TShiftState Shift);

__property TKeyEvent OnKeyUp;
Description
Use the OnKeyUp event handler to provide special processing that occurs when a key is
released. The OnKeyUp handler can respond to all keyboard keys, including function keys and
keys combined with the Shift, Alt, and Ctrl keys.
The TKeyEvent type points to a method that handles keyboard events. The Key parameter is the
key on the keyboard. For non-alphanumeric keys, you must use WinAPI virtual key codes to
determine the key pressed. For more information, search for VkKeyScan and VkKeyScanEx in
the Win32 Developer's Reference (WIN32.HLP).
The Shift parameter is a set drawn from the following values:
State Meaning

ssShift The Shift key is held down.
ssAlt The Alt key is held down.
ssCtrl The Ctrl key is held down.
ssLeft The left mouse button is held down.
ssMiddle The middle mouse button is held down.
ssDouble Both the right and left mouse buttons are held down.

TWinControl methods
TWinControl Alphabetically Legend

In TWinControl
~TWinControl

AlignControls
Broadcast
CanFocus
ChangeScale
ContainsControl
ControlAtPos
CreateHandle
CreateParams
CreateSubClass
CreateWindowHandle
CreateWnd
DefaultHandler
DestroyHandle
DestroyWindowHandle
DestroyWnd
DisableAlign
DoEnter
DoExit
DoKeyDown
DoKeyPress
DoKeyUp
EnableAlign
FindNextControl
FixupTabList
Focused
GetChildren
GetClientOrigin
GetClientRect
GetDeviceContext
GetTabOrderList
HandleAllocated
HandleNeeded
InsertControl
Invalidate
IsControlMouseMsg
KeyDown
KeyPress
KeyUp
MainWndProc
NotifyControls
PaintControls
PaintHandler
PaintTo
PaintWindow
PaletteChanged
ReadState
Realign
RecreateWnd
RemoveControl
Repaint
ScaleBy
ScaleControls
ScrollBy
SelectFirst
SelectNext
SetBounds
SetChildOrder
SetFocus
SetZOrder

ShowControl
TWinControl
Update
UpdateControlState
WndProc

Derived from TControl
BeginDrag
BringToFront
ClientToScreen
DragDrop
Dragging
EndDrag
GetTextBuf
GetTextLen
Hide
Perform
Refresh
ScreenToClient
SendToBack
SetTextBuf
Show

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TPersistent
Assign

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TWinControl methods
TWinControl By object Legend

~TWinControl
AlignControls
Assign
BeginDrag
BringToFront
Broadcast
CanFocus
ChangeScale
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
ClientToScreen
ContainsControl

ControlAtPos
CreateHandle
CreateParams
CreateSubClass
CreateWindowHandle
CreateWnd
DefaultHandler
DestroyComponents
DestroyHandle
Destroying
DestroyWindowHandle
DestroyWnd
DisableAlign

Dispatch
DoEnter
DoExit
DoKeyDown
DoKeyPress
DoKeyUp
DragDrop
Dragging
EnableAlign
EndDrag
FieldAddress
FindComponent
FindNextControl
FixupTabList
Focused

FreeInstance
FreeNotification
Free

GetChildren
GetClientOrigin
GetClientRect
GetDeviceContext
GetParentComponent
GetTabOrderList
GetTextBuf
GetTextLen
HandleAllocated
HandleNeeded
HasParent
Hide

InheritsFrom
InitInstance
InsertComponent
InsertControl
InstanceSize
Invalidate

IsControlMouseMsg
KeyDown
KeyPress
KeyUp
MainWndProc
MethodAddress
MethodName
NewInstance
NotifyControls
PaintControls
PaintHandler
PaintTo
PaintWindow
PaletteChanged
Perform
ReadState
Realign
RecreateWnd
Refresh
RemoveComponent
RemoveControl
Repaint
ScaleBy
ScaleControls

ScreenToClient
ScrollBy

SelectFirst
SelectNext
SendToBack
SetBounds
SetChildOrder
SetFocus
SetTextBuf
SetZOrder
ShowControl
Show
TWinControl
UpdateControlState
Update
WndProc

TWinControl::~TWinControl
TWinControl See also
~TWinControl frees the memory associated with the TWinControl object. Do not call ~
TWinControl directly. Instead, use the delete keyword on the object, which causes ~
TWinControl to be invoked automatically.
__fastcall virtual ~TWinControl(void);

TWinControl::AlignControls
TWinControl See also
The AlignControls method aligns any controls for which the control is the parent within a
specified area of the control.
virtual void __fastcall AlignControls(TControl* AControl, Windows::
TRect &Rect);

Description
Use AlignControls to align all controls within an area of a form, panel, group box, scroll box, or
any windowed control that contains several other controls. Specify the area in which to align the
controls as the value of the Rect parameter.
AlignControls uses the Align property value for each child control to determine how to align it.
The AControl parameter can be NULL. If you specify a control in AControl, that control takes
precedence in alignment over other, similarly-aligned controls.

TWinControl::Broadcast
TWinControl See also
The Broadcast method sends a message to each of the child controls of the windowed control.
void __fastcall Broadcast(void *Message);
Description
Use Broadcast when you want to send the same message to each of the child controls
contained within the windowed control. Specify the message to be passed as the value of the
Message parameter.

TWinControl::CanFocus
TWinControl See also Example
The CanFocus method determines whether a control can receive focus.
bool __fastcall CanFocus(void);
Description
Call CanFocus to find out if the control can receive input from the user.
CanFocus returns true if both the control and its parent(s) have their Visible and Enabled
properties set to true. If any of the Visible and Enabled properties of the control and the controls
from which the control descends are not true, then CanFocus returns false. Override the
CanFocus method to provide further restrictions to when the control can receive focus in
descendent objects.

TWinControl::ChangeScale
TWinControl See also
The ChangeScale method resizes and repositions the control, rescaling the children of the
control before the control itself is rescaled.
virtual void __fastcall ChangeScale(int M, int D);
Description
ChangeScale can be used to change the scale of a form and all its controls for a different screen
resolution. Because ChangeScale modifies the control’s Top, Left, Width, and Height
properties, it changes the position of the control and its children as well as their size.
The M parameter is the multiplier and the D parameter is the divisor. For example, to change a
control and its children to be 75% of their original sizes, specify the value of M as 75, and the
value of D as 100 (75/100). Alternately, specify the value of M as 3, and the value of D as 4 (3/
4). Both fractions are equal and result in the controls being scaled by the same amount, 75%.
To make the control and its children 33% larger than their previous sizes, specify the value of M
as 133, and the value of D as 100 (133/100), or obtain the same results by specifying the value
of M as 4, and the value of D as 3 (4/3).
Note
Because control sizes and coordinates are integers, scaling them by the M/D ratio incurs some
degree of roundoff error. Calling ChangeScale repeatedly can mean that at some point the
control disappears (when the roundoff errors make the control smaller), or at some point it
creeps off the form (when the roundoff errors move the location of control). If rescaling a form
repeatedly, destroy and reload the form after several rescalings to eliminate the accumulating
roundoff error.

TWinControl::ContainsControl
TWinControl See also
The ContainsControl method indicates whether a specified control exists within the control.
bool __fastcall ContainsControl(TControl* Control);
Description
Use ContainsControl to find out if the a particular control exists within this control.
ContainsControl returns true if the specified value of the Control parameter is a child control of
the windowed control. The Control parameter need not be an immediate child (in the Controls
property), but may be contained in a child of the windowed control, or in a child of a child of the
windowed control, for indefinitely many levels deep.
If the method returns false, the specified control is not within the control.

TWinControl::ControlAtPos
TWinControl See also
The ControlAtPos method returns the child control located at a specified position within the
control.
TControl* __fastcall ControlAtPos(const POINT &Pos, bool AllowDisabled)
;

Description
Use ControlAtPos when you want to know which child control is at the specified location within
the control. ControlAtPos will return an immediate child of the windowed control; that is, one of
the entries of the Controls property, that has the windowed control for its Parent property.
Specify the position in client coordinates as the value of the Pos parameter. Pos can be
anywhere within the boundaries of the child control, not just the upper left corner.
If there is no control at the specified position, ControlAtPos returns NULL. The AllowDisabled
parameter determines whether the search for controls includes disabled controls.

TWinControl::CreateHandle
TWinControl See also
The CreateHandle method generates a handle for the Handle property of the control if it does
not already have one.
virtual void __fastcall CreateHandle(void);
Description
CreateHandle calls the CreateWnd method to create the window handle if the control has a
parent. CreateHandle creates a handle in the parent control before it creates a handle for the
control itself.

TWinControl::CreateParams
TWinControl See also
The CreateParams method initializes a window-creation parameter record passed in the Params
parameter.
virtual void __fastcall CreateParams(TCreateParams &Params);
Description
The CreateWnd method calls CreateParams to initialize the parameters it passes to
CreateWindowHandle. Override CreateParams to customize the way a control creates its
Windows representation. When overriding CreateParams, always call the inherited method first
to set the default values, then make any desired adjustments.
Specify the parameter record as the value of the Params parameter. The TCreateParams type is
a data structure holding information needed when telling Windows to create a window handle.
The fields of a TCreateParams record become the parameters to a call to the CreateWindowEx
API function.
TWinControl implements CreateParams by setting all the fields of Params to generic base
values. A number of the standard controls override CreateParams to change one or more of the
default values in Params.

TWinControl::CreateSubClass
TWinControl See also
The CreateSubClass method creates a Borland C++Builder windowed control derived from an
existing Windows window class.
void __fastcall CreateSubClass(TCreateParams &Params, char *
ControlClassName);

Description
Use CreateSubClass when you want to create a TCreateParams record to pass to a call to the
CreateWindowEx API function. The TCreateParams type is a data structure holding information
needed when telling Windows to create a window handle.
Call CreateSubClass in the CreateParams method of a subclassed control, after calling the
inherited CreateParams. Specify the parameter record as the value of the Params parameter.
CreateSubClass allows VCL controls to create standard Windows controls.

TWinControl::CreateWindowHandle
TWinControl See also
The CreateWindowHandle method creates a window handle for the control.
virtual void __fastcall CreateWindowHandle(const TCreateParams &Params)
;

Description
Call CreateWindowHandle to create a window handle for the control. CreateWindowHandle
creates the window handle by calling the CreateWindowEx API function, passing parameters
from the record passed in the Params parameter.
The TCreateParams type is a data structure holding information needed when telling Windows to
create a window handle.

TWinControl::CreateWnd
TWinControl See also
The CreateWnd method creates a Windows control corresponding to the windowed-control
component.
virtual void __fastcall CreateWnd(void);
Description
CreateWnd first calls the CreateParams method to initialize the window-creation parameters,
then calls CreateWindowHandle to create the window handle for the control. CreateWnd adjusts
the size of the newly-created window and then sets the control's font by calling the Perform
method, passing the WM_SETFONT message.

TWinControl::DefaultHandler
TWinControl See also
The DefaultHandler method provides message handling for all messages that the control does
not fully process itself.
virtual void __fastcall DefaultHandler(void *Message);
Description
Override DefaultHandler when you want to change the default message handling for the control.
Calling inherited in a message-handling method results in a call to the ancestor's DefaultHandler
method if that ancestor does not specify a handler for the message being handled.
TWinControl overrides the TControl.DefaultHandler to handle messages for all its descendant
types. DefaultHandler passes any otherwise-unhandled messages to the control's window
procedure by calling the CallWindowProc API function.

TWinControl::DestroyHandle
TWinControl See also
The DestroyHandle method destroys the windowed control's window handle without destroying
the control.
void __fastcall DestroyHandle(void);
Description
Call DestroyHandle to dispose of the handle, but leave the control intact. The control can later
recreate the handle if needed. DestroyHandle is the converse operation to CreateHandle.
Applications should call the high-level CreateHandle and DestroyHandle methods, rather than
the lower-level methods of CreateWnd and DestroyWnd, whenever possible.
If the control has windowed controls as child controls, DestroyHandle calls each of their
DestroyHandle methods before calling DestroyWnd to destroy its own handle.

TWinControl::DestroyWindowHandle
TWinControl See also
The DestroyWindowHandle method calls the Windows API function DestroyWindow to destroy
the window handle created in the CreateWindowHandle method.
virtual void __fastcall DestroyWindowHandle(void);
Description
Call DestroyWindowHandle to dispose of the window handle for the control.
The ~TWinControl method calls DestroyWindowHandle to destroy any window handle
associated with a windowed control before destroying the object. The DestroyWnd method also
calls DestroyWindowHandle.

TWinControl::DestroyWnd
TWinControl See also
The DestroyWnd method destroys the windowed control's window handle.
virtual void __fastcall DestroyWnd(void);
Description
Before the window handle is destroyed, DestroyWnd saves a copy of the control's text in internal
storage, frees any device contexts, and finally calls DestroyWindowHandle.

TWinControl::DisableAlign
TWinControl See also
The DisableAlign method temporarily disables the realigning of controls within the windowed
control.
void __fastcall DisableAlign(void);
Description
Call DisableAlign to prevent child controls from realigning. You might want to disable aligning
while performing multiple manipulations of controls, such as reading from a form file or scaling.
Each call to DisableAlign must have a corresponding call to EnableAlign.
DisableAlign increments a reference count that EnableAlign later decrements. When the
reference count reaches zero, EnableAlign performs any needed realignments.

TWinControl::DoEnter
TWinControl See also
The DoEnter method is the protected implementation method for a windowed control's OnEnter
event.
virtual void __fastcall DoEnter(void);
Description
The DoEnter method does nothing except call any event handler attached to the OnEnter event.
Override DoEnter to provide other responses in addition to the inherited event-handler call.

TWinControl::DoExit
TWinControl See also
The DoExit method is the protected implementation method for a windowed control's OnExit
event.
virtual void __fastcall DoExit(void);
Description
The DoExit method does nothing except call any event handler attached to the OnExit event.
Override DoExit to provide other responses in addition to the inherited event-handler call.

TWinControl::DoKeyDown
TWinControl See also
The DoKeyDown method is a protected method that performs some preprocessing before calling
the KeyDown method that implements the OnKeyDown event.
bool __fastcall DoKeyDown(Messages::TWMKey &Message);
Description
Use DoKeyDown to determine if the application should continue processing key-down message
passed in the Message parameter. A return value of true indicates that the key-down occurrence
has been handled completely, and no further processing is needed. A return value of false
indicates that the application should continue passing the key-down message through the
inherited processing.
DoKeyDown allows parent forms with the KeyPreview property set to true to preemptively
process the key-down message. If the form does not handle the message, DoKeyDown
translates the message parameters into the appropriate types and calls KeyDown, which in turn
calls the OnKeyDown event handler, if any.
The TWMKey type is the message record for all Windows keyboard messages.

TWinControl::DoKeyPress
TWinControl See also
The DoKeyPress method is a protected method that performs some preprocessing before calling
the KeyPress method that implements the OnKeyPress event.
bool __fastcall DoKeyPress(Messages::TWMKey &Message);
Description
Use the return value from DoKeyPress to determine whether the application should continue
processing the key-press message passed in the Message parameter. A return value of true
indicates that the key-press occurrence has been handled completely, and no further processing
is needed. A return value of false indicates that the application should continue passing the key-
press message through the inherited processing.
DoKeyPress allows parent forms with the KeyPreview property set to true to preemptively
process the key-down message. If the form does not handle the message, DoKeyPress
translates the message parameters into the appropriate types and calls KeyPress, which in turn
calls the OnKeyPress event handler, if any.
The TWMKey type is the message record for all Windows keyboard messages.

TWinControl::DoKeyUp
TWinControl See also
The DoKeyUp method is a protected method that performs some preprocessing before calling
the KeyUp method that implements the OnKeyUp event.
bool __fastcall DoKeyUp(Messages::TWMKey &Message);
Description
Use the return value from DoKeyUp to determine whether the application should continue
processing the key-up message passed in the Message parameter. A return value of true
indicates that the key-up occurrence has been handled completely, and no further processing is
needed. A return value of false indicates that the application should continue passing the key-up
message through the inherited processing.
DoKeyUp allows parent forms with the KeyPreview property set to true to preemptively process
the key-down message. If the form does not handle the message, DoKeyUp translates the
message parameters into the appropriate types and calls KeyUp, which in turn calls the
OnKeyUp event handler, if any.
The TWMKey type is the message record for all Windows keyboard messages.

TWinControl::EnableAlign
TWinControl See also
The EnableAlign method decrements the reference count incremented by a call to the
DisableAlign method, eventually realigning the child controls of the windowed control.
void __fastcall EnableAlign(void);
Description
Call EnableAlign to allow child controls within the control to realign again after they were
prevented from realigning by a call to DisableAlign.
Each time the DisableAlign method is called, it increments a reference count. Each time
EnableAlign is called, it decrements the same reference count. When the reference count
reaches zero, EnableAlign calls the Realign method to perform any pending realignments.
Be sure to pair each call to DisableAlign with a call to EnableAlign.

TWinControl::FindNextControl
TWinControl See also
The FindNextControl method returns the windowed control's next child control in the tab order
after the specified control.
TWinControl* __fastcall FindNextControl(TWinControl* CurControl, bool
GoForward, bool CheckTabStop, bool CheckParent);

Description
Call FindNextControl to find the next child control in the tab order after CurControl.If CurControl
is not a child of the windowed control, FindNextControl returns the first child control in the tab
order.
The GoForward parameter controls the direction of the search. If GoForward is true,
FindNextControl searches forward through the child controls in tab order. If Go Forward is false,
FindNextControl searches backward through the controls.
The CheckTabStop and CheckParent parameters control whether FindNextControl performs
certain checks on the controls it finds. If CheckTabStop is true, the returned control must have its
TabStop property set to true. If CheckParent is true, the returned control's Parent property must
indicate the windowed control.
FindNextControl calls the GetTabOrderList method to build its list of possible "next" controls.

TWinControl::FixupTabList
TWinControl See also
The FixupTabList method sorts the child controls of this control by their tab order.
void __fastcall FixupTabList(void);
Description
Applications should not call FixupTabList directly. Borland C++Builder uses this method in its
implementation of the ReadState method to initialize the tab order list based on the TabOrder
properties of the child controls being read from the stream.

TWinControl::Focused
TWinControl See also
The Focused method determines whether a windowed control has the focus.
bool __fastcall Focused(void);
Description
Use the Focused method to see if the control is the active control. When Focused is true, the
control has the focus. If Focused is false, the user cannot interact with the control.

TWinControl::GetChildren
TWinControl See also
The GetChildren method calls the specified method for each child of the windowed control.
virtual void __fastcall GetChildren(Classes::TGetChildProc Proc);
Description
GetChildren is called by the Component Library streaming system. Applications will probably
never need to call this routine . Some specialized controls may need to override GetChildren to
indicate which of its child controls should be written to the stream.
The TGetChildProc type defines a method-pointer type for the methods to be passed as
parameters to the GetChildren method.

TWinControl::GetClientOrigin
TWinControl See also
The GetClientOrigin method is a protected access method for the ClientOrigin property.
virtual POINT __fastcall GetClientOrigin(void);
Description
Call GetClientOrigin to find the origin of the client area of the control.
GetClientOrigin returns a point indicating the position of the top-left corner of the control in
screen coordinates. GetClientOrigin calls the Windows API function ClientToScreen to return the
position of top-left corner of the windowed control on the screen in screen coordinates.

TWinControl::GetClientRect
TWinControl See also
The GetClientRect method is a protected access method for the ClientRect property.
virtual Windows::TRect __fastcall GetClientRect(void);
Description
Call GetClientRect to return the rectangle that defines the client area of the control.
GetClientRect returns a rectangle with the rectangle’s Top and Left fields set to zero, and its
Bottom and Right fields set to the control's ClientHeight and ClientWidth, respectively.
GetClientRect calls the Windows API function GetClientRect.

TWinControl::GetDeviceContext
TWinControl See also
The GetDeviceContext method returns a device context for the control
virtual HDC __fastcall GetDeviceContext(HWND &WindowHandle);
Description
Call GetDeviceContext to return a device context for the control.
GetDeviceContext calls the Windows API function GetDC, passing the windowed control's
Handle property and setting the WindowHandle property to Handle. If the call is unsuccessful,
the EOutOfResources exception is raised.

TWinControl::GetTabOrderList
TWinControl See also
The GetTabOrderList builds a list of controls in tab order
virtual void __fastcall GetTabOrderList(Classes::TList* List);
Description
Call GetTabOrder to construct a list of child controls in tab order.
GetTabOrder iterates through the windowed control's internal tab-order list, adding each of the
controls to List, including any controls contained in those controls. The result is a list of all the
controls and their owned controls, in tab order.
The FindNextControl method calls GetTabOrderList to build a complete list of the controls that
FindNextControl uses to locate the next control in the tab order.

TWinControl::HandleAllocated
TWinControl See also Example
The HandleAllocated reports whether a window handle exists for the control.
bool __fastcall HandleAllocated(void);
Description
Query HandleAllocated to find out the control has a window handle.
If a window handle exists, HandleAllocated returns true. If no window handle exists,
HandleAllocated returns false. Testing the Handle property of a control directly causes a handle
to be allocated if it does not already exist. Call the HandleAllocated method to determine
whether a handle exists without allocating a handle as a side effect.

TWinControl::HandleNeeded
TWinControl See also Example
The HandleNeeded creates a window handle for the control if it doesn't already exist.
void __fastcall HandleNeeded(void);
Description
Call HandleNeeded to create a window handle for the control.
If no window handle exists, HandleNeeded calls the HandleNeeded method for the parent of the
control before it creates a window handle for this control.

TWinControl::InsertControl
TWinControl See also Example
The InsertControl inserts a control into the Controls array property of the windowed control.
void __fastcall InsertControl(TControl* AControl);
Description
Controls are automatically inserted and removed when you add them and delete them at design
time. When you want to insert a control into the Controls property at runtime, call the
InsertControl method.
InsertControl makes the inserted control a child, and the containing control the parent. Specify
the control to be inserted as the value of the AControl parameter. If the child control is already
the child of another windowed control, set the Parent property of the child instead, as this
ensures the child is removed from the Controls of the original parent.

TWinControl::Invalidate
TWinControl See also Example
The Invalidate method repaints the control after other important Windows messages are
handled.
virtual void __fastcall Invalidate(void);
Description
Use Invalidate when the entire control needs to be repainted. When more than one region within
the control needs repainting, Invalidate will cause the entire window to be repainted, avoiding
flicker. There is no performance penalty for calling Invalidate multiple times before the control is
actually repainted.
Invalidate calls the InvalidateRect function of the Windows API.

TWinControl::IsControlMouseMsg
TWinControl See also
The IsControlMouseMsg returns true if a specified mouse message is directed to one of the child
controls of the windowed control.
bool __fastcall IsControlMouseMsg(Messages::TWMMouse &Message);
Description
Call IsControlMouseMsg to find out if a mouse message is directed to one of the control’s child
controls. Specify the mouse message as the value of the Message parameter.
Windows takes care of sending messages to windowed child controls, but for non-windowed
child controls, Windows sends the messages to the parent control, which must then determine
which, if any, of its child controls should receive the message.
The WndProc method of a windowed control calls IsControlMouseMsg to process all mouse
message sent to the windowed control.

TWinControl::KeyDown
TWinControl See also
The KeyDown method is the protected implementation method for a windowed control's
OnKeyDown event.
virtual void __fastcall KeyDown(unsigned short &Key, Classes::
TShiftState Shift);

Description
The KeyDown method inherited from TWinControl does nothing except call any event handler
attached to the OnKeyDown event. Override KeyDown to provide other responses in addition to
the inherited event-handler call.
The Key parameter is the key on the keyboard. For non-alphanumeric keys, you must use
WinAPI virtual key codes to determine the key pressed. For more information, search for
VkKeyScan and VkKeyScanEx in the Win32 Developer's Reference (WIN32.HLP).
A windowed control calls KeyDown in response to a key-down message (WM_KEYDOWN) from
Windows. The actual sequence is that the message goes to a private message handler that calls
the DoKeyDown method. If DoKeyDown determines that the control should, in fact, process the
character, it decodes the parameters of the key-down message and passes the key code and
shift-key state to KeyDown in the Key and Shift parameters, respectively.
Either KeyDown or the OnKeyDown event handler it calls can suppress further processing of a
key by setting the Key parameter to zero.
The Shift parameter is a set of shift key and mouse combinations that includes these possible
states:
State Meaning

ssShift The Shift key is held down.
ssAlt The Alt key is held down.
ssCtrl The Ctrl key is held down.
ssLeft The left mouse button is held down.
ssMiddle The middle mouse button is held down.
ssDouble Both the right and left mouse buttons are held down.

TWinControl::KeyPress
TWinControl See also
The KeyPress method is the protected implementation method for a windowed control's
OnKeyPress event.
virtual void __fastcall KeyPress(char &Key);
Description
The KeyPress method inherited from TWinControl does nothing except call any event handler
attached to the OnKeyPress event. Override KeyPress to provide other responses in addition to
the inherited event-handler call.
A windowed control calls KeyPress in response to a key-press message (WM_CHAR) from
Windows. The actual sequence is that the message goes to a private message handler that calls
the DoKeyPress method. If DoKeyPress determines that the control should, in fact, process the
character, it decodes the parameters of the key-down message and passes the key code to
KeyPress in the Key parameters, respectively.
The Key parameter is the key on the keyboard. For non-alphanumeric keys, you must use
WinAPI virtual key codes to determine the key pressed. For more information, search for
VkKeyScan and VkKeyScanEx in the Win32 Developer's Reference (WIN32.HLP).
Either KeyPress or the OnKeyPress event handler it calls can suppress further processing of a
character by setting the Key parameter to zero.

TWinControl::KeyUp
TWinControl See also
The KeyUp method is the protected implementation method for a windowed control's OnKeyUp
event.
virtual void __fastcall KeyUp(unsigned short &Key, Classes::
TShiftState Shift);

Description
The KeyUp method simply calls the OnKeyUp event handler if it is assigned. Override KeyUp to
provide other responses in addition to the inherited event-handler call.
A windowed control calls KeyUp in response to a key-up message (WM_KEYUP) from Windows.
The actual sequence followed when a key is released is as follows:
1 The DoKeyUp method determines whether the control should, in fact, process the character.
2 If the character should be processed, DoKeyUp decodes the parameters of the key-up

message and passes the key code and shift-key state to KeyUp in the Key and Shift
parameters, respectively.

3 Either KeyUp or the OnKeyUp event handler it calls can suppress further processing of a key
by setting the Key parameter to zero.

The Key parameter is the key on the keyboard. For non-alphanumeric keys, use WinAPI virtual
key codes to determine the key pressed. For more information, search for VkKeyScan and
VkKeyScanEx in the Win32 Developer's Reference (WIN32.HLP).
The TShiftState type is a set of shift key and mouse combinations that includes these possible
states:
State Meaning

ssShift The Shift key is held down.
ssAlt The Alt key is held down.
ssCtrl The Ctrl key is held down.
ssLeft The left mouse button is held down.
ssMiddle The middle mouse button is held down.
ssDouble Both the right and left mouse buttons are held down.

TWinControl::MainWndProc
TWinControl See also
The MainWndProc method is the routine Windows calls when it has messages for the control.
void __fastcall MainWndProc(Messages::TMessage &Message);
Description
Call MainWndProc to send a message to the control.
MainWndProc does not process or dispatch the messages itself, but rather calls the WndProc
method to do that. MainWndProc provides an exception-handling block around WndProc,
ensuring that if any unhandled exceptions occur in the application during the processing of a
message, they go to the application’s HandleException method.

TWinControl::NotifyControls
TWinControl See also
The NotifyControls method sends a message to all the child windows of the windowed control.
void __fastcall NotifyControls(unsigned short Msg);
Description
The NotifyControls method sends a message with the message ID passed in the Msg parameter
to all the controls in the windowed control's Controls array property. Borland C++Builder uses
NotifyControls to update all the controls in a form of such occurrences as changes in the parent
color or font.
NotifyControls constructs a generic message record, filling its message ID field with the value of
Msg and setting its parameter and result fields to zeros, then calls the Broadcast method to send
the message to all the child controls.

TWinControl::PaintControls
TWinControl See also
The PaintControls method paints each of the child controls in a windowed control using the
specified device context.
void __fastcall PaintControls(HDC DC, TControl* First);
Description
Call PaintControls to paint all the child controls of this control. Pass the device context as the
value of the DC parameter. The First parameter indicates the starting point in the windowed
control's child-control list to paint. If First is NULL or does not indicate one of the child controls,
PaintControls paints all the child controls.
The Repaint method calls PaintControls for the control's parent, passing the control in First to
repaint the control and any controls it might intersect. PaintHandler also calls PaintControls after
calling PaintWindow.

TWinControl::PaintHandler
TWinControl See also
The PaintHandler method is a handler that responds to WM_PAINT messages.
void __fastcall PaintHandler(Messages::TWMPaint &Message);
Description
PaintHandler calls the BeginPaint and EndPaint API functions, and between them paints the
control's background by calling PaintWindow and any child controls by calling PaintControls.

TWinControl::PaintTo
TWinControl See also
The PaintTo method draws the windowed control on a device context.
void __fastcall PaintTo(HDC DC, int X, int Y);
Description
Call PaintTo to draw the control on a device context. Specify the device context as the value of
the DC parameter and specify the X and Y coordinates on the device context where the top-left
corner of the windowed control is to be drawn. PaintTo first erases the background of the device
context and then paints the control.
PaintTo is useful for drawing an image of the control into a bitmap DC.

TWinControl::PaintWindow
TWinControl See also
The PaintWindow method renders the image of a windowed control.
virtual void __fastcall PaintWindow(HDC DC);
Description
Call PaintWindow to repaint the control. PaintWindow sends a WM_PAINT message to the
windowed control's DefaultHandler message, setting the message record's WParam field to the
value passed in DC and the other parameter and result fields to zeros.

TWinControl::PaletteChanged
TWinControl See also
The PaletteChanged method responds to changes in the system's palette by realizing the
control's palette and the palette for each child control.
virtual bool __fastcall PaletteChanged(bool Foreground);
Description
Override PaletteChanged to change how the control responds to Windows notifications that the
system palette is changing. TWinControl responds to these notifications by trying to realize the
windowed control’s palette, if any, into the current device context, and then passing on the
PaletteChanged notification to each of the child controls in turn. If the change in the system
palette causes the actual value of the control’s palette to change, PaletteChanged will
invalidate the control so that it can repaint with the new palette.
Windows paints the topmost window with a foreground palette, while other windows employ
background palettes. Background palettes are approximate matches to the colors specified by
the control’s logical palette, given the limitations imposed by implementing the foreground
palette. Windows only allows a single foreground palette.
PaletteChanged allows the control to obtain a new realization of its palette when the system
palette changes. When ForeGround is true, the form has been activated and controls is
specifying the new foreground palette. When ForeGround is false, another application has
changed the foreground palette, and controls that are sensitive to the available palette should
realize new background palettes to best match their logical palettes.
If the control does not have a logical palette to be realized into the current device context,
GetPalette will return false, and PaletteChanged will not try to realize a palette for the windowed
control, but simply pass the notification on to the child controls. If the windowed control or any of
its child controls realize a palette into the current device context in response to PaletteChanged,
this method returns true.
Override PaletteChanged to change the way in which controls are given an opportunity to realize
a new palette when the windows system palette changes. For example, override
PaletteChanged to change the order in which child controls realize their palettes, giving a
particular control the foreground palette when the form is activated, or to pass palette change
notification to custom controls implemented outside of Borland C++Builder, such as in DLLs.
Override GetPalette instead to affect whether the windowed control actually has a palette to
realize, or to change the value of the control’s logical palette.
Note
PaletteChanged is called only when the runtime video mode requires palette support, such as for
256 color mode, but not 16 million color mode.

TWinControl::ReadState
TWinControl See also
The ReadState method prepares the control for having its properties assigned values read from
a stream.
virtual void __fastcall ReadState(Classes::TReader* Reader);
Description
Override ReadState to change the preparations the control makes as it readies itself to have its
properties values assigned from a stream. For example, the windowed control might destroy
temporary internal data structures or objects before new instances are loaded from the stream.
Be sure to include a call to the inherited ReadState property of TControl when overriding
ReadState.
ReadState disables control alignment until all the child controls have been read from the stream,
calls the inherited ReadState method, and re-enables the alignment of all the controls. The
method then builds the tab order list of controls and synchronizes its Ctl3D property and its
visibility with that of its parent control.

TWinControl::Realign
TWinControl See also
The Realign method forces the windowed control to realign the controls within it.
void __fastcall Realign(void);
Description
Call Realign to realign all the child controls of this control after modifying something that affects
their alignment.
If all of the child controls of this control have their Align properties set to alNone, Realign has no
effect.
The EnableAlign method calls Realign when its reference count reaches zero.

TWinControl::RecreateWnd
TWinControl See also
The RecreateWnd method destroys the window handle associated with a windowed control and
then creates another that reflects the control's current state.
void __fastcall RecreateWnd(void);
Description
Call RecreateWnd to recreate the control.
Windows does not reflect certain kinds of changes to a control without destroying the window
and recreating it. For example, to reflect a change in the border style of an edit box, the window
for the control must be recreated.
RecreateWnd calls DestroyHandle to destroy the window handle, then regenerates the handle
as part of redisplaying the control.

TWinControl::RemoveControl
TWinControl See also Example
The RemoveControl method removes a specified control from the Controls array of this control.
void __fastcall RemoveControl(TControl* AControl);
Description
Call RemoveControl to remove a child control from this control’s Controls property. The result is
that this control is no longer the parent of the removed control. Specify the control to remove as
the value of the AControl parameter.
Controls are automatically inserted and removed when you add them and delete them at design
time. When you want to remove a control from the Controls property at runtime, call the
RemoveControl method.

TWinControl::Repaint
TWinControl See also
The Repaint method repaints the windowed control’s image on the screen.
virtual void __fastcall Repaint(void);
Description
Call Repaint to repaint the control.
The Repaint method calls the Invalidate method and then the Update method to repaint the
control.

TWinControl::ScaleBy
TWinControl See also Example
The ScaleBy method rescales a windowed control and any of its children to a percentage of their
former size.
void __fastcall ScaleBy(int M, int D);
Description
Call ScaleBy to rescale the control and all its children. ScaleBy modifies the Height and Width
properties of the controls, but it does not change the Top and Left properties; therefore, the size
of the controls changes, but not the coordinates of the top-left corners of the controls.
The M and D parameters determine the percentage by which the control and its children are
scaled. The M parameter is the multiplier and the D parameter is the divisor. For example, to
change a control to be 75% of its original size, specify the value of M as 75, and the value of D
as 100 (75/100). Alternately, obtain the same results by specifying the value of M as 3, and the
value of D as 4 (3/4). Both fractions are equal and result in the control being scaled by the same
amount, 75%.
To make the control 33% larger than its previous size, specify the value of M as 133, and the
value of D as 100 (133/100), or specify the value of M as 4, and the value of D as 3 (4/3), as the
fraction 133/100 is approximately equal to 4/3.
Note
Because control sizes and coordinates are integers, scaling them by the M/D ratio incurs some
degree of roundoff error. Calling ScaleBy repeatedly may mean that at some point the control
disappears (when the roundoff errors make the control smaller). When rescaling controls
repeatedly, consider destroying and reloading the form after several rescalings so that the
coordinates are rescaled without most of the accumulating roundoff error.

TWinControl::ScaleControls
TWinControl See also
The ScaleControls method rescales the child controls of a windowed control without rescaling
the control itself.
void __fastcall ScaleControls(int M, int D);
Description
Call ScaleControls to rescale only the children of the control, while leaving the control itself the
same size.
ScaleControls calls the ChangeScale method of each child control, specifying the percentage to
scale by through the M and D parameters. M is the multiplier and D is the divisor. For example,
to change the child controls to be 75% of their original size, specify the value of M as 75, and the
value of D as 100 (75/100). Alternately, specify the value of M as 3, and the value D as 4 (3/4).
Both fractions are equal and result in the controls being scaled by the same amount, 75%.
Note
Because control sizes and coordinates are integers, scaling them by the M/D ratio incurs some
degree of roundoff error. Calling ScaleBy repeatedly means that at some point the control may
disappear (when the roundoff errors make the control smaller), or creep off the form (when the
roundoff errors move the location of control). When rescaling controls repeatedly, consider
destroying and reloading the form after several rescalings so that the coordinates are rescaled
without most of the accumulating roundoff error.

TWinControl::ScrollBy
TWinControl See also Example
The ScrollBy method scrolls the contents of a windowed control.
void __fastcall ScrollBy(int DeltaX, int DeltaY);
Description
Call ScrollBy to scroll the contents within the control. While ScrollBy can be used for any
windowed control, it makes the most sense to use it for descendents of TScrollingWinControl.
Applications seldom need to call the ScrollBy method unless they implement their own scrolling
interface rather than relying on a scroll bar.
The DeltaX parameter is the change in pixels along the X axis. A positive DeltaX value scrolls
the contents to the right; a negative value scrolls the contents to the left. The DeltaY parameter
is the change in pixels along the Y axis. A positive DeltaY value scrolls the contents down; a
negative value scrolls the contents up.

TWinControl::SelectFirst
TWinControl See also
The SelectFirst method locates the first child selectable control in the tab order within the
windowed control.
void __fastcall SelectFirst(void);
Description
Call SelectFirst to find the first child that can be selected within the control’s tab order.
SelectFirst calls the FindNextControl method, passing NULL as the current control. Once the first
selectable control is found, SelectFirst makes the control the active control on the form.

TWinControl::SelectNext
TWinControl See also
The SelectNext method moves the input focus from the current child control to the next one in
the tab order.
void __fastcall SelectNext(TWinControl* CurControl, bool GoForward,
bool CheckTabStop);

Description
Call SelectNext to find the next child control in the control’s tab order. Specify the current
control from which to begin the search as the value of the CurControl parameter. The
GoForward parameter controls the direction of the search. If GoForward is true, FindNextControl
searches forward through the child controls in tab order. If GoForward is false, FindNextControl
searches backward through the controls.
The CheckTabStop parameter controls whether the control SelectNext finds must be a tab stop.
If CheckTabStop is true, the returned control must have its TabStop property set to true, or the
search for the next control continues.
If SelectNext doesn’t locate an appropriate control (as defined by the GoForward and the
CheckTabStop parameters, the focus is restored to CurControl.

TWinControl::SetBounds
TWinControl See also Example
The SetBounds method sets the windowed control's boundary properties all at once.
virtual void __fastcall SetBounds(int ALeft, int ATop, int AWidth, int
AHeight);

Description
Use SetBounds to change all of the component's boundary properties at one time. The same
effect can be achieved by setting the Left, Top, Width, and Height properties separately, but
SetBounds changes all four properties at once ensuring that the control will not repaint between
changes.
Specify the values for the Left, Top, Width, and Height properties as the value of the ALeft,
ATop, AWidth, and AHeight parameters, respectively.

TWinControl::SetChildOrder
TWinControl See also
The SetChildOrder method changes the order in which the child component appears in the list of
child components returned by the GetChildren method.
virtual void __fastcall SetChildOrder(Classes::TComponent* Child, int
Order);

Description
Use SetChildOrder when you want to change the order in which child objects are streamed in.
Specify the child component whose order you want to change as the value of the Child
parameter. Indicate the position you want the component to be in as the value of the Order
parameter.
When SetChildOrder is called, items previously below the child's old position move up, and
those below the new position move down.

TWinControl::SetFocus
TWinControl See also Example
The SetFocus method gives the input focus to the control.
virtual void __fastcall SetFocus(void);
Description
Use SetFocus to change the focus to another control.

TWinControl::SetZOrder
TWinControl See also
The SetZOrder method moves the control within the parent’s control list to either the top or
bottom of the windowed controls, or, if the control has no parent, the control becomes either the
top or bottom window on the screen.
virtual void __fastcall SetZOrder(bool TopMost);
Description
Use SetZOrder to move rearrange overlapping controls within a parent control or overlapping
windows on the screen. If the TopMost parameter is true, the control becomes the top control;
otherwise, it becomes the bottom control.
Windowed controls always stack on top of non-windowed controls. Thus, if the Parent contains
any non-windowed controls, calling SetZOrder with a TopMost value of false will still keep the
windowed control above all the non-windowed controls.
After changing the order, SetZOrder invalidates the control to ensure repainting to reflect the
new order.

TWinControl::ShowControl
TWinControl See also
The ShowControl method ensures that a specified child control is visible.
virtual void __fastcall ShowControl(TControl* AControl);
Description
Call ShowControl to display a child control. Specify the control you want to ensure will be visible
as the value of the AControl parameter.
The TWinControl method ShowControl simply calls the ShowControl method of the windowed
control’s parent. Derived objects should override the ShowControl method to perform whatever
actions are necessary to allow the indicated child object to be visible. Possible actions include
scrolling the particular child object into view, or changing to the appropriate notebook page.
ShowControl is a protected method used in the implementation of the Show method.

TWinControl::TWinControl
TWinControl See also
TWinControl creates an instance of TWinControl.
__fastcall virtual TWinControl(Classes::TComponent* AOwner);

-Or-
__fastcall TWinControl(HWND ParentWindow);

Description
Call TWinControl to construct and initialize a new windowed control and insert the newly-
constructed control into its owner, as specified by the AOwner parameter, by calling that owner's
InsertComponent method.
After calling the inherited constructor, TWinControl
• Creates and initializes the Brush.
• Initializes the ParentCtl3D property to true .
• Sets the TabOrder property to -1.
Most controls override TWinControl to initialize their unique properties. Objects that override the
TWinControl method must always call the inherited TWinControl method first, and then proceed
with the component-specific initialization.
If a derived object allocates resources or memory, override the ~TWinControl method to free
those resources.

TWinControl::Update
TWinControl See also Example
The Update method processes any pending paint messages immediately.
virtual void __fastcall Update(void);
Description
Call Update to force the control to be repainted before any more, possibly time-consuming,
processing takes place. Use Update to provide immediate feedback to the user that cannot wait
for the Windows paint message to arrive. Update does not invalidate the control, but simply
forces a repaint of any regions that have already been invalidated. Call Repaint instead if you
need to invalidate the control as well.
Update calls the Windows API UpdateWindow function, which processes any pending paint
messages. For more information, see the Win32 Developer's Reference (WIN32.HLP).

TWinControl::UpdateControlState
TWinControl See also
The UpdateControlState method shows a windowed control, causing all parent objects to make
any necessary adjustments.
void __fastcall UpdateControlState(void);
Description
UpdateControlState is used internally by Borland C++Builder to show controls and create
handles for controls at the time they are displayed. UpdateControlState calls the Show method
to show the windowed control. To help ensure that the windowed control will be visible, it creates
the window handle for the object or any parent objects that do not yet have one, and calls the
ShowControl method of all parent controls to ensure that the control is in view.
UpdateControlState shows the control only if its parent is showing and the control’s Visible
property is true.

TWinControl::WndProc
TWinControl See also
The WndProc method provides specific message responses for the control.
virtual void __fastcall WndProc(Messages::TMessage &Message);
Description
Override WndProc to change how the control responds to Windows messages. WndProc is the
first method that receives messages for a control.
WndProc for TWinControl overrides WndProc for TControl to define responses for focus, mouse,
and keyboard messages, and sends all others to its inherited WndProc.
When overriding WndProc to provide specialized responses to messages, be sure to call the
inherited WndProc at the end to dispatch any other messages.

Scope
Protected
Published

Accessibility
Read-only

Scope
Protected

Scope
Protected

Hierarchy

TObject

TPersistent
TComponent
TControl

TWinControl example
TWinControl

TWordField
Hierarchy Properties Methods Events See also
A TWordField object represents an unsigned 16-bit integer field in a dataset.
Header
vcl/dbtables.hpp
Description
Word fields can hold values in the range 0 to 65535, and are used to hold values that are
unsigned 16-bit whole numbers.
TWordField differs from its immediate ancestor TIntegerField only in the data type it represents.
Except for the constructor, all of the properties, methods, and events are the same as those of
TIntegerField, and provide functionality that is useful for managing the value and properties of an
integral numeric field in a database.

TWordField properties
TWordField Alphabetically Legend

Derived from TIntegerField
MaxValue
MinValue
Value

Derived from TNumericField
DisplayFormat
EditFormat

Derived from TField
Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
DataSet

DataSize
DataType

DisplayLabel
DisplayName
DisplayText

DisplayWidth
EditMask

EditMaskPtr
FieldKind
FieldName

FieldNo
Index

IsIndexField
IsNull

KeyFields
Lookup
LookupDataSet
LookupKeyFields
LookupResultField
NewValue

OldValue
ReadOnly
Required
Size
Text
Visible

Derived from TComponent
ComponentCount

ComponentIndex
Components
ComponentState
ComponentStyle

DesignInfo
Name

Owner
Tag

TWordField properties
TWordField By object Legend

Alignment
AsBoolean
AsCurrency
AsDateTime
AsFloat
AsInteger
AsString
AsVariant
AttributeSet

BDECalcField
Calculated

CanModify
ComponentCount

ComponentIndex
ComponentState
Components
ComponentStyle

DataSet
DataSize
DataType

DesignInfo
DisplayFormat
DisplayLabel

DisplayName
DisplayText

DisplayWidth
EditFormat

EditMaskPtr
EditMask
FieldKind

FieldName
FieldNo

Index
IsIndexField
IsNull

KeyFields
LookupDataSet
LookupKeyFields
LookupResultField
Lookup
MaxValue
MinValue
Name
NewValue

OldValue
Owner

ReadOnly
Required
Size
Tag
Text
Value
Visible

TWordField events
TWordField Alphabetically Legend

Derived from TField
OnChange
OnGetText
OnSetText
OnValidate

TWordField events
TWordField By object Legend

OnChange
OnGetText
OnSetText
OnValidate

TWordField methods
TWordField Alphabetically

In TWordField
~TWordField
TWordField

Derived from TIntegerField
IsValidChar

Derived from TField
Assign
AssignValue
Clear
FocusControl
GetData
SetData
SetFieldType

Derived from TComponent
DestroyComponents
Destroying
FindComponent
FreeNotification
GetParentComponent
HasParent
InsertComponent
RemoveComponent

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TWordField methods
TWordField By object

~TWordField
Assign
AssignValue
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
Clear
DefaultHandler
DestroyComponents
Destroying
Dispatch
FieldAddress
FindComponent
FocusControl
FreeInstance
FreeNotification
Free
GetData
GetParentComponent
HasParent
InheritsFrom
InitInstance
InsertComponent
InstanceSize
IsValidChar
MethodAddress
MethodName
NewInstance
RemoveComponent
SetData
SetFieldType
TWordField

TWordField::~TWordField
TWordField
~TWordField frees the memory associated with the TWordField object. Do not call ~TWordField
directly. Instead, use the delete keyword on the object, which causes ~TWordField to be invoked
automatically.
__fastcall virtual ~TWordField(void);

TWordField::TWordField
TWordField
The TWordField method creates an instance of TWordField.

__fastcall virtual TWordField(Classes::TComponent* AOwner);

It is seldom necessary to call TWordField directly, because a word field component is
instantiated automatically for all fields that contain only word values in a dataset.
After calling the inherited constructor, TWordField sets
• DataType to ftWord
• MinValue to 0
• MaxValue to 65535

Scope
Published

Accessibility
Read-only

Scope
Published

Hierarchy

TObject

TPersistent
TComponent
TField
TNumericField
TIntegerField

TWordField example
TWordField

TWriter
Hierarchy Properties Methods See also
TWriter is a specialized filer object that writes data to its associated stream.
Header
vcl/classes.hpp
Description
TWriter is used internally by the VCL streaming system to write different kinds of items
associated with a component, such as published properties of components or custom property
data, to a stream. TWriter is a helper object for streams that handles the mechanics of writing
the data associated with a component to the stream. It is the writer object, rather than the stream
object, that is responsible for handling the complexities of streaming components. These include
methods for:
• Writing different kinds of items to the associated stream.
• Writing property deltas used for streaming inherited forms and properties with default values.
• Writing nested groups of items or collections to the stream.
Other methods and properties of TWriter are used for interacting with stream and component
objects.
Users do not directly create writer objects. The constructor for TWriter takes a stream as a
parameter. Writers are automatically created in stream object methods or in global routines that
initiate the streaming process. These include:
• Calling the global routine ObjectBinaryToText procedure, which directly creates a writer

object.
• Calling the global ReadComponentResFile function, which creates a file stream object that

creates a writer object.
• Calling TStream::WriteDescendent, which creates a writer object.
The stream passed as a parameter to the writer’s constructor represents the associated
stream. Therefore once the streaming process is underway users do not need to directly
manipulate reader objects. The interaction between the reader, component, and stream objects
happens automatically in methods of these objects that make calls to each other.

TWriter properties
TWriter Alphabetically

In TWriter
Position
RootAncestor

Derived from TFiler
Ancestor
IgnoreChildren
Root

TWriter properties
TWriter By object

Ancestor
IgnoreChildren
Position
RootAncestor
Root

TWriter::Position
TWriter See also Example
Position represents the current writing position in the associated stream.
__property long Position;
Description
Position is used internally by writer objects to indicate the current writing position in the stream.
The value of Position will be inside the most recent buffer block read or the next block to be
written. Thus for writing Position will generally be less than the stream’s Position. When
Position is set to a location outside the current buffer, the writer’s buffer is flushed to the
stream.

TWriter::RootAncestor
TWriter See also
RootAncestor represents the ancestor of the component in the Root property.
__property TComponent* RootAncestor;
Description
RootAncestor is used internally by writer objects for dealing with form inheritance. It is used to
iterate through ancestor components when writing properties in inherited forms.
RootAncestor is always the ancestor form. For each component in Root, which is the inherited
form, the Ancestor property tracks a corresponding component in RootAncestor.
The writer object iterates through each of the Root form’s owned components, comparing each
to the corresponding component in the RootAncestor form. It then writes only those properties in
the current component that differ in some way from those in the Ancestor component.

TWriter methods
TWriter Alphabetically

In TWriter
~TWriter
DefineBinaryProperty
DefineProperty
FlushBuffer
TWriter
Write
WriteBoolean
WriteChar
WriteCollection
WriteComponent
WriteDescendent
WriteFloat
WriteIdent
WriteInteger
WriteListBegin
WriteListEnd
WriteRootComponent
WriteSignature
WriteStr
WriteString

Derived from TObject
ClassInfo
ClassName
ClassNameIs
ClassParent
ClassType
CleanupInstance
DefaultHandler
Dispatch
FieldAddress
Free
FreeInstance
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance

TWriter methods
TWriter By object

~TWriter
ClassInfo
ClassNameIs
ClassName
ClassParent
ClassType
CleanupInstance
DefaultHandler
DefineBinaryProperty
DefineProperty
Dispatch
FieldAddress
FlushBuffer
FreeInstance
Free
InheritsFrom
InitInstance
InstanceSize
MethodAddress
MethodName
NewInstance
TWriter
WriteBoolean
WriteChar
WriteCollection
WriteComponent
WriteDescendent
WriteFloat
WriteIdent
WriteInteger
WriteListBegin
WriteListEnd
WriteRootComponent
WriteSignature
WriteString
WriteStr
Write

TWriter::~TWriter
TWriter See also
~TWriter disposes of an instance of a writer.
__fastcall virtual ~TWriter(void);
Description
Do not call ~TWriter directly in an application. Instead, an application should call Free. Free
verifies that the list box object has not already been freed before it calls ~TWriter.
~TWriter writes the buffer before calling the inherited ~TWriter which frees the buffer.

TWriter::DefineBinaryProperty
TWriter See also
DefineBinaryProperty defines binary data, as if the data were a property, and writes it directly to
a memory stream.
virtual void __fastcall DefineBinaryProperty(const System::AnsiString
Name, TStreamProc ReadData, TStreamProc WriteData, bool HasData);

Description
DefineBinaryProperty is called internally by the DefineProperties method of an object that has
data it needs to store. DefineProperties takes a generic filer object as its parameter.
For writing binary data DefineProperties takes a TWriter object and then it calls the
DefineBinaryProperties method of the writer object. DefineBinaryProperty then writes the
property’s name and it’s data, but only if the HasData parameter is true. Otherwise it does
nothing.
The Name parameter specifies the name of the “fake” property to be written to the stream. A
“fake” property is a property that is not published, and that exists only in the code for the
DefineBinaryProperty method. The Top and Left properties of a non-visual component are
examples of “fake” properties. These are also called “defined properties” or “custom defined
properties.”
The TStreamProc type is the type of the ReadData and WriteData parameters. It is the method-
pointer type that points to a procedure (defined in the storing object) that reads or writes a binary
representation of the object’s data directly to or from the stream passed to them in the Stream
parameter. For TWriter the ReadData parameter is ignored.
The HasData parameter determines at runtime whether the “fake” property has data to store
(write). Thus, HasData is used only by writer objects when writing data.
Defined binary properties are quite rare. VCL objects that store graphics as binary data are the
most common use of filer objects to store and retrieve that data. More commonly objects use the
DefineProperty method. The difference between DefineBinaryProperty and DefineProperty is
that the component reads or writes the binary property directly to or from a memory stream
object, rather than going through a filer object.
Note
Streamable objects that are descended from TPersistent inherit a DefineProperties method,
however DefineProperties does not do anything until TComponent. Therefore, it is component
objects’ DefineProperties method that calls the writer’s DefineBinaryProperty when writing out
binary data.

TWriter::DefineProperty
TWriter See also
DefineProperty defines data the writer object writes as if the data were a property.
virtual void __fastcall DefineProperty(const System::AnsiString Name,
TReaderProc ReadData, TWriterProc WriteData, bool HasData);

Description
DefineProperty is called internally by the DefineProperties method of an object that has data it
needs to store. DefineProperties takes a generic filer object as its parameter. For writing data
DefineProperties takes a TWriter object and then it calls the DefineProperties method of the
writer object. DefineProperty then writes the property’s name and it’s data, but only if the
HasData parameter is true. Otherwise it does nothing.
The Name parameter specifies the name of the “fake” property to be written to the stream.
The TWriterProc type is the type of the WriteData parameter. It is the method-pointer type that
points to a procedure (defined in the component object) that writes the object’s data, that
represents a property value, to the writer object. For TWriter the ReadData parameter is ignored.
The HasData parameter determines at runtime whether the “fake” property has data to store
(write). Thus, HasData is used only by writer objects when writing data.
The difference between DefineBinaryProperty and DefineProperty is that the binary property is
written directly to a stream object, rather than going through a filer object.
When writing a component that has special (large) data storage requirements, the component’s
DefineProperties can be overridden. For each special or “fake” property item, call the Filer.
DefineProperty method or Filer.DefineBinaryProperty. For the ReadData and WriteData
parameters, pass in methods of the component that know how to handle that special data type.
When reading, ReadData will be called. When writing, WriteData will be called.
Note
When defining properties, a component should be aware of the Ancestor property, which if non-
NULL indicates that the component should only write the values of properties that differ from
those inherited from Ancestor.

TWriter::FlushBuffer
TWriter
FlushBuffer synchronizes the writer’s buffer with the associated stream by writing the current
buffer.
virtual void __fastcall FlushBuffer(void);
Description
FlushBuffer is not generally used except for internal implementation in Borland C++Builder.
FlushBuffer writes the current buffer to the stream, then resets an internal pointer to the correct
position.

TWriter::TWriter
TWriter See also
TWriter creates a new TWriter object.
__fastcall TWriter(TStream* Stream, int BufSize);

TWriter::Write
TWriter See also
Write writes Count bytes from Buf to the writer object’s associated stream.
void __fastcall Write(const void *Buf, long Count);
Description
Do not call Write directly. It is used internally to write data to the stream. Many other writer
methods call Write, usually after setting pertinent values or verifying data types.

TWriter::WriteBoolean
TWriter See also
WriteBoolean writes the Boolean value passed in Value to the writer object’s stream.
void __fastcall WriteBoolean(bool Value);
Description
WriteBoolean is used internally by the Borland C++Builder streaming system to write component
properties to a stream. Use WriteBoolean for writing component boolean properties to streams.
WriteBoolean checks to ensure that Value is the correct type before calling Write to write the
boolean value and its value type to the stream.

TWriter::WriteChar
TWriter See also
WriteChar writes the character passed in Value to the writer object’s stream.
void __fastcall WriteChar(char Value);
Description
WriteChar is used internally by the Borland C++Builder streaming system to write component
properties to a stream. Use WriteChar for writing component character properties to streams.
WriteChar calls WriteString which checks to ensure that Value is the correct type before calling
Write to write the character and its value type to the stream.
Note
WriteChar calls StringChar to enable writing character properties that are upwardly compatible
with string properties.

TWriter::WriteCollection
TWriter See also
WriteCollection writes the collection of objects passed in Value to the writer object’s stream.
void __fastcall WriteCollection(TCollection* Value);
Description
WriteCollection is used internally by the Borland C++Builder streaming system to write
component properties to a stream. Use WriteCollection for writing component properties that are
collections to streams.
WriteCollection checks to ensure that Value is the correct type before calling Write to write the
collection and its value type to the stream. WriteCollection bounds the collection with start-of-list
and end-of- list markers.

TWriter::WriteComponent
TWriter See also
WriteComponent writes the component specified by Component to a stream.
void __fastcall WriteComponent(TComponent* Component);
Description
Never call WriteComponent directly. WriteComponent is recursively called for each owned
component in Root.
WriteComponent sets the csWriting state in Component’s ComponentState property before
calling the WriteState method of Component and clears the csWriting flag when WriteState
returns.
Note
The sequence of events is as follows: the writer’s WriteComponent method calls the
Component’s WriteState method, which calls the writer’s WriteData method. That method
writes the properties for each child component, then calls WriteComponent.
SInce the Component’s WriteState is virtual, it is the Component’s only opportunity to prepare
itself to be streamed (i.e. to consolidate its data.)

TWriter::WriteDescendent
TWriter See also
WriteDescendent is called internally to trigger the writing of descendent components in inherited
forms.
void __fastcall WriteDescendent(TComponent* Root, TComponent*
AAncestor);

Description
Never call WriteDescendent directly. It is part of a sequence of calls used for streaming
descendent components in inherited forms.
WriteDescendent sets the writer object’s Ancestor and RootAncestor properties to the value
passed in AAncestor, sets the Root property to the value passed in Root, then calls
WriteSignature and WriteComponent to write Root and any components it owns to the writer
object’s stream.
WriteDescendent differs from WriteComponent in that, by setting Ancestor, it uses Ancestor’s
property values as the defaults, rather than those defined by Root’s type.

TWriter::WriteFloat
TWriter See also
WriteFloat writes the floating-point value passed in Value to the writer object’s stream.
void __fastcall WriteFloat(long double Value);
Description
WriteFloat is used internally by the Borland C++Builder streaming system to write component
properties to a stream. Use WriteFloat for writing floating point data to streams.
WriteFloat checks to ensure that Value is the correct type before calling Write to write the float
value and its value type to the stream.

TWriter::WriteIdent
TWriter See also
WriteIndent writes the identifier passed in Ident to the writer object’s stream.
void __fastcall WriteIdent(const System::AnsiString Ident);
Description
WriteIdent is used internally by the Borland C++Builder streaming system to write component
properties to a stream. Use WriteIdent for writing component identifier properties to streams.
Component names and enumerated type elements are examples of strings which must be
restricted to Pascal identifier syntax.
WriteFloat checks to ensure that Value is the correct type before calling Write to write the
identifier and its value type to the stream.

TWriter::WriteInteger
TWriter See also
WriteInteger writes the integer value passed in Value to the writer object’s stream.
void __fastcall WriteInteger(long Value);
Description
WriteInteger is used internally by the Borland C++Builder streaming system to write component
properties to a stream. Use WriteInteger for writing component integer properties to streams.
WriteInteger checks to ensure that Value is the correct type before calling Write to write the
integer value and its value type to the stream. WriteInteger handles integers of different sizes.

TWriter::WriteListBegin
TWriter See also
WriteListBegin writes a start-of-list marker to the writer object’s associated stream.
void __fastcall WriteListBegin(void);
Description
WriteListBegin is used by other methods that iterate through a group of items about to be written
to the stream. WriteListBegin writes a start-of-list marker to the writer object’s associated
stream. Every call to WriteListBegin must have a corresponding call to WriteListEnd.

TWriter::WriteListEnd
TWriter See also
WriteEndList writes an end-of-list marker to the writer object’s associated stream.
void __fastcall WriteListEnd(void);
Description
WriteListEnd is used by other methods that iterate through a group of items that are sequentially
written to the stream during a single process.
A call to WriteListEnd is generally preceded by a writing loop. A call to WriteListEnd must
correspond to a preceding call to WriteListBegin.

TWriter::WriteRootComponent
TWriter See also
WriteRootComponent is provided for backward compatibility only.
void __fastcall WriteRootComponent(TComponent* Root);
Description
WriteRootComponent calls WriteDescendent.

TWriter::WriteSignature
TWriter
WriteSignature writes a Borland C++Builder filer signature to the writer object’s associated
stream.
void __fastcall WriteSignature(void);
Description
WriteSignature is used internally by several methods that write the filer signature before
processing some action. For example, the WriteRootComponent method calls WriteSignature
before writing its component to the stream. By checking for the signature before loading objects,
reader objects can guard against inadvertently reading invalid or corrupted data.
The filer signature is a four-character sequence. For this version of Borland C++Builder, the
signature is 'TPF0'.

TWriter::WriteStr
TWriter See also
WriteStr writes raw data to the writer object’s stream.
void __fastcall WriteStr(const System::AnsiString Value);
Description
Do not call WriteStr directly. WriteStr is for internal use by certain VCL components. WriteStr
writes the string passed in Value to the writer object’s stream.
Caution
Always use WriteString for writing component strings to streams. WriteStr can corrupt data if not
used correctly.

TWriter::WriteString
TWriter See also
WriteString writes tagged data to the writer object’s stream.
void __fastcall WriteString(const System::AnsiString Value);
Description
WriteString is used internally by the Borland C++Builder streaming system to write component
properties to a stream. WriteString is otherwise only used by component writers in the
DefineProperties and WriteData procedures.
WriteString writes the string passed in Value to the writer object’s stream. WriteString checks to
ensure that Value is the correct type before calling Write to write the string and its value type to
the stream.
Caution
Always use WriteString for writing component strings to streams. The similarly named WriteStr
method is for internal use by certain VCL components and can corrupt data if not used correctly.

Hierarchy

TObject

TFiler

TWriter example
TWriter

Application variable
See also
Application is used to declare an instance of an application for a project.
extern TApplication* Application;
Header
vcl\forms.hpp
Description
By default, when a new project is created, Borland C++Builder constructs an application object
and assigns it to Application. Application has several properties which can be used to get
information about an application while it runs. Refer to TApplication component for the list of
properties.
Example
This code displays the name of your project in an edit box:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Edit1->Text = Application->Title;

}

Automation variable
See also
Automation is a global instance of the automation manager class.
extern TAutomation* Automation;
Header
vcl\oleauto.hpp
Description
It serves as the Automation manager for an OLE automation server written with Borland C++
Builder.
When you create an OLE automation object (an object derived from TAutoObject), the unit that
defines that object must call Automation->RegisterClass, passing a record of type
TAutoClassInfo. The Automation manager then handles all interactions between your
automation object and the OLE automation API.

CmdShow variable
See also
CmdShow passed to Windows ShowWindow.
extern int CmdShow;
Header
vcl\system.hpp
Description
In a program, the CmdShow variable contains the parameter value that Windows expects to be
passed to ShowWindow when the application creates its main window.
In a library (DLL), CmdShow is always zero.

Currency and date/time formatting variables

A set of variables used to define format for date and time strings.
extern System::AnsiString CurrencyString;
extern Byte CurrencyFormat;
extern Byte NegCurrFormat;
extern char ThousandSeparator;
extern char DecimalSeparator;
extern Byte CurrencyDecimals;
extern char DateSeparator;
extern System::AnsiString ShortDateFormat;
extern System::AnsiString LongDateFormat;
extern char TimeSeparator;
extern System::AnsiString TimeAMString;
extern System::AnsiString TimePMString;
extern System::AnsiString ShortTimeFormat;
extern System::AnsiString LongTimeFormat;
extern System::AnsiString ShortMonthNames[12];
extern System::AnsiString LongMonthNames[12];
extern System::AnsiString ShortDayNames[7];
extern System::AnsiString LongDayNames[7];
Header
vcl\sysdefs.hpp
Description
The SysUtils unit includes a number of variables that are used by the date and time routines.
Values are assigned to these variables to define the formats of date and time strings. The initial
values of these variables are fetched from the system registry using the GetLocaleInfo function
in the Win32 API. Borland C++Builder VCL (non-console) applications will automatically update
these formatting variables in response to WM_WININICHANGE messages. Application->
UpdateFormatSettings will either allow or not allow changes in system settings. The default is
true. Set this property to false to prevent the system settings from changing.
The description of each variable specifies the LOCALE_XXXX constant used to fetch the initial
value using the GetLocaleInfo Win32 API.
Typed constant Defines

CurrencyString CurrencyString defines the currency symbol (or characters) used in
floating-point to decimal conversions. The initial value is fetched from
LOCALE_SCURRENCY.

CurrencyFormat CurrencyFormat defines the currency symbol placement and separation
used in floating-point to decimal conversions. Possible values are:
0 = '$1'
1 = '1$'
2 = '$ 1'
3 = '1 $'
The initial value is fetched from LOCALE_ICURRENCY.

NegCurrFormat NegCurrFormat defines the currency format used in floating-point to
decimal conversions of negative numbers. Possible values are:
0 = ($1) 4 = (1$) 8 = -1 $ 12 = $ -1
1 = -$15 = -1$9 = -$ 1 13 = 1- $
2 = $-16 = 1-$ 10 = 1 $- 14 = ($ 1)
3 = $1-7 = 1$- 11 = $ 1- 15 = (1 $)
The initial value is fetched from LOCALE_INEGCURR.

ThousandSeparator ThousandSeparator is the character used to separate thousands in
numbers with more than three digits to the left of the decimal separator.
The initial value is fetched from LOCALE_STHOUSAND.

DecimalSeparator DecimalSeparator is the character used to separate the integer part from
the fractional part of a number. The initial value is fetched from
LOCALE_SDECIMAL.

CurrencyDecimals CurrencyDecimals is the number of digits to the right of the decimal point
in a currency amount. The initial value is fetched from
LOCALE_ICURRDIGITS.

DateSeparator DateSeparator is the character used to separate the year, month, and day
parts of a date value. The initial value is fetched from LOCATE_SDATE.

ShortDateFormat ShortDateFormat is the format string used to convert a date value to a
short string suitable for editing. For a complete description of date and
time format strings, refer to the documentation for the FormatDateTime
function. The short date format should only use the date separator
character and the m, mm, d, dd, yy, and yyyy format specifiers. The initial
value is fetched from LOCALE_SSHORTDATE..

LongDateFormat LongDateFormat is the format string used to convert a date value to a
long string suitable for display but not for editing. For a complete
description of date and time format strings, refer to the documentation for
the FormatDateTime function. The initial value is fetched from
LOCALE_SLONGDATE.

TimeSeparator TimeSeparator is the character used to separate the hour, minute, and
second parts of a time value. The initial value is fetched from
LOCALE_STIME.

TimeAMString TimeAMString is the suffix string used for time values between 00:00 and
11:59 in 12-hour clock format. The initial value is fetched from
LOCALE_S1159.

TimePMString TimePMString is the suffix string used for time values between 12:00 and
23:59 in 12-hour clock format. The initial value is fetched from
LOCALE_S2359.

ShortTimeFormat ShortTimeFormat is the format string used to convert a time value to a
short string with only hours and minutes. The default value is computed
from LOCALE_ITIME and LOCALE_ITLZERO.

LongTimeFormat LongTimeFormat is the format string used to convert a time value to a
long string with hours, minutes, and seconds. The default value is
computed from LOCALE_ITIME and LOCALE_ITLZERO.

ShortMonthNames ShortMonthNames is the array of strings containing short month names.
The mmm format specifier in a format string passed to FormatDateTime
causes a short month name to be substituted. The default values are
fecthed from the LOCALE_SABBREVMONTHNAME system locale
entries.

LongMonthNames LongMonthNames is the array of strings containing long month names.
The mmmm format specifier in a format string passed to FormatDateTime
causes a long month name to be substituted. The default values are
fecthed from the LOCALE_SMONTHNAME system locale entries.

ShortDayNames ShortDayNames is the array of strings containing short day names. The
ddd format specifier in a format string passed to FormatDateTime causes
a short day name to be substituted. The default values are fecthed from
the LOCALE_SABBREVDAYNAME system locale entries.

LongDayNames LongDayNames is the array of strings containing long day names. The
dddd format specifier in a format string passed to FormatDateTime
causes a long day name to be substituted. The default values are fecthed
from the LOCALE_SDAYNAME system locale entries.

Example
This example uses a label and a button on a form. When the user clicks the button, the default
date (12-30-99) is displayed in the caption of the label with a dash (-) separating the date, month
and year.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
TDateTime Date;
DateSeparator = '-';
Label1->Caption = DateToStr(Date);

}

DLLProc variable
See also
DLLProc is a pointer to a procedure invoked by a DLL entry point.
extern void *DllProc;
Header
vcl\system.hpp
Description
The DLLProc variable is used to specify a procedure that is invoked every time a DLL's entry
point is called. A procedure assigned to DLLProc must take one parameter of integer type; for
example,
void __fastcall DllProcedure(int Reason);
When the procedure is invoked, the Reason parameter contains a value between 0 and 3 as
defined by the following group of constants in the WINNT.H file:
DLL_PROCESS_DETACH = 0;
DLL_PROCESS_ATTACH = 1;
DLL_THREAD_ATTACH = 2;
DLL_THREAD_DETACH = 3;

File mode constants

File mode constants used to open and close disk files.
#define fmClosed (int)(55216)
#define fmInput (int)(55217)
#define fmOutput (int)(55218)
#define fmInOut (int)(55219)
Header
vcl\sysutils.hpp
Description
Use the file mode constants when opening and closing disk files. The Mode field of TFileRec
and TTextRec will contain one of these values.

File open mode constants

File open mode used to control access mode to file or stream.
#define fmOpenRead (Byte)(0)
#define fmOpenWrite (Byte)(1)
#define fmOpenReadWrite (Byte)(2)
#define fmShareCompat (Byte)(0)
#define fmShareExclusive (Byte)(16)
#define fmShareDenyWrite (Byte)(32)
#define fmShareDenyRead (Byte)(48)
#define fmShareDenyNone (Byte)(64)
Header
vcl\sysutils.hpp
Description
The file open mode constants are used to control the shareability of a file or stream when
opened.
TFileStream::TFileStream has a Mode parameter that you can set to one of these constants:
Constant Definition

fmOpenRead Open for read access only.
fmOpenWrite Open for write access only.
fmOpenReadWrite Open for read and write access.
fmShareCompat Compatible with the way FCBs are opened.
fmShareExclusive Read and write access is denied.
fmShareDenyWrite Write access is denied.
fmShareDenyRead Read access is denied.
fmShareDenyNone Allows full access for others.

FileMode variable
See also
FileMode indicates access mode on typed and untyped files opened by Reset.
extern Byte FileMode;
Header
vcl\system.hpp
Description
The FileMode variable determines the access mode to use when typed and untyped files (not
text files) are opened using the Reset procedure.
The default FileMode is 2. Assigning another value to FileMode causes all subsequent Resets to
use that mode.
Valid FileMode values are:
0 Read only

1 Write only
2 Read/Write

HInstance variable

HInstance handle provided by Windows for an application or library.
extern HINSTANCE HInstance;
Header
vcl\system.hpp
Description
The HInstance variable contains the instance handle of the application or library as provided by
the Windows environment.

IsLibrary variable

IsLibrary, boolean; true if module is a DLL.
extern bool IsLibrary;
Header
vcl\system.hpp
Description
The IsLibrary variable is true if the module is a DLL.

IsMultiThread variable

IsMultiThread, boolean; set true by BeginThead.
extern bool IsMultiThread;
Header
vcl\system.hpp
Description
IsMultiThread is set to true by BeginThread in order to allow the memory manager to execute
safely if a Borland C++Builder application has more than one thread. If a second thread attempts
to allocate memory, it is blocked until the first thread exits the memory manager.

LongRec type

LongRec stores high- and low-order bytes of a specified variable as a Word.
struct LongRec {
Word Lo;
Word Hi; };

Header
vcl\sysutils.hpp
Description
LongRec declares a utility record that stores the high- and low-order bytes of the specified
variable as type Word.
LongRec is useful for typecasting four-byte datatypes (pointers, integers, and so on) to access
their low and high words separately.

MSecsPerDay constant

MSecsPerDay number of milliseconds per day.
#define MSecsPerDay (int)(86400000)
Header
vcl\sysutils.hpp
Description
MSecsPerDay declares the number of milliseconds per day.

SecsPerDay constant

SecsPerDay number of seconds per day.
#define SecsPerDay (int)(86400)
Header
vcl\sysutils.hpp
Description
SecsPerDay declares the number of seconds per day.

Null constant

Null, constant; indicating a variant initialized with no value assigned.
extern Variant Null;
Header
vcl\system.hpp
Description
The Null constant is used to indicate that a variant has no value, but that it has been initialized
(and is therefore not Unassigned). Null is used in database applications to indicate missing or
unknown data.
Null values propagate through expressions. When used in an expression involving Variant
values, a Null causes the result of the entire expression to become Null.
To set a Variant variable to Null, simply assign the Null constant to the variable. To test whether
a Variant value is Null, compare it to the Null constant, or use the VarIsNull standard function.
When used to a Null variant, the VarType standard function returns varNull.
If you assign Null to a variable of any other type than Variant, an EVariantError exception is
raised. Likewise, if you attempt to convert a Null variant to another type (using VarAsType or
VarCast), an EVariantError exception is raised.

NullStr constant

NullStr declares pointer to EmptyStr.
extern System::AnsiString *NullStr;
Header
vcl\sysutils.hpp
Description
NullStr is the return value for many string handling routines when the string is empty.

Screen variable

Screen is a TScreen component. It normally represents a screen device.
extern TScreen* Screen;
Header
vcl\forms.hpp
The Screen variable is a TScreen component that normally represents your screen device. By
default, your application creates a screen component based on information from Windows about
the current screen device and assigns it to Screen.
Example
The following code sets the width of a form called Form1 to half the width of the screen:
Form1->Width = Screen->Width/2;

Session variable

Session maintains database components used by an application.
Declaration
extern TSession* Session;
Header
vcl\db.hpp
Description
The Session variable is responsible for maintaining all of the database components used by an
application. It is created automatically as part of an application’s initialization and destroyed as
part of the application’s termination. The Session variable must remain active at all times; it can
not be destroyed and recreated.

Sessions variable

Sessions provides access to TSessionList methods and properties.
Declaration
extern TSessionList* Sessions;
Header
vcl\db.hpp
Description
The Sessions variable is a way for you to access TSessionList methods and properties for
manipulating sessions. The DB unit automatically creates and destroys Sessions for you; you
don’t need to do anything but use it.
The Session variable, on the other hand, is responsible for maintaining all of the database
components used by your application. It is created automatically as part of your application’s
initialization and destroyed as part of your application’s termination. The Session variable must
remain active at all times; it can not be destroyed and recreated.

TAlign type

TAlign defines values for Align property.
enum TAlign { alNone, alTop, alBottom, alLeft, alRight, alClient };
Header
vcl\controls.hpp
Description
TAlign defines the possible values of the Align property.

TAlignment type

TAlignment defines values for Alignment property.
enum TAlignment { taLeftJustify, taRightJustify, taCenter };
Header
vcl\classes.hpp
Description
TAlignment is the type of the Alignment property.

TAttachMode type

TAttachMode specifies ways an outline item can attach to a new position.
enum TAttachMode { oaAdd, oaAddChild, oaInsert };
Header
vcl\outline.hpp
Description
TAttachMode is the type of the AttachMode parameter of the MoveTo method. TAttachMode
specifies the different ways which an outline item can attach to the new position when moved in
an outline.

TAutoClass type

TAutoClass class-reference type for OLE automation objects.
typedef System::TMetaClass*TAutoClass;
Header
vcl\oleauto.hpp
Description
The TAutoClass type is the class-reference type for OLE automation objects.

TAutoClassInfo type
See also
TAutoClassInfo record used to register OLE Automation objects.
struct TAutoClassInfo {
System::TMetaClass*AutoClass;
System::AnsiString ProgID;
System::AnsiString ClassID;
System::AnsiString Description;
TAutoClassInstancing Instancing; };

Header
vcl\oleauto.hpp
Description
The TAutoClassInfo type is the information record used for registering OLE Automation objects.

TAutoClassInstancing type
See also
TAutoClassInstancing defines instancing modes available for local server automation classes.
enum TAutoClassInstancing { acInternal, acSingleInstance,
acMultiInstance };

Header
vcl\oleauto.hpp
Description
The TAutoClassInstancing defines the available instancing modes for local server automation
classes.

TBatchMode type

TBatchMode values are passed to BatchMove method for TTable or Mode property of
TBatchMove component.
enum TBatchMode { batAppend, batUpdate, batAppendUpdate, batDelete,
batCopy };

Header
vcl\dbtables.hpp
Description
The TBatchMode type is the set of values which are passed to the BatchMove method of a
TTable or the Mode property of a TBatchMove component. batAppend appends all records. (The
destination must not have any records with the key of the any of the records in the source.)
batUpdate replaces all existing records with the new versions. (Each record in the source must
have a record in the destination with the same key.) batAppendUpdate appends any records
which do not already exist and replaces those which do. batDelete deletes the records in the
source from the destination. (Each source record must have a key which is also found in the
destination.) batCopy makes an exact duplicate of the source table.

TBevelShape type

TBevelShape defines possible values for Shape property of TBevel.
enum TBevelShape { bsBox, bsFrame, bsTopLine, bsBottomLine, bsLeftLine,
bsRightLine };

Header
vcl\extctrls.hpp
Description
The TBevelShape type defines the possible values of the Shape property of the TBevel
component.

TBevelStyle type

TBevelStyle defines possible values for Style property of TBevel.
enum TBevelStyle { bsLowered, bsRaised };
Header
vcl\extctrls.hpp
Description
The TBevelStyle type defines the possible values of the Style property of the TBevel component.

TBevelWidth type

TBevelWidth defines the possible values of BevelWidth property for TPanel.
typedef int TBevelWidth;

Header
vcl\extctrls.hpp
Description
The TBevelWidth type defines the possible values of the BevelWidth property for a panel
component (TPanel).

TBitBtnKind type

TBitBtnKind contains values possible for Kind property of TBitBtn.
enum TBitBtnKind { bkCustom, bkOK, bkCancel, bkHelp, bkYes, bkNo,
bkClose, bkAbort, bkRetry, bkIgnore, bkAll };

Header
vcl\buttons.hpp
Description
The TBitBtnKind type contains the values that the Kind property of a TBitBtn bitmap button can
assume.

TBlobStreamMode type

TBlobStreamModen passes values to Create method of TBlobStream object.
enum TBlobStreamMode { bmRead, bmWrite, bmReadWrite };
Header
vcl\dbtables.hpp
Description
The TBlobStreamMode type is the set of values which are passed to the Create method of a
TBlobStream object. Use bmRead to access an existing TBlobField, TMemoField or
TGraphicField. Use bmWrite to clear the contents of the field and assign a new value. Use
bmReadWrite to modify an existing value.

TBlobType type

TBlobType defines the BlobType property for TBlobField components.
typedef TFieldType TBlobType;
Header
vcl\dbtables.hpp
Description
The TBlobType type is the subset of values of the TFieldType type that are BLOB FIELDS.
TBLOBTYPE IS THE TYPE OF THE BLOBTYPE PROPERTY FOR TBLOBFIELD
COMPONENTS.

TBookmark type
See also
TBookmark a pointer passed to GetBookmark, GotoBookmark, and FreeBookmark methods.
typedef void *TBookmark;
Header
vcl\db.hpp
Description
The TBookmark type is the type of the Bookmark parameter you use to call the GetBookmark,
GotoBookmark, and FreeBookmark methods of a dataset component.

TBorderIcons type

TBorderIcons defines which icons appear in a form’s title bar
typedef Set<TBorderIcon, biSystemMenu, biHelp> TBorderIcons;
Header
vcl\forms.hpp
Description
The TBorderIcons type defines which icons appear in a form’s title bar. TBorderIcons is the
type of the BorderIcons property.

TBorderStyle type

TBorderStyle used by BorderStyle property for forms and windows.
typedef TFormBorderStyle TBorderStyle;
TBorderStyle is the type of the BorderStyle property for controls.
Header
vcl\forms.hpp
Description
The BorderStyle property for forms and windows uses the type TFormBorderStyle.

TBorderWidth type

TBorderWidth defines possible values for BorderWidth property of TPanel.
typedef int TBorderWidth;
Header
vcl\extctrls.hpp
Description
The TBorderWidth type defines the possible values for the BorderWidth property of a panel
component (TPanel).

TBrushStyle type

TBrushStyle used by Style property to define a TBrush object.
enum TBrushStyle { bsSolid, bsClear, bsHorizontal, bsVertical,
bsFDiagonal, bsBDiagonal, bsCross, bsDiagCross };

Header
vcl\graphics.hpp
Description
The TBrushStyle type is used by the Style property to determine the pattern of a TBrush object.

TButtonLayout type

TButtonLayout defines values for Layout property of TBitBtn or TSpeedButton.
enum TButtonLayout { blGlyphLeft, blGlyphRight, blGlyphTop,
blGlyphBottom};

Header
vcl\buttons.hpp
Description
The TButtonLayout type defines the values the Layout property of a bitmap button (TBitBtn) or
speed button (TSpeedButton) can assume.

TButtonSet type

TButtonSet a set of buttons for the media player component.
typedef Set<TNavigateBtn, nbFirst, nbRefresh> TButtonSet;
Header
vcl\mplayer and dbctrls.hpp
Description
The TButtonSet type is a set of the buttons of the media player component. This set is used with
the ColoredButtons, EnabledButtons, and VisibleButtons properties to determine how the
buttons are displayed.
The TButtonSet type defines the possible values of the VisibleButtons property for the database
navigator control.

TButtonStyle type

TButtonStyle values for Style property of TBitBtn and TSpeedButton.
enum TButtonStyle { bsAutoDetect, bsWin31, bsNew };
Header
vcl\buttons.hpp
Description
The TButtonStyle type contains the values the Style property of bitmap buttons (TBitBtn) and
speed buttons (TSpeedButton) can assume.

TByteArray type

TByteArray a general array of type Byte.
typedef TByteArray *PByteArray;
Header
vcl\sysutils.hpp
Description
TByteArray declares a general array of type Byte that can be used in typecasting.

TCaption type

TCaption defines string type used for control captions.
typedef System::AnsiString TCaption;
Header
vcl\controls.hpp
Description
The TCaption type defines the string type used for control captions. TCaption is the type of the
Caption property and the Text property.

TChangeRange type

ChangeRange specifies valid values for ChangeLevelBy method.
typedef Shortint TChangeRange;
Header
vcl\outline.hpp
Description
TChangeRange specifies the valid values that can be passed to the ChangeLevelBy method. -1
moves an outline item up one level, and 1 moves an outline item down one level. 0 has no
effect.

TCheckBoxState type

TCheckBoxState defines State property of TCheckBox.
enum TCheckBoxState { cbUnchecked, cbChecked, cbGrayed };
Header
vcl\stdctrls.hpp
Description
The TCheckBoxState type defines the different types of states the check box can assume.
TCheckBoxState is the type of the State property of a TCheckBox check box control.

TColor type

TColor used to specify color of an object.
enum TColor {clMin=-0x7fffffff-1, clMax=0x7fffffff};
Header
vcl\graphics.hpp
Description
The TColor type is used to specify the color of an object. It is used by the Color property of many
components and the BackgroundColor of a tab set (TTabSet).
The Graphics unit contains definitions of useful constants for TColor. These constants map
either directly to the closest matching color in the system palette (for example, clBlue maps to
blue) or to the corresponding system screen element color defined in the Color section of the
Windows Control panel (for example, clBtnFace maps to the system color for button faces).
The constants that map to the closest matching system colors are clAqua, clBlack, clBlue,
clDkGray, clFuchsia, clGray, clGreen, clLime, clLtGray, clMaroon, clNavy, clOlive, clPurple,
clRed, clSilver, clTeal, clWhite, and clYellow.
The constants that map to the system screen element colors are clActiveBorder,
clActiveCaption, clAppWorkSpace, clBackground, clBtnFace, clBtnHighlight, clBtnShadow,
clBtnText, clCaptionText, clGrayText, clHighlight, clHighlightText, clInactiveBorder,
clInactiveCaption, clInactiveCaptionText, clMenu, clMenuText, clScrollBar, clWindow,
clWindowFrame, and clWindowText.
If you specify TColor as a specific 4-byte hexadecimal number instead of using the constants
defined in the Graphics unit, the low three bytes represent RGB color intensities for blue, green,
and red, respectively. The value 00FF0000 represents full-intensity, pure blue, 0000FF00 is pure
green, and 000000FF is pure red. 00000000 is black and 00FFFFFF is white.
If the highest-order byte is zero (00), the color obtained is the closest matching color in the
system palette. If the highest-order byte is one (01), the color obtained is the closest matching
color in the currently realized palette. If the highest-order byte is two (02), the value is matched
with the nearest color in the logical palette of the current device context.

TColorDialogOptions type

TColorDialogOptions declares options used by Options property of TColorDialog.
typedef Set<TColorDialogOption, cdFullOpen, cdAnyColor>
TColorDialogOptions;

Header
vcl\dialogs.hpp
Description
The TColorDialogOptions type declares the three options enumerated in the TColorDialogOption
type as members of a set used by the Options property of the TColorDialog component.

TColumnButtonStyle type

TColumnButtonStyle defines possible values for ButtonStyle property of TColumn.
enum TColumnButtonStyle { cbsAuto, cbsEllipsis, cbsNone };
Header
vcl\dbgrids.hpp
Description
The TColumnButtonStyle type defines the possible values for the ButtonStyle property of
TColumn. It lists the different ways the user can choose values for that column, as described in
the following table:
Value Description

cbsAuto If the column’s field is a lookup field or has a pick list assigned to it,
TDBGrid will show a combo box in the column, so the user can drop-
down the list to choose a value.

cbsEllipsis The column will always show an ellipsis button that the user can click to
choose a value. Clicking the ellipsis button triggers an OnEditButtonClick
event.

cbsNone Even if the column’s field is a lookup field or has a pick list assigned to it,
no combo box or ellipsis button is provided to let the user choose a value
from a list.

TColumnValues type

TColumnValues defines possible values for AssignedValues property of TColumn.
typedef Set<TColumnValue, cvColor, cvTitleFont> TColumnValues;
Header
vcl\dbgrids.hpp
Description
It lists the possible attributes you can set for the column and its title (TColumnTitle object), as
described in the following table:
Value Description

cvColor If present in AssignedValues, the column’s Color property has been
changed from its default value.

cvWidth If present in AssignedValues, the column’s Width property has been
changed from its default value.

cvFont If present in AssignedValues, the column’s Font property has been
changed from its default value.

cvAlignment If present in AssignedValues, the column’s Alignment property has been
changed from its default value.

cvReadOnly If present in AssignedValues, the column’s ReadOnly property has been
changed from its default value.

cvTitleColor If present in AssignedValues, the column title’s Color property has been
changed from its default value.

cvTitleCaption If present in AssignedValues, the column title’s Caption property has
been changed from its default value.

cvTitleAlignment If present in AssignedValues, the column title’s Alignment property has
been changed from its default value.

cvTitleFont If present in AssignedValues, the column title’s Font property has been
changed from its default value.

TComboBoxStyle type

TComboBoxStyle defines styles of combo boxes.
enum TComboBoxStyle { csDropDown, csSimple, csDropDownList,
csOwnerDrawFixed, csOwnerDrawVariable };

Header
vcl\stdctrls.hpp
Description
TComboBoxStyle is the type of the combo box control’s Style property.

TComponentName type

TComponentName type for Name property for all components.
typedef System::AnsiString TComponentName;
Header
vcl\classes.hpp
Description
The TComponentName type is the type of the Name property for all components.

TConfigMode type

TConfigMode defines possible values for ConfigMode property of TSession and TDatabase.
enum TConfigMode { cmPersistent, cmSession, cmAll };
Header
vcl\db.hpp
Description
The TConfigMode type defines the possible values of the ConfigMode property of the TSession
and TDatabase components, as described in the following table:
Value Description

cmPersistent Aliases you add are global. (Call SaveConfigFile to make permanent.)
GetAliasNames returns only global aliases.

cmSession Aliases you add are local and can’t be saved. (Local aliases are lost
when the session ends.) GetAliasNames returns only local aliases.

cmAll Aliases you add are global. (Call SaveConfigFile to make permanent.)
GetAliasNames returns both global and local aliases.

TConsistentAttributes type

TConsistentAttributes defines possible values for ConsistentAttributes property of
TTextAttributes.
enum TConsistentAttribute { caBold, caColor, caFace, caItalic, caSize,
caStrikeOut, caUnderline, caProtected};

typedef Set<TConsistentAttribute, caBold, caProtected>
TConsistentAttributes;

Header
vcl\comctrls.hpp
Description
The TConsistentAttributes type defines the possible values of the ConsistentAttributes property
of the TTextAttributes object. It contains character formatting information for default and selected
text of a rich edit control.
TTextAttributes is the type of the DefAttributes and SelAttributes properties of the TRichEdit
component.

TConversionClass type
See also
TConversionClass is a class reference to TConversion.
typedef System::TMetaClass* TConversionClass;
Header
vcl\comctrls.hpp
Description
It's used in TRichEdit's RegisterConversionFormat method and DefaultConverter property.

TCopyMode type

TCopyMode type for CopyMode property of a TCanvasobject.
typedef long TCopyMode;
Header
vcl\graphics.hpp
Description
TCopyMode is the type of the CopyMode property of a TCanvas object.

TCreateInfo type
See also
TCreateInfo record used by TOleContainer's CreateObjectFromInfo method.
struct TCreateInfo {
TCreateType CreateType;
bool ShowAsIcon;
int IconMetaPict;
GUID ClassID;
System::AnsiString FileName;
Ole2::IDataObject* DataObject; };

Header
vcl\olectnrs.hpp
Description
The TCreateInfo type is a record used by TOleContainer's CreateObjectFromInfo method.
TCreateInfo's fields are described in the following table:
Fields

CreateType A TCreateType value that describes the source of the object. See
TCreateType for details.

ShowAsIcon Indicates whether the object is shown as an icon (true) or displayed as it
would be in the server application (false).

IconMetaPict Specifies a global memory handle to a metafile picture (TMetaFilePict) to
display in place of the OLE object's default icon. IconMetaPict is optional;
if you set it to 0, the object's default icon will be used (when ShowAsIcon
is true).

ClassID The class identifier of the OLE object you want to create. ClassID is only
used when CreateType is ctNewObject. You can use the
ProgIDToClassID function to get the class identifier for an OLE object's
class name (or programmatic identifier).

FileName The name of a file to link or embed as an OLE object. FileName is only
used when CreateType is ctFromFile or ctLinkToFile.

DataObject An OLE data transfer object. DataObject is only used when CreateType is
ctFromData or ctLinkFromData.

TCreateType type
See also
TCreateType, enumerated, defines values for TCreateInfo’s CreateType field.
enum TCreateType { ctNewObject, ctFromFile, ctLinkToFile, ctFromData,
ctLinkFromData };

Header
vcl\olectnrs.hpp
Description
The TCreateType enumerated type defines the possible values for TCreateInfo’s CreateType
field which is passed to TOleContainer's CreateObjectFromInfo method. Defined as follows:
Values

ctNewObject Creates an embedded OLE object given its class identifier (TCreateInfo.
ClassID)

ctFromFile Creates an embedded OLE object from the contents of the given file
(TCreateInfo.FileName).

ctLinkToFile Creates a linked OLE object from the contents of the given file
(TCreateInfo.FileName)

ctFromData Creates an embedded OLE object from the given data transfer object
(TCreateInfo.DataObject)

ctLinkFromData Creates a linked OLE object from the given data transfer object
(TCreateInfo.DataObject)

TCursor type

TCursor defines various standard cursors for a component.
enum TCursor {crMin=-0x7FFF-1, crMax=0x7FFF};
Header
vcl\controls.hpp
Description
The TCursor type defines the different kinds of standard cursors a component can have.
TCursor is the type of the Cursor property and the DragCursor property.

TCustomColors type

TCustomColors array defining color values for custom colors.
typedef long TCustomColors[16];
Header
vcl\dialogs.hpp
Description
The TCustomColors type is an array that holds the color values for the custom colors the user
can create using the Color dialog box (TColorDialog component). The MaxCustomColors
constant is defined as 16.

TDataAction type

TDataAction defines values for Action parameter in OnDeleteError, OnEditError and
OnPostError events.
enum TDataAction { daFail, daAbort, daRetry };
Header
vcl\db.hpp
Description
The TDataAction type defines the possible values you can assign to the Action parameter in the
OnDeleteError, OnEditError, and OnPostError events, as described in the following table:
Value Description

daFail (The default value of Action.) The error is reported as an exception, as it
normally would be.

daAbort The error is discarded by raising a “silent” EAbort exception.
daRetry The application goes into a loop, repeating the delete, edit, or post

operation until it succeeds or you assign Action daFail or daAbort.

TDataMode type

TDataMode defines types of valid connect modes for a DDE connection.
enum TDataMode { ddeAutomatic, ddeManual };
Header
vcl\ddeman.hpp
Description
The TDataMode type contains the types of connect modes used when initiating a DDE
conversation. Specify the connect mode in the ConnectMode property.

TDataSetNotifyEvent type

TDataSetNotifyEvent is a pointer to a method used to notify a dataset component an event has
occurred.
typedef void __fastcall (__closure *TDataSetNotifyEvent)(TDataSet*
DataSet);

Header
vcl\db.hpp
Description
The TDataSetNotifyEvent type points to a method that notifies a dataset component that an
event has occurred. It is used by all the events of the tables, queries, and stored procedures
(TTable, TQuery, and TStoredProc components).

TDataSetState type

TDataSetState values for State property of a dataset component.
enum TDataSetState { dsInactive, dsBrowse, dsEdit, dsInsert, dsSetKey,
dsCalcFields, dsUpdateNew, dsUpdateOld, dsFilter };

Header
vcl\db.hpp
Description
The TDataSetState type is the set of values of the State property of a dataset component, as
described in the following table:
Value Description

dsInactive Dataset not open.
dsBrowse Navigating between records.
dsEdit Editing a record.
dsInsert Inserting or appending a new record.
dsSetKey Setting key values by manipulating fields for finding records or setting a

range.
dsCalcFields Calculating calculated field values.
dsUpdateNew Internal state; used when accessing a field’s NewValue property.
dsUpdateOld Internal state; used when accessing a field’s OldValue property.
dsFilter Dataset is processing an OnFilterRecord event.

TDateTime

TDateTime is used by date and time routines to hold date and time values.
Header
vcl\system.hpp
Description
Borland C++Builder stores date and time values in the TDateTime type. The integral part of a
TDateTime value is the number of days that have passed since 12/30/1899. The fractional part
of a TDateTime value is the time of day.
Following are some examples of TDateTime values and their corresponding dates and times:
0 12/30/1899 12:00 am
2.75 1/1/1900 6:00 pm
-1.25 12/29/1899 6:00 am
35065 1/1/1996 12:00 am
To find the fractional number of days between two dates, simply subtract the two values.
Likewise, to increment a date and time value by a certain fractional number of days, simply add
the fractional number to the date and time value.
For more information, refer to the TDateTime class definition in the include\vcl\sysdefs.h file.

TDBCtrlGridBorder type

TDBCtrlGridBorder defines possible values for PanelBorderproperty of TDBCtrlGrid component
enum TDBCtrlGridBorder { gbNone, gbRaised };
Header
vcl\dbcgrids.hpp
Description
The TDBCtrlGridBorder type defines the possible values for the PanelBorder property of the
TDBCtrlGrid component, as described in the following table:
Value Description

gbNone No border
gbRaised Raised border

TDBCtrlGridKey type

TDBCtrlGridKey defines values for Key parameter of DoKey method of TDBCtrlGrid component.
enum TDBCtrlGridKey { gkNull, gkEditMode, gkPriorTab, gkNextTab,
gkLeft, gkRight, gkUp, gkDown, gkScrollUp, gkScrollDown, gkPageUp,
gkPageDown, gkHome, gkEnd, gkInsert, gkAppend, gkDelete, gkCancel };

Header
vcl\dbcgrids.hpp
Description
The TDBCtrlGridKey type defines the possible values for the Key parameter passed to the
DoKey method of the TDBCtrlGrid component, as described in the following table:
Value Description

gkNull No action
gkEditMode Toggles EditMode.
gkPriorTab Moves focus to the control previous in the tab order.
gkNextTab Moves focus to the control next in the tab order.
gkLeft Moves one column to the left, scrolling as needed.
gkRight Moves one column to the right, scrolling as needed.
gkUp Moves to the previous row, scrolling as needed.
gkDown Moves to the next row, scrolling as needed.
gkScrollUp Makes the record in the previous row the current record, without changing

position in the grid.
gkScrollDown Makes the record in the next row the current record, without changing

position in the grid.
gkPageUp Moves to the previous page in the grid.
gkPageDown Moves to the next page in the grid.
gkHome Moves to the first record.
gkEnd Moves to the last record.
gkInsert Inserts a new record (if AllowInsert is true).
gkAppend Appends a new record (if AllowInsert is true).
gkDelete Deletes the current record (if AllowDelete is true).
gkCancel Cancels any pending changes to an existing or new record.

TDBCtrlGridOrientation type

TDBCtrlGridOrientation defines values for Orientationproperty of TDBCtrlGridcomponent.
enum TDBCtrlGridOrientation { goVertical, goHorizontal };
Header
vcl\dbctrls.hpp
Description
The TDBCtrlGridOrientation type defines the possible values for the Orientation property of the
TDBCtrlGrid component, which are described in the following table:
Value Description

goVertical Panels go down, then across (in columns)
goHorizontal Panels go across, then down (in rows)

TDBGridColumnsState type

TDBGridColumnsState defines values for State property of TDBGridColumns.
enum TDBGridColumnsState { csDefault, csCustomized };
Header
vcl\dbgrids.hpp
Description
The TDBGridColumnsState type defines the possible values for the State property of
TDBGridColumns, as described in the following table:
Value Description

csDefault The grid’s column objects are the default column objects created using
the properties of the dataset’s field objects. Changes you make to the
column objects are reflected in the field objects, and vice-versa.

csCustomized The grid’s column objects are persistent, which means that they’re
separate from the dataset’s field properties. (You can make changes to
persistent columns without affecting any of the corresponding fields.)

TDBGridOptions type

TDBGridOptions defines values for Options property of TDBGrid.
enum TDBGridOption { dgEditing, dgAlwaysShowEditor, dgTitles,
dgIndicator, dgColumnResize, dgColLines, dgRowLines, dgTabs,
dgRowSelect, dgAlwaysShowSelection, dgConfirmDelete, dgCancelOnExit,
dgMultiSelect };

typedef Set<TDBGridOption, dgEditing, dgMultiSelect> TDBGridOptions;
Header
vcl\dbgrids.hpp
Description
The TDBGridOptions type is a set that defines the possible values of the Options property of the
data grid (TDBGrid).

TDBLookupComboStyle type

TDBLookupComboStyle defines type of combo box.
enum TDBLookupComboStyle { csDropDown, csDropDownList };
Header
vcl\dblookup.hpp
Description
The TDBLookupComboStyle determines the kind of combo box. It is the type of the Style
property for a database lookup combo box (TDBLookupCombo).

TDBLookupListOptions type

TDBLookupListOptions defines values contained in Options set of TDBLookupCombo or
TDBLookupList.
enum TDBLookupListOption { loColLines, loRowLines, loTitles };
typedef Set<TDBLookupListOption, loColLines, loTitles>
TDBLookupListOptions;

Header
vcl\dblookup.hpp
Description
The TDBLookupListOptions type defines the possible values contained in the Options set of a
database lookup combo box (TDBLookupCombo) or database lookup list box (TDBLookupList).

TDisplayCode type

TDisplayCode specifies display type for DisplayRect method.
enum TDisplayCode { drBounds, drIcon, drLabel, drSelectBounds };
Header
vcl\comctrls.hpp
Description
The TDisplayCode type is used to specify the display type when using the DisplayRect method
to retrieve the bounding rectangle for all or part of an item in the current list view.

TDragMode type

TDragMode defines values for DragMode property.
enum TDragMode { dmManual, dmAutomatic };
Header
vcl\controls.hpp
Description
The TDragMode type defines the values for the DragMode property of controls.

TDragState type
See also
TDragState specifies drag state of a dragged control in relationship to another control.
enum TDragState { dsDragEnter, dsDragLeave, dsDragMove };
Header
vcl\controls.hpp
Description
The TDragState type specifies the drag state of a dragged control in relationship to another
control. It is the type of the State parameter used in OnDragOver event handlers. These are the
possible states:
Value Meaning

dsDragEnter The state a drag object is in when it enters a control that allows the drag
object to be dropped. dsDragEnter is the default state.

dsDragMove The state a drag object is in when it is moved within a control that allows
the drag object to be dropped.

dsDragLeave The state a drag object is in when it leaves a control that would allow the
drag object to be dropped

The Source parameter is the label being dragged, the Sender parameter is the panel control,
and the State parameter is the drag state.

TDuplicates type

TDuplicates defines possible values for Duplicates property of TStringList.
enum TDuplicates { dupIgnore, dupAccept, dupError };
Header
vcl\classes.hpp
Description
The TDuplicates type defines the possible values of the Duplicates property of a string list object
(TStringList).

TEditCharCase type

TEditCharCase defines values for CharCase property of TEdit.
enum TEditCharCase { ecNormal, ecUpperCase, ecLowerCase };
Header
vcl\stdctrls.hpp
Description
The TEditCharCase type defines the possible values for the CharCase property of an edit box
(TEdit).

TFieldClass type

TFieldClass used to create an object reference to TField.
typedef System::TMetaClass* TFieldClass;
Header
vcl\db.hpp
Description
The TFieldClass type is the object type of TField. Use it to create an object reference to a
TField.

TFieldKind type

TFieldKind a set of values for FieldKind property of a TField component.
enum TFieldKind { fkData, fkCalculated, fkLookup };
Header
vcl\db.hpp
Description
The TFieldKind type is the set of values of the FieldKind property of a TField component . The
following table describes each value:
Value Description

fkData Field represents a physical field in a database table
fkCalculated Field is calculated
fkLookup Field is a lookup field

TFieldType type

TFieldType a set of values for DataType property of TField or TFieldDef component.
enum TFieldType { ftUnknown, ftString, ftSmallint, ftInteger, ftWord,
ftBoolean, ftFloat, ftCurrency, ftBCD, ftDate, ftTime, ftDateTime,
ftBytes, ftVarBytes, ftAutoInc, ftBlob, ftMemo, ftGraphic, ftFmtMemo,
ftParadoxOle, ftDBaseOle, ftTypedBinary };

Header
vcl\db.hpp
Description
TFieldType type is the set of values of the DataType property of a TField component or
TFieldDef component. The following table describes each value:
Value Description

ftUnkown Unknown or undetermined
ftString Character or string field
ftSmallint 16-bit integer field
ftInteger 32-bit integer field
ftWord 16-bit unsigned integer field
ftBoolean Boolean field
ftFloat Floating-point numeric field
ftCurrency Money field
ftBCD Binary-Coded Decimal field
ftDate Date field
ftTime Time field
ftDateTime Date and time field
ftBytes Fixed number of bytes (binary storage)
ftVarBytes Variable number of bytes (binary storage)
ftAutoInc Auto-incrementing 32-bit integer counter field
ftBlob Binary Large OBject field
ftMemo Text memo field
ftGraphic Bitmap field
ftFmtMemo Formatted text memo field
ftParadoxOle Paradox OLE field
ftDBaseOle dBASE OLE field
ftTypedBinary Typed binary field

TFileEditStyle type

TFileEditStyle contains values for FileEditStyle property for TOpenDialog and TSaveDialog.
enum TFileEditStyle { fsEdit, fsComboBox };
Header
vcl\dialogs.hpp
Description
The TFileEditStyle type contains the possible values of the FileEditStyle property used by the
Open (TOpenDialog) and Save (TSaveDialog) dialog boxes.

TFileName type

TFileName defines FileName property for Open and Save dialog boxes.
typedef System::AnsiString TFileName;
Header
vcl\sysutils.hpp
Description
The TFileName type is the type for the FileName property of Open and Save dialog boxes.

TFileType type

TFileType a set of file attributes.
enum TFileAttr { ftReadOnly, ftHidden, ftSystem, ftVolumeID,
ftDirectory, ftArchive, ftNormal };

typedef Set<TFileAttr, ftReadOnly, ftNormal> TFileType;
Header
vcl\filectrl.hpp
Description
The TFileType type is a set of file attributes. The FileType property of a file list box (TFileListBox)
uses the TFileType type.

TFillStyle type

TFillStyle determines fill used by FloodFill method of TCanvas.
enum TFillStyle { fsSurface, fsBorder };
Header
vcl\graphics.hpp
Description
The TFillStyle type determines the method of filling used by the FloodFill method of a canvas
(TCanvas object).

TFilterOptions type

TFilterOptions defines FilterOptions property values for TTable, TQuery, and TStoredProc
components.
typedef Set<TFilterOption, foCaseInsensitive, foNoPartialCompare>
TFilterOptions;

Header
vcl\db.hpp
Description
The TFilterOptions type defines the possible values for the FilterOptions property of the TTable,
TQuery, and TStoredProc components, as described in the following table:
Value Description

foCaseInsensitive The filter is processed without regard to case in the dataset’s data.
foNoPartialCompare String matches must be exact over the length of the data in the dataset;

partial matches aren’t allowed.

TFilterRecordEvent type

TFilterRecordEvent points to a method that responds to an OnFilterRecord event.
typedef void __fastcall (__closure *TFilterRecordEvent)(TDataSet*
DataSet, bool &Accept);

Header
vcl\db.hpp
Description
The TFilterRecordEvent type points to a method that responds to an OnFilterRecord event, for
including or excluding records from being visible in a dataset.

TFindItemKind type

TFindItemKind defines values for Kind parameter in FindItem method.
enum TFindItemKind { fkCommand, fkHandle, fkShortCut };
Header
vcl\menus.hpp
Description
The TFindItemKind defines the possible values of the Kind parameter in the FindItem method of
a menu component.

TFindOptions type

TFindOptions values for Options property of TFindDialogand TReplaceDialog components.
enum TFindOption { frDown, frFindNext, frHideMatchCase,
frHideWholeWord, frHideUpDown, frMatchCase, frDisableMatchCase,
frDisableUpDown, frDisableWholeWord, frReplace, frReplaceAll,
frWholeWord, frShowHelp };

typedef Set<TFindOption, frDown, frShowHelp> TFindOptions;
Header
vcl\dialogs.hpp
Description
The TFindOptions type defines the set of possible values for the Options property of the Find
and Replace dialog boxes (TFindDialog and TReplaceDialog components).

TFloatRec type

TFloatRec result record for FloatToDecimal.
#pragma pack(push, 1)
struct TFloatRec
{ short Exponent;
bool Negative;
char Digits[21]; } ;

#pragma pack(pop)
Header
vcl\sysutils.hpp
Description
TFloatRec is the FloatToDecimal result record.

TFloatValue type

TFloatValue ValueType parameter for FloatToText, FloatToTextFmt , TextToFloat and
FloatToDecimal.
enum TFloatValue { fvExtended, fvCurrency };
Header
vcl\sysutils.hpp
Description
TFloatValue is the type of the ValueType parameter of the FloatToText, FloatToTextFmt and
TextToFloat functions and the FloatToDecimal procedure. The ValueType parameter indicates
whether the value being passed to the function or procedure is a currency value or a normal
floating-point value.
Value Meaning

fvExtended The value is a normal floating-point type.
fvCurrency THe value is a currency type.

TFontDialogDevice type

TFontDialogDevice lists values of Device property for TFontDialog.
enum TFontDialogDevice { fdScreen, fdPrinter, fdBoth };
Header
vcl\dialogs.hpp
Description
The TFontDialogDevice type lists the values the Device property of the Font dialog box
(TFontDialog) can assume.

TFontDialogOptions type

TFontDialogOptions values for Options property of TFontDialog.
enum TFontDialogOption { fdAnsiOnly, fdTrueTypeOnly, fdEffects,
fdFixedPitchOnly, fdForceFontExist, fdNoFaceSel, fdNoOEMFonts,
fdNoSimulations, fdNoSizeSel, fdNoStyleSel, fdNoVectorFonts,
fdShowHelp, fdWysiwyg, fdLimitSize, fdScalableOnly, fdApplyButton };

typedef Set<TFontDialogOption, fdAnsiOnly, fdApplyButton>
TFontDialogOptions;

Header
vcl\dialogs.hpp
Description
The TFontDialogOptions type is the set of values the Options property of the Font dialog box
(TFontDialog) can have.

TFontName type

TFontName used by Name property of TFont.
typedef SmallString<31> TFontName;
Header
vcl\graphics.hpp
Description
The TFontName type is used by the Name property of a font object (TFont). The maximum
number of characters is 32, so font names longer than 32 characters are truncated.

TFontPitch type

TFontPitch used by Pitch property of TFont.
enum TFontPitch { fpDefault, fpVariable, fpFixed };
Header
vcl\graphics.hpp
Description
The TFontPitch type is used by the Pitch property of a font object (TFont).

TFontStyles type

TFontStyles styles for the Style property of TFont.
enum TFontStyle { fsBold, fsItalic, fsUnderline, fsStrikeOut };
typedef DummySet<TFontStyle, fsBold, fsStrikeOut> TDummyFontStyles;
Header
vcl\graphics.hpp
Description
The TFontStyles type is the set of font styles the Style property of a font object (TFont) can
assume.

TFormBorderStyle type

TFormBorderStyle defines border styles for form’s BorderStyle property.
enum TFormBorderStyle { bsNone, bsSingle, bsSizeable, bsDialog,
bsToolWindow, bsSizeToolWin };

Header
vcl\forms.hpp
Description
The TFormBorderStyle type defines the possible border styles of a form. It is the type of the
form’s BorderStyle property.

TFormStyle type

TFormStyle defines values of FormStyle property of TForm.
enum TFormStyle { fsNormal, fsMDIChild, fsMDIForm, fsStayOnTop };
Header
vcl\forms.hpp
Description
The TFormStyle type defines the possible values of the FormStyle property of a form (TForm).

TGridDrawState type

TGridDrawState defines possible states of cell when drawing occurs.
typedef Set<Grids_3, gdSelected, gdFixed> TGridDrawState;
Header
vcl\grids.hpp
Description
The TGridDrawState type defines the possible states of cell when drawing occurs. The
TGridDrawState is the type of the AState parameter used in the TDrawCellEvent method pointer.

TGridOptions type

TGridOptions values for Options property of TDrawGrid or TStringGrid component.
enum TGridOption { goFixedVertLine, goFixedHorzLine, goVertLine,
goHorzLine, goRangeSelect, goDrawFocusSelected, goRowSizing,
goColSizing, goRowMoving, goColMoving, goEditing, goTabs, goRowSelect,
goAlwaysShowEditor, goThumbTracking };

typedef Set<TGridOption, goFixedVertLine, goThumbTracking>
TGridOptions;

Header
vcl\grids.hpp
Description
TGridOptions is the set of values the Options property of a TDrawGrid or TStringGrid component
can have.

TGridRect type

TGridRect defines rectangular area within a grid control.
struct TGridRect {

union {
struct {

TGridCoord TopLeft;
TGridCoord BottomRight; };

struct {
long Left;
long Top;
long Right;
long Bottom; };

} ;
};
Header
vcl\grids.hpp
Description
TGridRect defines a rectangular area within a grid control. It is the type of the Selection property
of the TDrawGrid and TStringGrid components.

THeaderSectionStyle type

THeaderSectionStyle defines values for Style property of THeaderSection.
enum THeaderSectionStyle { hsText, hsOwnerDraw };
Header
vcl\comctrls.hpp
Description
The THeaderSectionStyle type defines the possible values of the Style property of the
THeaderSection object. THeaderSection objects comprise the headers, which are the individual
items, of a THeaderControl component.

THelpContext type

THelpContext used to define Help context numbers.
typedef int THelpContext;
Header
vcl\classes.hpp
Description
The THelpContext type is used to define Help context numbers.

THintInfo type

THintInfo used to define appearance and behavior of Help window.
struct THintInfo {
Controls::TControl* HintControl;
POINT HintPos;
int HintMaxWidth;
Graphics::TColor HintColor;
Windows::TRect CursorRect;
POINT CursorPos; };

Header
vcl\forms.hpp
Description
The THintInfo type is used to define the appearance and behavior of the Help window in a
TShowHintEvent type OnShowHint event handler.

THitTests type

THitTests determines location of a point relative to client area of a tree view control.
enum THitTest { htAbove, htBelow, htNowhere, htOnItem, htOnButton,
htOnIcon, htOnIndent, htOnLabel, htOnRight, htOnStateIcon, htToLeft,
htToRight };

typedef Set<THitTest, htAbove, htToRight> THitTests;
Header
vcl\comctrls.hpp
Description
The THitTests type determines the location of the specified point relative to the client area of a
tree view control. It defines the set of possible values returned by the GetHitTestInfoAt method
of the TTreeView component.

THKInvalidKeys type

THKInvalidKeys defines values for InvalidKeys property of THotKey
enum THKInvalidKey { hcNone, hcShift, hcCtrl, hcAlt, hcShiftCtrl,
hcShiftAlt, hcCtrlAlt, hcShiftCtrlAlt };

typedef Set<THKInvalidKey, hcNone, hcShiftCtrlAlt> THKInvalidKeys;
Header
vcl\comctrls.hpp
Description
The THKInvalidKeys type defines the set of values the InvalidKeys property of the THotKey
component can have.

THKModifiers type

THKModifiers defines values for Modifiers property of THotKey.
enum THKModifier { hkShift, hkCtrl, hkAlt, hkExt };
typedef Set<THKModifier, hkShift, hkExt> THKModifiers;
Header
vcl\comctrls.hpp
Description
The THKModifiers type defines the set of values the Modifiers property of the THotKey
component.

TIconArrangement type

TIconArrangement used to specify where items are to be aligned in list view.
enum TIconArrangement { iaTop, iaLeft };
Header
vcl\comctrls.hpp
Description
The Arrangement property of the IconOptions object for the list view allows you to specify a
TIconArrangement value. The list view must have a ViewStyle of vsIcon or vsSmallIcon to have
an alignment for icons to have affect.

TImageType type

TImageType contains possible values for ImageType property.
enum TImageType { itImage, itMask };
Header
vcl\controls.hpp
Description
The TImageType type contains the possible values for the ImageType property. The ImageList
uses the ImageType setting when drawing either the image or the associated mask.

TIndexOptions type

TIndexOptions defines values that can be used in creating a new index.
enum DBTables_1 { ixPrimary, ixUnique, ixDescending, ixCaseInsensitive,
ixExpression };

typedef Set<DBTables_1, ixPrimary, ixExpression> TIndexOptions;
Header
vcl\dbtables.hpp
Description
The TIndexOptions type is the set of values that can be used in creating a new index. It is used
by the AddIndex method of a dataset component.
Note
For dBASE tables, ixCaseInsensitive is not supported.

TItemStates type

TItemStates type defines possible states to determine a list item’s appearance and
functionality.
enum TItemState { isNone, isCut, isDropHilited, isFocused, isSelected }
;

typedef Set<TItemState, isNone, isSelected> TItemStates;
Header
vcl\comctrls.hpp
Description
The TItemStates type is a set of the possible states that determine a list item’s appearance and
functionality. A parameter of this type is used by the GetNextItem method of the list view to get
the next item in the list view with the specified state.

TLastReleaseEvent type
See also
TLastReleaseEvent pointer to OnLastRelease event.
typedef void __fastcall (__closure *TLastReleaseEvent)(bool &Shutdown)
;

Header
vcl\oleauto.hpp
Description
The TLastReleaseEvent type is a method-pointer type used for the OnLastRelease event. The
variable parameter Shutdown enables the application to override the default behavior for
whether to shut down the server application when all instances are released.

TLeftRight type

TLeftRight defines Alignment property of check boxes and radio buttons.
enum TAlignment { taLeftJustify, taRightJustify, taCenter };
typedef TAlignment TLeftRight;
Header
vcl\classes.hpp
Description
TLeftRight is the type of the Alignment property of check boxes and radio buttons.

TListArrangement type

TListArrangement defines values for Code parameter of Arrange method of TListView.
enum TListArrangement { arAlignBottom, arAlignLeft, arAlignRight,
arAlignTop, arDefault, arSnapToGrid };

Header
vcl\comctrls.hpp
Description
The TListArrangement type defines the possible values of the Code parameter for the Arrange
method of the TListView component. These values are used to specify how items are to be
arranged in a list view.

TListBoxStyle type

TListBoxStyle defines Style property for TListBox.
enum TListBoxStyle { lbStandard, lbOwnerDrawFixed, lbOwnerDrawVariable
};

Header
vcl\stdcrtls.hpp
Description
The TListBoxStyle type is the type of the Style property for a list box (TListBox component).

TLoadResource type

TLoadResource used to specify resource flags for GetResource method.
enum TLoadResource { lrDefaultColor, lrDefaultSize, lrFromFile,
lrMap3DColors, lrTransparent, lrMonoChrome };

Header
vcl\controls.hpp
Description
The TLoadResource type is used to specify the resource flags for the GetResource method.

TLocale type

TLocale type for Locale or DBLocale property; used for direct calls to BDE.
typedef void *TLocale;
Header
vcl\db.hpp
Description
The TLocale type is the type of a Locale or DBLocale property. These properties are only used
or needed when making direct calls to the Borland Database Engine.

TLocateOptions type

TLocateOptions defines values for Options parameter of Locate method of TTable, TQuery, and
TStoredProc.
enum TLocateOption { loCaseInsensitive, loPartialKey };
typedef Set<TLocateOption, loCaseInsensitive, loPartialKey>
TLocateOptions;

Header
vcl\db.hpp
Description
The TLocateOptions type defines the possible values for the Options parameter of the Locate
method of the TTable, TQuery, and TStoredProc components, as described in the following
table:
Value Description

loCaseInsensitive Key fields and key values are matched without regard to case.
loPartialKey Key values can include only part of the matching key field value; for

example, ‘HAM’ would match both ‘HAMM’ and ‘HAMMER.’

TLockType type
See also
TLockType defines parameters to TTable's LockTable and UnlockTable methods.
enum TLockType { ltReadLock, ltWriteLock };
Header
vcl\dbtables.hpp
Description
TLockType defines the possible values of the parameters to TTable's LockTable and
UnlockTable methods, as defined in the following table:
Values

ltReadLock Other processes are prevented from placing write locks on the table. For
dBASE and SQL tables, ltReadLock is equivalent to ltWriteLock.

ltWriteLock Other processes are prevented from placing any locks on the table.

TMenuBreak type

TMenuBreak defines values for Break property of a menu item.
enum TMenuBreak { mbNone, mbBreak, mbBarBreak };
Header
vcl\menus.hpp
Description
The TMenuBreak type defines the values the Break property of a menu item can have.

TMethod type

TMethod record to store Code and Data fields as type Pointer.
struct TMethod {
void *Code;
void *Data; } ;

Header
vcl\sysutils.hpp
Description
The TMethod type declares a record that stores the Code and Data fields as type Pointer.
This type can be used in a type cast of a method pointer to access the code and data parts of
the method pointer.

TModalResult type

TModalResult defined to contain result from ModalResult
typedef int TModalResult;
Header
vcl\forms.hpp
Description
The TModalResult type is the type of the ModalResult property.

TMouseButton type
See also
TMouseButton defines mouse-button constants used by mouse-event handlers.
enum TMouseButton { mbLeft, mbRight, mbMiddle };
Header
vcl\controls.hpp
Description
The TMouseButton type defines the mouse-button constants used by mouse-event handlers to
distinguish which button generated the mouse event.

TMPBtnType type

TMPBtnType defines the buttons for TMediaPlayer component.
enum TMPBtnType { btPlay, btPause, btStop, btNext, btPrev, btStep,
btBack, btRecord, btEject };

Header
vcl\mplayer.hpp
Description
The buttons are included in a set of the TButtonSet type of the ColoredButtons, EnabledButtons,
and VisibleButtons properties. TMPBtnType is also used for the Button parameter of the OnClick
and OnPostClick events of a media player.

TMPDevCapsSet type

TMPDevCapsSet capabilities for open multimedia device used with a TMediaPlayer.
enum TMPDevCaps { mpCanStep, mpCanEject, mpCanPlay, mpCanRecord,
mpUsesWindow };

typedef Set<TMPDevCaps, mpCanStep, mpUsesWindow> TMPDevCapsSet;
Header
vcl\mplayer.hpp
Description
The TMPDevCapsSet type is a set of the capabilities of the open multimedia device used with a
TMediaPlayer component. TMPDevCapsSet is the type of the Capabilities property.

TMPDeviceTypes type

TMPDeviceTypes contains multimedia device types for TMediaPlayer component.
enum TMPDeviceTypes { dtAutoSelect, dtAVIVideo, dtCDAudio, dtDAT,
dtDigitalVideo, dtMMMovie, dtOther, dtOverlay,
dtScanner, dtSequencer, dtVCR, dtVideodisc, dtWaveAudio };

Header
vcl\mplayer.hpp
Description
The TMPDeviceTypes type contains the multimedia device types that can be opened by a
TMediaPlayer component. TMPDeviceTypes is the type of the DeviceType property.

TMPModes type

TMPModes defines modes for device used with TMediaPlayer component.
enum TMPModes { mpNotReady, mpStopped, mpPlaying, mpRecording,
mpSeeking, mpPaused, mpOpen };

Header
vcl\mplayer.hpp
Description
The TMPModes type defines the modes for a multimedia device used with a TMediaPlayer
component. TMPModes is the type of the Mode property.

TMPNotifyValues type

TMPNotifyValues defines notification values for a device used with TMediaPlayer.
TMPNotifyValues = (nvSuccessful, nvSuperseded, nvAborted, nvFailure);
Header
vcl\mplayer.hpp
Description
The TMPNotifyValues type defines the notification values for a multimedia device used with a
TMediaPlayer component. TMPNotifyValues is the type of the NotifyValue property.

TMPTimeFormats type

TMPTimeFormats defines time formats for a device used with TMediaPlayer.
enum TMPTimeFormats { tfMilliseconds, tfHMS, tfMSF, tfFrames,
tfSMPTE24, tfSMPTE25, tfSMPTE30, tfSMPTE30Drop, tfBytes, tfSamples,
tfTMSF };

Header
vcl\mplayer.hpp
Description
The TMPTimeFormats type defines the time formats for a multimedia device used with a
TMediaPlayer component. TMPTimeFormats is the type of the TimeFormat property.

TMsgDlgButtons type

TMsgDlgButtons type defines set of values used by MessageDlg and MessageDlgPos.
enum TMsgDlgBtn { mbYes, mbNo, mbOK, mbCancel, mbAbort, mbRetry,
mbIgnore, mbAll, mbHelp };

typedef Set<TMsgDlgBtn, mbYes, mbHelp> TMsgDlgButtons;
Header
vcl\dialogs.hpp
Description
The TMsgDlgButtons type defines the set of values a button in a message box can have. The
TMsgDlgButtons type is used by the MessageDlg and MessageDlgPos functions.

TMsgDlgType type

TMsgDlgType defines values describing type of message box.
enum TMsgDlgType { mtWarning, mtError, mtInformation, mtConfirmation,
mtCustom };

Header
vcl\dialogs.hpp
Description
The TMsgDlgType type defines the values describing the type of message box. The
TMsgDlgType is used by the MessageDlg and MessageDlgPos functions.

TNavigateBtn type

TNavigateBtn defines values for TButtonSet, ENavClick types and Click method.
enum TNavigateBtn { nbFirst, nbPrior, nbNext, nbLast, nbInsert,
nbDelete, nbEdit, nbPost, nbCancel, nbRefresh };

Header
vcl\dbctrls.hpp
Description
The TNavigateBtn type defines the possible values in the TButtonSet type. It is also used in the
Click method and the ENavClick type.

TNodeAttachMode type

TNodeAttachMode passed to MoveTo method to specify how an item is reattached.
enum TNodeAttachMode { naAdd, naAddFirst, naAddChild, naAddChildFirst,
naInsert };

Header
vcl\comctrls.hpp
Description
The TNodeAttachMode type is the set of the possible ways in which an item can be attached to
a tree view control. A variable of this type is passed to the tree views MoveTo method to specify
how an item is reattached to the tree view in relation to a destination node when the item is
moved.

TNotifyEvent type

TNotifyEvent used for events that do not require parameters.
typedef void __fastcall (__closure *TNotifyEvent)(System::TObject*
Sender);

Header
vcl\classes.hpp
Description
The TNotifyEvent type is the type for events that have no parameters. These events simply
notify the component that a specific event occurred. For example, OnClick, which is type
TNotifyEvent, notifies the control that a click event occurred on the control.

TNumberingStyle type

TNumberingStyle defines values for Numbering property of TParaAttributes.
enum TNumberingStyle { nsNone, nsBullet };
Header
vcl\comctrls.hpp
Description
The TNumberingStyle type defines the possible values of the Numbering property of the
TParaAttributes object. TParaAttributes is the type of the Paragraph property of the TRichEdit
component.

TNumGlyphs type

TNumGlyphs defines range for NumGlyphs property of TBitBtn or TSpeedButton.
typedef Shortint TNumGlyphs;
Header
vcl\buttons.hpp
Description
The TNumGlyphs type defines the range of values (1-4) the NumGlyphs property of a bitmap
button (TBitBtn) or speed button (TSpeedButton) can assume.

TObjectState type
See also
TObjectState defines values for TOleContainer's State property.
enum TObjectState { osEmpty, osLoaded, osRunning, osOpen,
osInPlaceActive, osUIActive };

Header
vcl\olectnrs.hpp
Description
The TObjectState enumerated type defines the possible values for TOleContainer's State
property, as defined in the table that follows.
Values

osEmpty There is no OLE object in the container.
osLoaded There is an OLE object in the container, but its server application isn't

currently running.
osRunning The OLE object's server is running.
osOpen The OLE object is open in a separate window.
osInPlaceActive The OLE object is activated in-place, but hasn't yet merged its menus or

toolbars. This is an intermediate state; the State property will shift to
osUIActive as soon as the menus and toolbars have been merged.

osUIActive The OLE object is activated in-place and menus and toolbars have been
merged

TOpenOptions type

TOpenOptions defines values for Options property of TOpenDialog.
enum TOpenOption { ofReadOnly, ofOverwritePrompt, ofHideReadOnly,
ofNoChangeDir, ofShowHelp, ofNoValidate, ofAllowMultiSelect,
ofExtensionDifferent, ofPathMustExist, ofFileMustExist,
ofCreatePrompt, ofShareAware, ofNoReadOnlyReturn, ofNoTestFileCreate,
ofNoNetworkButton, ofNoLongNames, ofOldStyleDialog,
ofNoDereferenceLinks };

typedef Set<TOpenOption, ofReadOnly, ofNoDereferenceLinks>
TOpenOptions;

Header
vcl\dialogs.hpp
Description
The TOpenOptions type contains the set of values the Options property of the Open dialog box
(TOpenDialog) can assume.

TOutlineOptions type

TOutlineOptions defines display options for TOutline component.
enum TOutlineOption { ooDrawTreeRoot, ooDrawFocusRect, ooStretchBitmaps
};

typedef Set<TOutlineOption, ooDrawTreeRoot, ooStretchBitmaps>
TOutlineOptions;

Header
vcl\outline.hpp
Description
The TOutlineOptions type determines the display options for a TOutline component.
TOutlineStyle is the type of the Options property.

TOutlineStyle type

TOutlineStyle determines drawing style of TOutline component when Style is set to osStandard.
enum TOutlineStyle { osText, osPlusMinusText, osPictureText,
osPlusMinusPictureText, osTreeText, osTreePictureText };

Header
vcl\outline.hpp
Description
The TOutlineStyle type determines how the items of a TOutline component are drawn if the Style
property is set to osStandard. TOutlineStyle is the type of the OutlineStyle property.

TOutlineType type

TOutlineType defines Style property for TOutline.
enum TOutlineType { otStandard, otOwnerDraw };
Header
vcl\outline.hpp
Description
The TOutlineType type determines whether a TOutline component draws itself the standard way,
or requires you to write code to draw its items. TOutlineType is the type of the Styleproperty.

TOwnerDrawState type

TOwnerDrawState defines values for State parameter of TDrawItemEvent.
enum StdCtrls_9 { odSelected, odGrayed, odDisabled, odChecked,
odFocused };

typedef Set<StdCtrls_9, odSelected, odFocused> TOwnerDrawState;
Header
vcl\stdctrls.hpp
Description
The TOwnerDrawState type defines the possible values for the State parameter in the
TDrawItemEvent method pointer of an owner-draw list box.

TPanelBevel type

TPanelBevel defines value of BevelInner and BevelOuter properties.
enum TPanelBevel { bvNone, bvLowered, bvRaised };
Header
vcl\extctrls.hpp
Description
The TPanelBevel type contains the values the BevelInner and BevelOuter properties can
assume.

TParamBindMode type

TParamBindMode defines values for ParamBindMode property of TStoredProc.
enum TParamBindMode { pbByName, pbByNumber };
Header
vcl\dbtables.hpp
Description
The TParamBindMode type defines the possible values of the ParamBindMode property of a
stored procedure (TStoredProc).

TParamType type

TParamType set values for ParamType property of a TParam object.
enum TParamType { ptUnknown, ptInput, ptOutput, ptInputOutput, ptResult
};

Header
vcl\dbtables.hpp
Description
The TParamType type is the set of values of the ParamType property of a TParam object

TPaymentTime type

TPaymentTime an enumerated type used as a parameter in financial functions.
enum TPaymentTime { ptEndOfPeriod, ptStartOfPeriod };
Header
vcl\math.hpp
Description
TPaymentTime is an enumerated type used as a parameter in many of the financial functions.
For example, if interest is calculated on the principle balance at the beginning of the payment
period, pass in ptStartOfPeriod.

TPenMode type

TPenMode specifies values for Mode property of TPen.
enum TPenMode { pmBlack, pmWhite, pmNop, pmNot, pmCopy, pmNotCopy,
pmMergePenNot, pmMaskPenNot, pmMergeNotPen, pmMaskNotPen, pmMerge,
pmNotMerge, pmMask, pmNotMask, pmXor, pmNotXor };

Header
vcl\graphics.hpp
Description
The TPenMode type specifies the values the Mode property of pen object (TPen) can assume.

TPenStyle type

TPenStyle specifies values for Style property of TPen.
enum TPenStyle { psSolid, psDash, psDot, psDashDot, psDashDotDot,
psClear, psInsideFrame };

Header
vcl\graphics.hpp
Description
The TPenStyle type specifies the values the Style property of pen object (TPen) can assume.

TPoint type

TPoint type defines pixel location onscreen.
typedef tagPOINT TPoint;
Header
vcl\windows.hpp
Description
The TPoint type defines a pixel location onscreen, with the origin in the top left corner. X
specifies the horizontal coordinate of the point, Y specifies the vertical coordinate.
For information about the standard Windows tagPOINT type, search the WINGDI.H file.

TPopupAlignment type

PopupAlignment determines where TPopupMenu appears.
enum TPopupAlignment { paLeft, paRight, paCenter };
Header
vcl\menus.hpp
Description
The PopupAlignment type determines where a pop-up menu (TPopupMenu) appears. The
Alignment property of a pop-up menu is of type TPopupAlignment.

TPosition type

TPosition enumerates values for Position property of a form.
enum TPosition { poDesigned, poDefault, poDefaultPosOnly,
poDefaultSizeOnly, poScreenCenter };

Header
vcl\forms.hpp
Description
The TPosition type enumerates the values the Position property of a form can have.

TPrintDialogOptions type

TPrintDialogOptions defines values for Options property of TPrintDialog.
enum TPrintDialogOption { poPrintToFile, poPageNums, poSelection,
poWarning, poHelp, poDisablePrintToFile };

typedef Set<TPrintDialogOption, poPrintToFile, poDisablePrintToFile>
TPrintDialogOptions;

Header
vcl\dialogs.hpp
Description
The TPrintDialogOptions type defines the set of values the Options property of the Print dialog
box (TPrintDialog) can have.

TPrinterOrientation type

TPrinterOrientation defines values for Orientation property of TPrinter.
enum TPrinterOrientation { poPortrait, poLandscape };
Header
vcl\printers.hpp
Description
The TPrinterOrientation type defines the possible values of the Orientation property of the printer
object (TPrinter).

TPrintRange type

TPrintRange defines values for PrintRange property of TPrintDialog.
enum TPrintRange { prAllPages, prSelection, prPageNums };
Header
vcl\dialogs.hpp
Description
The TPrintRange type defines the values the PrintRange property can have in the Print dialog
box (TPrintDialog).

TPrintScale type

TPrintScale defines values for PrintScale property of a form.
enum TPrintScale { poNone, poProportional, poPrintToFit };
Header
vcl\forms.hpp
Description
The TPrintScale type defines the possible values of the PrintScale property of the form.

TRect type

TRect type defines a rectangle.
struct TRect
{
TRect() { }
TRect(RECT& r) {

Left = r.left;
Top = r.top;
Right = r.right;
Bottom = r.bottom;

}
operator RECT() {

RECT r;
r.left = Left;
r.top = Top;
r.right = Right;
r.bottom = Bottom;
return r;

}
union
{

struct
{

POINT TopLeft;
POINT BottomRight;

};
struct
{

int Left;
int Top;
int Right;
int Bottom;

};
};

} ;
Header
vcl\windows.hpp
Description
The coordinates are specified either as four separate integers representing the pixel locations of
the left, top, right, and bottom sides, or as two points representing the pixel locations of the top
left and bottom right corners. The origin of the pixel coordinate system is in the top left corner of
the screen.

TResType type

TResTypes specifies a type of graphical resource to ImageList.
enum TResType { rtBitmap, rtCursor, rtIcon };
Header
vcl\controls.hpp
Description
TResTypes is used by the image list methods ResourceLoad, GetResource and FileLoad to
specify the type of graphical resource that is to be loaded or retrieved from the ImageList
Value Meaning

rtBitmap Loads or retrieves a bitmap
rtCursor Loads or retrieves a cursor
rtIcon Loads or retrieves an icon

TScrollBarInc type

TScrollBarInc defines values for SmallChange and LargeChange properties of TScrollBar.
typedef Word TScrollBarInc;
Header
vcl\forms.hpp
Description
The TScrollBarInc type defines the possible values of the SmallChange and LargeChange
properties of a scroll bar (TScrollBar).

TScrollBarKind type

TScrollBarKind defines Kind property for scroll bar control.
enum TScrollBarKind { sbHorizontal, sbVertical };
Header
vcl\forms.hpp
Description
The TScrollBarKind type defines the two different orientations a scroll bar can have: horizontal
and vertical. TScrollBarKind is the type of the scroll bar control’s Kind property.

TScrollCode type

TScrollCode used by TScrollEvent to define possible states of a scroll bar.
enum TScrollCode { scLineUp, scLineDown, scPageUp, scPageDown,
scPosition, scTrack, scTop, scBottom, scEndScroll };

Header
vcl\stdctrls.hpp
Description
The TScrollCode type defines the possible states of a scroll bar. It is used by the TScrollEvent
method pointer.

TScrollStyle type

TScrollStyle defines ScrollBars property for TMemo, TDBMemo, TDrawGrid, and TStringGrid.
enum TScrollStyle { ssNone, ssHorizontal, ssVertical, ssBoth };
Header
vcl\stdctrls.hpp
Description
The TScrollStyle type defines the different combinations of scroll bars a memo control or a grid
can have. TScrollStyle is the type of the ScrollBars property of TMemo, TDBMemo, TDrawGrid,
and TStringGrid.

TSearchDirection type

TSearchDirection specifies search direction for GetNextItem and GetNearestItem.
enum TSearchDirection { sdLeft, sdRight, sdAbove, sdBelow, sdAll };
Header
vcl\comctrls.hpp
Description
The TSearchDirection type is used to specify which direction to search for a list item when using
the GetNextItem and GetNearestItem methods.
Value Meaning

sdLeft Searches for a list item to the left of the specified list item
sdRight Searches for a list item to the right of the specified list item
sdAbove Searches for a list item that is above the specified list item
sdBelow Searches for a list item that is below the specified list item
sdAll Searches for a subsequent list item by index (the default value)

TSearchRec type

TSearchRec defines file information searched for by FindFirst or FindNext.
struct TSearchRec {
int Time;
int Size;
int Attr;
System::AnsiString Name;
int ExcludeAttr;
int FindHandle;
WIN32_FIND_DATAA FindData; };

Header
vcl\sysutils.hpp
Description
The TSearchRec type defines file information searched for by a FindFirst or FindNext function
call. If a file is found, the fields of the TSearchRec type parameter are modified to specify the
found file.
Attr represents the file attributes the file attributes of the file. Test Attr against the following
attribute constants or values to determine if a file has a specific attribute:
Constant Value Description

faReadOnly 00000001 Read-only files
faHidden 00000002 Hidden files
faSysFile 00000004 System files
faVolumeID 00000008 Volume ID files
faDirectory 00000010 Directory files
faArchive 00000020 Archive files
faAnyFile 0000003F Any file
To test for an attribute, combine the value of the Attr field with the attribute constant with the and
operator. If the file has that attribute, the result will be greater than 0. For example, if the found
file is a hidden file, the following expression will evaluate to true: (SearchRec.Attr and faHidden >
0).
Time contains the time stamp of the file. Size contains the size of the file in bytes. Name
contains the DOS file name and extension.

TSearchTypes type

TSearchTypes defines values for Options parameter of FindText method of TRichEdit.
enum TSearchType { stWholeWord, stMatchCase };
typedef Set<TSearchType, stWholeWord, stMatchCase> TSearchTypes;
Header
vcl\comctrls.hpp
Description
The TSearchTypes type defines the possible values of the Options parameter of the FindText
method of the TRichEdit component.

TSelectDirOpts type

TSelectDirOpts defines values of Options parameter for SelectDirectory.
enum TSelectDirOpt { sdAllowCreate, sdPerformCreate, sdPrompt };
typedef Set<TSelectDirOpt, sdAllowCreate, sdPrompt> TSelectDirOpts;
Header
vcl\filectrl.hpp
Description
The TSelectDirOpts type defines the possible values of the Options parameter in the
SelectDirectory function.

TShapeType type

TShapeType defines Shape property for TShape component.
enum TShapeType { stRectangle, stSquare, stRoundRect, stRoundSquare,
stEllipse, stCircle };

Header
vcl\extctrls.hpp
Description
The TShapeType type is used by the Shape property of the TShape component to determine if
the TShape component appears as a rectangle, square, rounded rectangle, rounded square,
ellipse, or circle.

TShiftState type
See also
TShiftState used to determine state of Alt, Ctrl, Shift keys and mouse buttons.
enum Classes_1 { ssShift, ssAlt, ssCtrl, ssLeft, ssRight, ssMiddle,
ssDouble };

typedef Set<Classes_1, ssShift, ssDouble> TShiftState;
Header
vcl\classes.hpp
Description
The TShiftState type is used by key-event and mouse-event handlers to determine the state of
the Alt, Ctrl, and Shift keys and the state of the mouse buttons when the event occurred.

TShortCut type

TShortCut menu shortcuts used by ShortCutToText and ShortCutToKey.
typedef Word TShortCut;
Header
vcl\menus.hpp
Description
TShortCut types are the menu shortcuts that appear on menus and give the user an alternate
way to select a menu commands using the keyboard. The ShortCut property is of type
TShortCut, and the ShortCutToText and ShortCutToKey routines use parameters of type
TShortCut.

TSizeMode type
See also
TSizeMode enumerated, defines values of TOleContainer's SizeMode property.
enum TSizeMode { smClip, smCenter, smScale, smStretch, smAutoSize };
Header
vcl\olectnrs.hpp
Description
The TSizeMode enumerated type defines the possible values of TOleContainer's SizeMode
property, as defined in the following table:
Values

smClip (Default)- Displays the OLE object at its normal size, clipping any parts
that don't fit within the container.

SmCenter Displays the OLE object at its normal size, centering it within the
container.

SmScale Scales or shrinks the view of the OLE object to fit within the container, by
scaling width and height proportionally.

SmStretch Scales or shrinks the view of the OLE object to fill the OLE container,
without regard to preserving the proportions of the OLE object.

SmAutoSize Same as smClip but also automatically resizes the container whenever
the size of the OLE object changes.

TSortType type

TSortType defines SortType property of list view and tree view components.
enum TSortType { stNone, stData, stText, stBoth };
Header
vcl\comctrls.hpp
Description
The TSortType type defines the set of the possible ways that items in a tree view and list view
component can be sorted. The SortType property of the list view and tree view components is of
this type.

TStartMode type
See also
TStartMode specifies values for StartMode property; indicates reason to start OLE automation server.
enum TStartMode { smStandalone, smAutomation, smRegServer,
smUnregServer };

Header
vcl\oleauto.hpp
Description
The TStartMode type specifies the possible values for the StartMode property, indicating the
different reasons why an OLE automation server can be started.
The following table explains each of the possible start-mode values and the command-line
switch that corresponds to each.
Start mode Switch Meaning

smAutomation embedding The application was started by Windows in
response to a request from an automation
controller.

smRegServer regserver The application was started only to add the server
to the system registry.

smStandalone --- The user started the application as a standalone,
interactive application.

smUnregServer unregserver The application was started only to remove the
server from the system registry.

TStatusPanelBevel type

TStatusPanelBevel defines values for Bevel property of TStatusPanel.
enum TStatusPanelBevel { pbNone, pbLowered, pbRaised };
Header
vcl\comctrls.hpp
Description
The TStatusPanelBevel type defines the values of the Bevel property of the TStatusPanel
object. TStatusPanel objects comprise the panels of TStatusBar components.

TStatusPanelStyle type
See also
TStatusPanelStyle defines Style property for TStatusPanel.
enum TStatusPanelStyle { psText, psOwnerDraw };
Header
vcl\comctrls.hpp
Description
The TStatusPanelStyle type defines the different types of the Style property of the TStatusPanel
object. TStatusPanel objects comprise the panels of TStatusBar components. Use their Text
property to set the text on a psText style panel. For psOwnerDraw style panels write a handler
for the OnDrawPanel event.

TTableType type

TTableType values for TableType property of a TTable component.
enum TTableType { ttDefault, ttParadox, ttDBase, ttASCII };
Header
vcl\dbtables.hpp
Description
The TTableType type is the set of values of the TableType property of a TTable component.

TTabOrder type

TTabOrder defines integers used as values for TabOrder.
typedef short TTabOrder;
Header
vcl\controls.hpp
Description
The TTabOrder type defines a subrange of integers that can be used as values for the TabOrder
property.

TTabStyle type

TTabStyle defines style of tabs in a tab set control.
enum TTabStyle { tsStandard, tsOwnerDraw };
Header
vcl\tabs.hpp
Description
The TTabStyle type defines the style of the tabs in a tab set control. TTabStyle is the type of the
a tab set control’s Style property.

TTextCase type

TTextCase defines values for Text property of TDriveComboBox.
enum TTextCase { tcLowerCase, tcUpperCase };
Header
vcl\filectrl.hpp
Description
The TTextCase type defines the values available to the Text property of a drive combo box
(TDriveComboBox).

TThreadPriority type
See also
TThreadPriority defines values for Priority property of TThread.
enum TThreadPriority { tpIdle, tpLowest, tpLower, tpNormal, tpHigher,
tpHighest, tpTimeCritical };

Header
vcl\classes.hpp
Description
TThreadPriority defines the possible values for the Priority property of the TThread component,
as defined in the following table. Windows schedules threads based on a priority scale; the
Priority property lets you adjust a thread's priority higher or lower on the scale.
Values

tpIdle The thread executes only when the system is idle-Windows won't
interrupt other threads to execute a thread with tpIdle priority.

tpLowest The thread's priority is two points below normal.
tpLower The thread's priority is one point below normal.
tpNormal The thread has normal priority.
tpHigher The thread's priority is one point above normal.
tpHighest The thread's priority is two points above normal.
tpTimeCritical The thread gets highest priority.

TTickMark type

TTickMark defines values for TickMarks property of TTrackBar component.
enum TTickMark { tmBottomRight, tmTopLeft, tmBoth };
Header
vcl\comctrls.hpp
Description
TTickMark defines the possible values of the TickMarks property of the TTrackBar component.

TTickStyle type

TTickStyle defines values for the TTickStyle property of the TTrackBar component.
enum TTickStyle { tsNone, tsAuto, tsManual };
Header
vcl\comctrls.hpp
Description
TTickStyle defines the possible values of the TickStyle property of the TTrackBar component.

TTileMode type

TTileMode defines values for TileMode property of a form
enum TTileMode { tbHorizontal, tbVertical };
Header
vcl\forms.hpp
Description
The TTileMode type defines the values the TileMode property of a form can have.

TTrackBarOrientation type

TTrackBarOrientation defines values for Orientation property of TTrackBar.
enum TTrackBarOrientation { trHorizontal, trVertical };
Header
vcl\comctrls.hpp
Description
TTrackBarOrientation type defines the possible values of the Orientation property of the
TTrackBar component.

TTransIsolation type

TTransIsolation used by TransIsolation property; set of values used to start a transaction.
enum TTransIsolation { tiDirtyRead, tiReadCommitted, tiRepeatableRead }
;

Header
vcl\db.hpp
Description
The TTransIsolation type is used by the TransIsolation property and it is the set of values that
can be used to start a transaction. They control how records which have been modified by
another application will be returned to your application by the server.

TUDAlignButton type

TUDAlignButton defines values for AlignButton property of TUpDown.
enum TUDAlignButton { udLeft, udRight };
Header
vcl\comctrls.hpp
Description
TUDAlignButton type defines the possible values of the AlignButton property of the TUpDown
component.

TUDBtnType type

TUDBtnType defines values for Button parameter for TUDClickEvent.
enum TUDBtnType { btNext, btPrev };
Header
vcl\comctrls.hpp
Description
TUDBtnType defines the possible values of the Button parameter for the TUDClickEvent type,
which is the return type of the OnClick event for a TUpDown component. The btNext value
indicates that the right or up arrow key was clicked. The btPrev value indicates that the left or
down arrow was clicked.

TUDOrientation type

TUDOrientation defines values for Orientation property of TUpDown.
enum TUDOrientation { udHorizontal, udVertical };
Header
vcl\comctrls.hpp
Description
TUDOrientation type defines the possible values of the Orientation property of the TUpDown
component.

TUpdateAction type

TUpdateAction defines values for UpdateAction parameter of OnUpdateError and OnUpdateRecord
events of TTable, TQuery, and TStoredProc.
enum TUpdateAction { uaFail, uaAbort, uaSkip, uaRetry, uaApplied };
Header
vcl\db.hpp
Description
The TUpdateAction type defines the possible values for the UpdateAction parameter of the
OnUpdateError and OnUpdateRecord events of the TTable, TQuery, and TStoredProc
components, as described in the following table:
Value Description

uaFail Fail the application of cached updates by raising an exception
uaAbort Abort the application of cached updates by raising an EAbort exception
uaSkip Skip this particular cached update; all others continue to be processed.
uaRetry Retry applying this record’s cached update.
uaApplied Update was applied during the OnUpdateRecord event

TUpdateKind type

TUpdateKind defines values for UpdateKind parameter of OnUpdateError and OnUpdateRecord
events of TTable, TQuery, and TStoredProc.
enum TUpdateKind { ukModify, ukInsert, ukDelete };
Header
vcl\db.hpp
Description
The TUpdateKind type defines the possible values for the UpdateKind parameter of the
OnUpdateError and OnUpdateRecord events of the TTable, TQuery, and TStoredProc
components, as described in the following table:
Value Description

ukModify The cached update to the record is a modification to the record’s
contents.

ukInsert The cached update is the insertion of a new record.
ukDelete The cached update is the deletion of a record.

TUpdateRecordTypes type

TUpdateRecordTypes return value for UpdateRecordTypes property of dataset components.
enum DB_41 { rtModified, rtInserted, rtDeleted, rtUnmodified };
typedef Set<DB_41, rtModified, rtUnmodified> TUpdateRecordTypes;
Header
vcl\db.hpp
Description
The TUpdateRecordTypes type is the return value of the UpdateRecordTypes property of the
dataset components, as described in the following table:
Value Description

rtModified Modified records
rtInserted Inserted records
rtDeleted Deleted records
rtUnmodified Unmodified records

TUpdateStatus type

TUpdateStatus return value of UpdateStatus method of dataset components.
enum TUpdateStatus { usUnmodified, usModified, usInserted, usDeleted }
;

Header
vcl\db.hpp
Description
The TUpdateStatus type is the return value of the UpdateStatus method of the dataset
components, as described in the following table:
Value Description

usUnmodified Record contents haven’t been changed
usModified Record contents have been changed
usInserted Record has been inserted
usDeleted Record has been deleted

TVarRec type

TVarRec used inside a procedure with a parameter type of array of const. A variable of this type
can be created with the ARRAYOFCONST macro. This macro is defined in the sysdefs.h file.
class TVarRec;
typedef TVarRec* PVarRec;
class TVarRec
{
public:
union
{

Integer VInteger;
Boolean VBoolean;
Char VChar;
PExtended VExtended;
PShortString VString;
Pointer VPointer;
PChar VPChar;
TObject*VObject;
TClass VClass;
WideCharVWideChar;
PWideChar VPWideChar;
Pointer VAnsiString;
PCurrency VCurrency;
PVariantVVariant;

};
union
{

Byte VType;
long ForceAlignment; //!JK should be removed, if alignment set to 4
//!JK we don't need this
};

Header
vcl\sysdefs.h
Description
TVarRec type is used inside a procedure with a parameter type of array of const. The VType field
lets the procedure know the simple type of each parameter passed in the open array.
The variable type constants represent the values passed in the tag of the TVarRec structure.

TViewStyle type

ViewStyle contains values for visual display of items in a list view.
enum TViewStyle { vsIcon, vsSmallIcon, vsList, vsReport };
Header
vcl\comctrls.hpp
Description
The ViewStyle contains the possible values for the visual display of items in a list view. vsIcon
displays each item as a full-sized icon, vsList displays items in columns and each item as a small
icon with the label to the right of it , vsSmallIcon displays each item as a small icon with the label
to the right of it, vsReport displays each item on its own line with information arranged in
columns, the leftmost column contains the small icon and label, and subsequent columns
contain subitems.

TWidth type

TWidth defines Width and WidthType properties; determines width of column Header
in a list view component.
typedef int TWidth;
Header
vcl\comctrls.hpp
Description
The TWidth type is the type of the Width and WidthType properties which determine the width of
the column Header
in the list view component.

TWindowState type

TWindowState type defines three possible states for WindowState property of a form.
enum TWindowState { wsNormal, wsMinimized, wsMaximized };
Header
vcl\forms.hpp
Description
The TWindowState type defines the three possible states of a form: normal, minimized, or
maximized. TWindowState is the type of the WindowState property of a form.

TWordArray type

TWordArray declares a general array of type Word.
typedef Word TWordArray[16384];
Header
vcl\sysutils.hpp
Description
TWordArray declares a general array of type Word that can be used in typecasting.

Unassigned constant

Unassigned, constant; used for a Variant variable not yet assigned a value.
extern Variant Unassigned;
Header
vcl\system.hpp
Description
The Unassigned constant is used to indicate that a Variant variable has not yet been assigned a
value. The initial value of any Variant variable is Unassigned. The Unassigned value disappears
as soon as a Variant variable is assigned any other value, including the value 0, a zero-length
string, and the Null value.
Using an Unassigned variant in an expression causes an EVariantError exception to be raised.
Likewise, if you attempt to convert an Unassigned variant to another type (using VarAsType or
VarCast), an EVariantError exception is raised.
You can make a Variant variable unassigned by assigning the Unassigned constant to it. This is
particularly useful in situations where a Variant contains a reference to an OLE Automation
Object, thus keeping the object "alive" until another value is assigned to the Variant. For
example, in the code fragment shown below, the statement that assigns Unassigned to the
MSWord variable causes the OLE Automation Object that was created to interface with Word to
be released.
To test whether a Variant value is Unassigned, compare it to the Unassigned constant, or use
the VarIsEmpty standard function. When used on an unassigned variant, the VarType standard
function returns varEmpty.
See Also
Null constant, VarIsEmpty function, VarType function

WordRec type

WordRec declares a utility record to store high and low order bytes of a variable.
#pragma pack(push, 1)
struct WordRec {
Byte Lo;
Byte Hi; };

#pragma pack(pop)
Header
vcl\sysdefs.h
vcl\description.hpp
The WordRec type declares a utility record that stores the high and low order bytes of the
specified variable as type Byte. WordRec is used primarily for typecasting.

Alignment example

This code puts the check box of the TCheckBox control on the left side of its label:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
CheckBox1->Ctl3D = false;
CheckBox1->Alignment = taLeftJustify;

}

This code aligns text to the right side of a label named Label1 in response to a click on a button
named RightAlign:
void __fastcall TForm1::RightAlignClick(TObject *Sender)
{
Label1->Alignment = taRightJustify;

}

AllowGrayed example

This example uses a check box on a form. When the application runs, the check box is initially
checked. When the user clicks it, the check box is unchecked. Clicking it again grays the check
box.
void __fastcall TForm1::FormCreate(TObject *Sender)
{
CheckBox1->AllowGrayed = true;
CheckBox1->State = cbChecked;

}

AutoSelect example

This example uses an edit box and a check box on a form. Set the caption of the check box to
'AutoSelect text'. When the user checks the check box, text is automatically selected each time
the user tabs to the edit box. If the user unchecks the check box, text is no longer selected
automatically when the user tabs to the edit box.
void __fastcall TForm1::CheckBox1Click(TObject *Sender)
{
if (CheckBox1->Checked)

Edit1->AutoSelect = true;
else

Edit1->AutoSelect = false;
}

AutoSize example

This example uses an edit box, a label, and a button on a form. When the user clicks the button,
the font in the edit box enlarges, and the edit box enlarges also to accommodate the larger font
size.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Edit1->AutoSize = true;
Edit1->Font->Size = 20;
Label1->Caption = "The edit box is bigger now";

}

This example uses an image control and a button. Resize the image control so that it is too small
to display the entire bitmap. When the user clicks the button, the bitmap is loaded into the image
control, and the image control resizes to display the bitmap in its entirety.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Image1->AutoSize = true;
Image1->Picture->LoadFromFile("BITMAP.BMP");

}

BevelInner example

This example uses a panel component and a button named CreateStatusLine on a form. The
code moves the panel to the bottom of the form when the user clicks the button and gives the
panel the appearance of a status line by changing the value of the BevelInner, BevelOuter,
BevelWidth, and BorderWidth properties.
void __fastcall TForm1::CreateStatusLineClick(TObject *Sender)
{
Panel1->Align = alBottom;

Panel1->BevelInner = bvLowered;
Panel1->BevelOuter = bvRaised;
Panel1->BorderWidth = 1;
Panel1->BevelWidth = 1;

}

BevelOuter example

This code creates a lowered frame 10 pixels wide around a panel component named Panel1:
Panel1->BorderWidth = 10;
Panel1->BevelInner = bvRaised;
Panel1->BevelOuter = bvLowered;

BevelWidth example

This code alternately displays and hides the bevels of a panel when the user clicks the Button1
button:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Panel1->BevelInner = bvLowered;
Panel1->BevelOuter = bvRaised;
if (Panel1->BevelWidth == 0)

Panel1->BevelWidth = 2;
else

Panel1->BevelWidth = 0;
}

BorderStyle example

The following example puts a single-line border around the edit box, Edit1:
Edit1->BorderStyle = bsSingle;

BorderWidth example

This example uses a panel component and a button named CreateStatusLine on a form. The
code moves the panel to the bottom of the form when the user clicks the button and gives the
panel the appearance of a status line by changing the value of the BevelInner, BevelOuter,
BevelWidth, and BorderWidth properties.
void __fastcall TForm1::CreateStatusLineClick(TObject *Sender)
{
Panel1->Align = alBottom;
Panel1->BevelInner = bvLowered;
Panel1->BevelOuter = bvRaised;
Panel1->BorderWidth = 1;
Panel1->BevelWidth = 1;

}

BoundsRect example

This code resizes a button control to twice as wide and half as high:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
TRect MyRect;
MyRect = Button1->BoundsRect;
MyRect.Right = MyRect.Left + 2 * (MyRect.Right - MyRect.Left);
MyRect.Bottom = MyRect.Top + (MyRect.Bottom - MyRect.Top) / 2;
Button1->BoundsRect = MyRect;

}

Cancel example

The following code designates a button called Button1 as a Cancel button:
Button1->Cancel = true;

CanFocus example

This example uses a group box, a label, and a button on a form. The group box contains a check
box. When the application runs, the group box is disabled (Enabled is set to False). Because the
group box is the parent of the check box, the user can never tab to the check box. When the user
clicks the button, the caption of the label reports that the check box can not receive the input
focus:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
if (CheckBox1->CanFocus())
Label1->Caption = "The check box can focus";
else
Label1->Caption = "The check box cannot focus";

}
void __fastcall TForm1::FormCreate(TObject *Sender)
{
GroupBox1->Enabled = true;

}

Caption example

This code changes the caption of a group box:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
GroupBox1->Caption = "Fancy options";

}

CharCase example

This example uses an edit box and group box containing three radio buttons. When the user
selects the first radio button, the text in the edit box becomes lowercase, and any text the user
types in the edit box also appears in lowercase. When the user selects the second radio button,
the text in the edit box becomes uppercase, and any text the user types in the edit box also
appears in uppercase. When the user selects the third radio button, the text in the edit box
remains unchanged, but the user can type using either upper- or lowercase characters:
void __fastcall TForm1::RadioButton1Click(TObject *Sender)
{
Edit1->CharCase = ecLowerCase;

}
void __fastcall TForm1::RadioButton2Click(TObject *Sender)
{
Edit1->CharCase = ecUpperCase;

}
void __fastcall TForm1::RadioButton3Click(TObject *Sender)
{
Edit1->CharCase = ecNormal;

}

Checked example

This example fills in a radio button at run time:
RadioButton1->Checked = true;
This example uses a main menu component that contains a menu item named SnapToGrid1 on a
form. When the user chooses the Snap To Grid command, a check mark appears next to the
command. When the user chooses the Snap To Grid command again, the check marks
disappears:
void __fastcall TForm1::SnapToGrid11Click(TObject *Sender)
{
SnapToGrid11->Checked = !SnapToGrid11->Checked;

}

ClearSelection example

This code uses a memo control named MyMemo and a button on a form. When the user clicks
the button, the text the user selected in the memo control is deleted.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
MyMemo->ClearSelection();

}

ClientToScreen example

This example uses two edit boxes on a form. When the user clicks a point on the form, the X
screen coordinate appears in Edit1, and the Y screen coordinate appears in Edit2.
void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton
Button, TShiftState
Shift, int X, int Y)

{
TPoint P, Q;
P.x = X; //P is the TPoint record for the form
P.y = Y;
Q = ClientToScreen(P); //Q is the TPoint for the screen
char xCoord[40];
char yCoord[40];
itoa(Q.x, xCoord, 10); //convert the integers to strings
itoa(Q.y, yCoord, 10);
AnsiString xString(xCoord);
AnsiString yString(yCoord);
Edit1->Text = xString + " is the X screen coordinate";
Edit2->Text = yString + " is the Y screen coordinate";

}

ComponentIndex example

The following code uses a button and a wide edit box on a form. When the user clicks the button,
the edit box displays the index value of the button component:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
char index[10];
char *string = new char[strlen("The index of the button is ")];
itoa(Button1->ComponentIndex, index, 10);
strcpy(string, "The index of the button is ");
strcat(string, index);
Edit1->Text = string;
delete string;

}

ContainsControl example

This example uses a label, a list box, and a button on a form. When the user clicks the button,
the caption of the label reports that the form contains the list box:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
if(Form1->ContainsControl(ListBox1))

Label1->Caption = "The form contains ListBox1";
}

CopyToClipboard example

The following method copies the selected text from the memo control named Memo1 to the
Clipboard and pastes it into an edit box named Edit1 when the user clicks the button named
Button1:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Memo1->CopyToClipboard();
Edit1->PasteFromClipboard();

}

Ctl3D example

The following code toggles the 3-D look of a memo control when the user clicks a button named
Toggle:
void __fastcall TForm1::ToggleClick(TObject *Sender)
{
Memo1->Ctl3D = !Memo1->Ctl3D; //Toggles the Ctl3d property of /
/Memo1

}

CutToClipboard example

The following method cuts the text the user selects in Memo1 to the Clipboard and pastes it from
the Clipboard in an edit box control when the user clicks the button:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Memo1->CutToClipboard();
Edit1->PasteFromClipboard();

}

DragCursor example

The following code changes the DragCursor of Memo1 to crIBeam.
Memo1->DragCursor = crDrag;

Dragging example

This example uses three check boxes on a form. When the user begins dragging one of the
check boxes, the color of the form changes:
void __fastcall TForm1::FormActivate(TObject *Sender)
{
CheckBox1->DragMode = dmAutomatic;
CheckBox2->DragMode = dmAutomatic;
CheckBox3->DragMode = dmAutomatic;

}
void __fastcall TForm1::FormDragOver(TObject *Sender, TObject *Source,
int X, int Y, TDragState State, bool &Accept)

{
if (CheckBox1->Dragging())

Color = clAqua;
if (CheckBox2->Dragging())

Color = clYellow;
if (CheckBox3->Dragging())

Color = clLime;
}

DragMode example

This example determines whether the drag mode of the button on the form is manual. If it is, the
dragging the button becomes possible.
void __fastcall TForm1::Button1Click(TObject *Sender)
{

if (Button1->DragMode == dmManual)
Button1->BeginDrag(true);

}

DropDownCount example

The following code assigns three to the DropDownCount property of ComboBox1. To see more
than three items in the drop-down list, the user must scroll.
ComboBox1->DropDownCount = 3;

Enabled example

To disable a button called FormatDiskButton,
FormatDiskButton->Enabled = false;

EndDrag example

The following code cancels the dragging of Label1 without dropping the object.
Label1->EndDrag(false);

FindComponent example

To set up this example, place several components on a form, including an edit box and a button.
When the user clicks the button, the code displays the value of the ComponentIndex of the edit
box in the edit box.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
TComponent * TheComponent;
char buf[10];
TheComponent = FindComponent("Edit3");
wsprintf(buf,"%d",TheComponent->ComponentIndex);
Edit1->Text = buf;
}

GetSelTextBuf example

void __fastcall TForm1::Button1Click(TObject *Sender)
{
int Size = Edit1->SelLength; //Get length of selected text in
Edit1
Size++; //Add room for null character
char *Buffer = new char[Size]; //Creates Buffer dynamic
variable
Edit1->GetSelTextBuf(Buffer,Size); //Puts Edit1->Text into Buffer
Edit2->Text = Buffer;
delete Buffer;

}

GetTextBuf example

This example copies the text in an edit box into a null-terminated string, and puts this string in
another edit box when the user clicks the button on the form.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
int Size = Edit1->GetTextLen(); //Get length of string in Edit1
char *name = new char[++Size]; //Allocate space for the
string
Edit1->GetTextBuf(name, Size); //Puts Edit1->Text into Buffer
Edit2->Text = name; //Puts buffer in Edit2->Text
delete name; //Frees memory allocated to buffer

}

GetTextLen example

This example uses two edit boxes and a button on a form. When the user clicks the button, the
length of the text in the Edit1 is displayed in Edit2.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
int Size;
char sizeString[20];
Size = Edit1->GetTextLen();
itoa(Size, sizeString, 10);
AnsiString textString(sizeString);
Edit2->Text = textString + " characters in Edit1" ;

}

Handle example

The following code uses the Windows API function ShowWindow to display Form2 as an icon,
but does not activate it.
ShowWindow(Form2->Handle, SW_SHOWMINIMIZED);

Height example

The following code doubles the height of a Memo control:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Memo1->Height = Memo1->Height * 2;

}

Hide example

This code uses a button and a timer on a form. When the user clicks the button, the form
disappears for the period of time specified in the Interval property of the timer control, then the
form reappears:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Timer1->Enabled = true;
Hide();

}
void __fastcall TForm1::Timer1Timer(TObject *Sender)
{
Visible = true;
Timer1->Enabled = false;

}

HideSelection example

This example uses an edit box and a memo on a form. When the user jumps from one control to
the other, selected text remains selected in the memo, but not in the edit box.
void __fastcall TForm1::FormCreate(TObject *Sender)
{
Edit1->HideSelection = true;
Memo1->HideSelection = false;

}

Hint example

This example uses an edit box and a list box on a form. Items are added to the list box and a
Help Hint is assigned to both controls. The last statement enables the Help Hints for the entire
application.
void __fastcall TForm1::FormCreate(TObject *Sender)
{
Edit1->Hint = "Enter your name";
Edit1->ShowHint = true;
char string[10];
char index[3];
for(int i = 1; i <= 10; i++)
{

itoa(i, string, 10);
strcpy(string, "Item");
itoa(i, index, 10);
strcat(string, index);

ListBox1->Items->Add(string);
}
Hint = "Select an item";
ShowHint = true;
Application->ShowHint = true;

}

InsertControl example

This example uses a button and two group boxes. When the user clicks the button, the other
group box becomes the parent of the button, so the button moves inside the other group box.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
if (Button1->Parent == GroupBox1)
{

GroupBox1->RemoveControl(Button1);
GroupBox2->InsertControl(Button1);

}
else
{

GroupBox2->RemoveControl(Button1);
GroupBox1->InsertControl(Button1);

}
}

IntegralHeight example

This example uses a list box on a form. To try it, enter as many strings in the Items property as
you like using the Object Inspector. When the application runs, the list box displays only entries
that fit completely in the vertical space, and the bottom of the list box moves up to the bottom of
the last string in the list box if the form is less than 300 pixels in height:
void __fastcall TForm1::FormCreate(TObject *Sender)
{
if (Height < 300)

ListBox1->IntegralHeight = true;
else

ListBox1->IntegralHeight = false;
}

Invalidate example

The following code invalidates Form1.
Form1->Invalidate();

ItemHeight example

This example uses a list box and a button on a form. Enter as many strings in the list box as you
like using the property editor of the Items property in the Object Inspector. When the user clicks
the button on the form, the amount of vertical space allotted to each item in the list box changes.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
ListBox1->Style = lbOwnerDrawFixed;
ListBox1->ItemHeight = 30;

}

ItemIndex example

This example uses a combo box on a form. When the user selects an item in the combo box,
the index value of the selected item appears in the caption of the label:
void __fastcall TForm1::ComboBox1Change(TObject *Sender)
{
char item[5];
itoa(ComboBox1->ItemIndex, item, 10);
AnsiString indexString("Index Value ");
AnsiString itemString(item);
Label1->Caption = indexString + itemString;

}

Kind example

This example uses two radio buttons and a scroll bar on a form. When the user selects one of
the radio buttons, the scroll bar changes orientation accordingly.
void __fastcall TForm1::RadioButton1Click(TObject *Sender)
{
ScrollBar1->Kind = sbVertical;

}
void __fastcall TForm1::RadioButton2Click(TObject *Sender)
{
ScrollBar1->Kind = sbHorizontal;

}

This example uses three bitmap buttons on a form. When the application runs, the Kind property
for each bitmap button is set, and the BitBtn1 button (the OK button) becomes the default button.
void __fastcall TForm1::FormCreate(TObject *Sender)
{
BitBtn1->Kind = bkOK;
BitBtn2->Kind = bkCancel;
BitBtn3->Kind = bkHelp;

}

LargeChange example

This code determines that when the user clicks the scroll bar on either side of the scroll box, the
scroll box moves 100 positions on the scroll bar:
ScrollBar1->LargeChange = 100;

Left example

The following example moves the button 10 pixels to the right each
time a user clicks it:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Button1->Left = Button1->Left + 10;

}

MaxLength example

The following example sets the maximum number of characters for an edit box to 80:
Edit1->MaxLength = 80;

ModalResult example

The following methods in a form are used as a modal dialog box. The methods cause the dialog
box to terminate when the user clicks either the OK or Cancel button, returning mrOK or
mrCancel from ShowModal, respectively:
void __fastcall TOKRightDlg::OKBtnClick(TObject *Sender)
{
ModalResult = mrOk;

}
void __fastcall TOKRightDlg::CancelBtnClick(TObject *Sender)
{
ModalResult = mrCancel;

}
You could also set the ModalResult value to mrOk for the OK button and mrCancel for the
Cancel button to accomplish the same thing. When the user clicks either button, the dialog box
closes.

Modified example

void __fastcall TForm1::Button1Click(TObject *Sender)
{
if (Edit1->Modified == true)
{

Application->MessageBox("Edit box text was modified",
"modified",MB_OK);

Edit1->Modified = false;
}
else

Application->MessageBox("Edit box text was not modified",
"not modified",MB_OK);

}

MultiSelect example

This line of code ensures that the user can select multiple items in a list box:
ListBox1->MultiSelect = true;

Name example

The following code lists the names of all the components of Form1 in a list box.
for(int i = 0; i < Form1->ComponentCount; i++)
ListBox1->Items->Add(Form1->Components[i]->Name;

OnClick example

The form in this example changes the color of the form to Black when the user clicks it:
void __fastcall TForm1::FormClick(TObject *Sender)
{
Color = clBlack;

}

OnDblClick example

This example notifies the user that the form was double-clicked.
void __fastcall TForm1::FormDblClick(TObject *Sender)
{
Application->MessageBox("You double-clicked the form", "Double-Click
Message", MB_OK);

}

OnEnter example

This example uses an edit box and a memo control on a form. When either the edit box or the
memo is the active control, it is colored yellow. When the active control becomes inactive, the
color of the control returns to the Windows system color for a window.
void __fastcall TForm1::Edit1Enter(TObject *Sender)
{
Edit1->Color = clYellow;

}
void __fastcall TForm1::Edit1Exit(TObject *Sender)
{
Edit1->Color = clWindow;

}
void __fastcall TForm1::Memo1Enter(TObject *Sender)
{
Memo1->Color = clYellow;

}
void __fastcall TForm1::Memo1Exit(TObject *Sender)
{
Memo1->Color = clWindow;

}

OnExit example

This example uses an edit box and a memo control on a form. When either the edit box or the
memo is the active control, it is colored yellow. When the active control becomes inactive, the
color of the control returns to the Windows system color for a window.
void __fastcall TForm1::Edit1Enter(TObject *Sender)
{
Edit1->Color = clYellow;

}
void __fastcall TForm1::Edit1Exit(TObject *Sender)
{
Edit1->Color = clWindow;

}
void __fastcall TForm1::Memo1Enter(TObject *Sender)
{
Memo1->Color = clYellow;

}
void __fastcall TForm1::Memo1Exit(TObject *Sender)
{
Memo1->Color = clWindow;

}

OnKeyPress example

This event handler displays a message dialog box specifying which key was pressed:
void __fastcall TForm1::FormKeyPress(TObject *Sender, char &Key)
{
char keyString[25];
strcpy(keyString, &Key);
strcat(keyString, " Was Pressed");
Application->MessageBox(keyString , "Message Box", MB_OK);

}

OnKeyUp example

The following code changes a form's color to aqua when a key is pressed. When the key is
released, the form's color reverts to the original color. Note that the KeyPreview property of the
form must be set to true to capture all key presses, even if a control has focus:
//In the declarations section of the form
TColor FormColor;
void __fastcall TForm1::FormKeyDown(TObject *Sender, WORD &Key,
TShiftState Shift)

{
FormColor = Form1->Color;
Form1->Color = clAqua;

}
void __fastcall TForm1::FormKeyUp(TObject *Sender, WORD &Key,
TShiftState Shift)

{
Form1->Color = FormColor;

}

OnMouseMove example

The following code updates two labels when the mouse pointer is moved. The code assumes
you have two labels on the form, lbHorz and lbVert. If you attach this code to the OnMouseMove
event of a form, lbHorz continually displays the horizontal position of the mouse pointer, and
lbVert continually displays the vertical position of the mouse pointer while the pointer is over the
form.
void __fastcall TForm1::FormMouseMove(TObject *Sender, TShiftState
Shift, int X,
int Y)

{
char xPos[10];
char yPos[10];
itoa(X, xPos, 10);
itoa(Y, yPos, 10);
lbHorz->Caption = xPos;
lbVert->Caption = yPos;

}

OnMouseUp example

The following code draws a rectangle when the user presses a mouse button, moves the mouse,
and releases the mouse button. When the mouse button is released, the rectangle appears on
the form's canvas. Its top-left and bottom-right corners are defined by the location of the mouse
pointer when the user pressed and released the mouse button.
int StartX, StartY; //Declare in interface section of form's unit
void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton
Button,
TShiftState Shift, int X, int Y)

{
StartX = X;
StartY = Y;

}
void __fastcall TForm1::FormMouseUp(TObject *Sender, TMouseButton
Button,
TShiftState Shift, int X, int Y)

{
Form1->Canvas->Rectangle(StartX, StartY, X, Y);

}

OnScroll example

The following code repositions the thumb tab position by varying amounts. If Page Up was
pressed, the box moves up only one. If Page Down was pressed, the box moves down 10. This
shows how you can use the OnScroll event handler to move the thumb tab by different
increments than specified by the LargeChange and SmallChange properties.
void __fastcall TForm1::ScrollBar1Scroll(TObject *Sender,TScrollCode
ScrollCode, int &ScrollPos)

{
char scrString[5];
if(ScrollCode == scPageUp)

ScrollPos = ScrollPos - 1;
else if(ScrollCode == scPageDown)

ScrollPos = ScrollPos + 10;
itoa(ScrollPos, scrString, 10);
Label1->Caption = scrString;

}

Parent example

To set up the form for this example, put a group box on the form and add a radio button to the
group box. Put two labels and a button on the form. This code displays the name of the parent of
the radio button and the class name of the owner of the radio button in the captions of the two
labels when the user clicks the button:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Label1->Caption = RadioButton1->Parent->Name + " is the parent";
Label2->Caption = "The Owner is " + RadioButton1->Owner->ClassName();

}

This example uses a button and a group box on a form. When the user clicks the button, the
button moves inside the group box, because the group box is now the parent of the button.
void __fastcall TForm1::Button1Click(TObject *Sender)
{

Button1->Parent = GroupBox1;
}

ParentColor example

This code uses a label control and a timer component on the form. When the OnTimer event
occurs, the label turns red if the label's ParentColor property is True. If the ParentColor property
is False, ParentColor is set to True. The result is the label flashes red on and off. Every other
time an OnTimer event occurs, the label turns red. The other times, the label assumes the color
of its parent, Form1.
void __fastcall TForm1::Timer1Timer(TObject *Sender)
{
if(Label1->ParentColor)

Label1->Color = clRed;
else

Label1->ParentColor = true;
}

ParentCtl3D example

This code uses a group box and a button on a form. The code displays the group box in two
dimensions when the user clicks the button:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
if (GroupBox1->ParentCtl3D == true)
{

GroupBox1->ParentCtl3D = false;
GroupBox1->Ctl3D = false;

}
}

ParentFont example

This example uses a timer component and a label control. When an OnTimer event occurs and
the label uses its parent's font, the code changes the label's ParentFont property to False and
changes the label's font size to 30 points. When an OnTimer event occurs and the label doesn't
use its parent's font, the code sets its ParentFont to true. The result is that the label's font grows
and shrinks alternately, each time an OnTimer event occurs.
void __fastcall TForm1::Timer1Timer(TObject *Sender)
{
if(Label1->ParentFont == true)

Label1->Font->Size = 30;
else

Label1->ParentFont = true;
}

ParentShowHint example

This example uses an edit box, a memo, and a check box on a form. For each of these controls,
the ParentShowHint property is True, the default value. When the code runs, the ShowHint
property of the form is set to True and hints are assigned to each control. Because each control
looks to its parent, the form, to find out whether to display a Help Hint, and because the form's
ShowHint property is True, the Help Hints are available.
void __fastcall TForm1::FormCreate(TObject *Sender)
{
ShowHint = true;
Edit1->Hint = "Enter text";
Memo1->Hint = "Enter lots of text";
CheckBox1->Hint = "Check or uncheck me";

}

PasswordChar example

The following code displays asterisks for each character in an edit box called Button1:
Edit1->PasswordChar = '*';

PasteFromClipboard example

This example uses two edit boxes and a button on a form. When the user clicks the button, text
is cut from the Edit1 edit box and pasted into the Edit2 edit box:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Edit1->SelectAll();
Edit1->CutToClipboard();
dit2->Clear();
dit2->PasteFromClipboard();
dit1->SetFocus();

}

PopupMenu example

This example assigns the pop-up menu named MyPopupMenu to the form:
void __fastcall TForm1::FormActivate(TObject *Sender)
{
PopupMenu = MyPopupMenu;

}

Position example

This code places the thumb tab in the middle of the scroll bar:
ScrollBar1->Max = 1000;
ScrollBar1->Min = 500;
ScrollBar1->Position = 750;

RemoveComponent example

The following code removes Button2 from the Components list of Form1.
Form1->RemoveComponent(Button2);

ScaleBy example

This example makes your form 50 percent larger:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
caleBy(150, 100);

}

ScreenToClient example

The following code converts the origin of the screen (0, 0) to the client coordinates of Button2.
TPoint ScreenOrgin, ClientPoint;
ScreenOrgin.x = 0;
ScreenOrgin.y = 0;
ClientPoint = Button2->ScreenToClient(ScreenOrgin);

ScrollBars example

The following example adds a scroll bar to the bottom of memo control Memo1:
Memo1->ScrollBars = ssHorizontal;

ScrollBy example

This example uses a timer and several controls of your choosing on a form. When the
application runs, the controls on the form appear to slide down and off to the right. This is
because the contents of the form are scrolling both down and to the right by one pixel each time
a timer event occurs:
void __fastcall TForm1::Timer1Timer(TObject *Sender)
{
ScrollBy(1,1);

}
void __fastcall TForm1::FormActivate(TObject *Sender)
{
Timer1->Interval = 1;

}

SelectAll example

The following code selects all the text in Memo1.
Memo1->SelectAll();

SelLength example

This example uses an edit box and a label on a form. When the user selects text in the edit box,
the number of selected characters is reported in the caption of the label:
void __fastcall TForm1::Edit1MouseUp(TObject *Sender, TMouseButton
Button, TShiftState
Shift, int X, int Y)

{
char string[10];
itoa(Edit1->SelLength, string, 10);
Label1->Caption = string;

}

SelText example

This example uses an edit box and a label on a form. When the user selects text in the edit box,
the selected text is reported in the caption of the label.
void __fastcall TForm1::Edit1MouseUp(TObject *Sender, TMouseButton
Button, TShiftState
Shift, int X, int Y)

{
Label1->Caption = "Selected string = " + Edit1->SelText;

}

SendToBack example

This example uses two forms. When the user clicks the button on Form2, it moves Form2 behind
the other form and is no longer the active form:
void __fastcall TForm2::Button1Click(TObject *Sender)
{
SendToBack();

}

In this example, the parent of the two forms is the application itself.

SetBounds example

The following code doubles the size of a button control when the user clicks it:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Button1->SetBounds(Left, Top, Height * 2, Width * 2);

}

Note that you could use the following code instead, but each click would result in the button
being redrawn twice: once to change the height, and once to change the width:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Button1->Height = Button1->Height * 2;
Button1->Width = Button1->Width * 2;

}

SetFocus example

When the user clicks the button on this form, the list box becomes the active control and
receives the input focus:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
ListBox1->SetFocus();

}

SetSelTextBuf example

This example uses a button and an edit box on a form. When the user selects text in the edit box
and clicks the button, new text replaces the selected text.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Edit1->SetSelTextBuf("You clicked the button");

}
//---
void __fastcall TForm1::FormActivate(TObject *Sender)
{

Button1->Caption = "Click me";
}

SetTextBuf example

This example uses a button and an edit box on a form. When the user clicks the button, text
appears in the edit box.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Edit1->SetTextBuf("You clicked the button");

}
void __fastcall TForm1::FormActivate(TObject *Sender)
{
Button1->Caption = "Click me";

}

Show example

This code puts away the current form and displays another:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Form1->Hide();
Form2->Show();

}

To run this example you must include the header file for Form2.

ShowAccelChar example

This example uses two labels on a form. The first label has a caption with an accelerator
character in it. The second label also includes an ampersand, but it does not appear as an
accelerator character.
void __fastcall TForm1::FormCreate(TObject *Sender)
{
Label1->ShowAccelChar = true;
Label1->Caption = "An &Underlined character appears here";
Label2->ShowAccelChar = false;
Label2->Caption = "An ampersand (&) appears here";

}

SmallChange example

This code determines that when the user clicks an arrow on the scroll bar, the thumb tab moves
10 positions on the scroll bar:
ScrollBar1->SmallChange = 10;

Sorted example

This example uses an edit box, a list box, and two buttons on a form. The buttons are named
Add and Sort. When the user clicks the Add button, the text in the edit box is added to the list in
the list box. When the user clicks the Sort button, the list in the list box is sorted and remains
sorted, even if additional strings are added:
void __fastcall TForm1::FormCreate(TObject *Sender)
{
ListBox1->Items->Add("Not");
ListBox1->Items->Add("In");
ListBox1->Items->Add("Alphabetical");
ListBox1->Items->Add("Order");

}
void __fastcall TForm1::AddClick(TObject *Sender)
{
ListBox1->Items->Add(Edit1->Text);

}
void __fastcall TForm1::SortClick(TObject *Sender)
{
ListBox1->Sorted = true;

}

State example

This code examples uses three check boxes on a form. When the form is created, the code sets
the initial state of each of the check boxes: the first check box is checked, the second check box
is dimmed (or grayed), and the third check box is unchecked:
void __fastcall TForm1::FormCreate(TObject *Sender)
{
CheckBox1->State = cbChecked;
CheckBox2->State = cbGrayed;
CheckBox3->State = cbUnchecked;

}

Style example

This example uses a list box and a check box. When the user checks the check box, the list box
becomes an fixed owner-draw list box. When the user unchecks the check box, the list box
becomes a standard list box:
void __fastcall TForm1::CheckBox1Click(TObject *Sender)
{
if (CheckBox1->Checked)

ListBox1->Style = lbOwnerDrawFixed;
else

ListBox1->Style = lbStandard;
}

This example uses a bitmap button and a check box on a form. When the user checks the check
box, the bitmap button assumes the new bitmap style. When the user unchecks the check box,
the bitmap button takes on the Windows 3.1 look:
void __fastcall TForm1::CheckBox1Click(TObject *Sender)
{
if(CheckBox1->Checked)

BitBtn1->Style = bsNew;
else

BitBtn1->Style = bsWin31;
}

TabOrder example

This example ensures that the check box on the form is the first in the tab order, and therefore,
the active control whenever the form appears, no matter how many other controls are on the
form:
void __fastcall TForm1::FormCreate(TObject *Sender)
{
CheckBox1->TabStop = true;
CheckBox1->TabOrder = 0;

}

TabStop example

This code removes ListBox1 from the tab order, so that the user can't use the Tab key to get to
the list box:
ListBox1->TabStop = false;

Text example

This example uses an edit box, a list box, and a button named Add on a form. Each time the
user clicks the Add button, the text in the edit box is added to the list in the list box:
void __fastcall TForm1::AddClick(TObject *Sender)
{
ListBox1->Items->Add(Edit1->Text);

}

Top example

The following code moves a button 10 pixels up each time a user clicks it:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Button1->Top = Button1->Top - 10;

}

Transparent example

This code makes a label transparent:
Label1->Transparent = True;

Update example

When this line of code runs, Windows repaints EditBox1:
Edit1->Update();

Visible example

The following code shows how to make a button invisible:
Button1->Visible = false;

WantReturns example

This example uses a memo and a check box on a form. If the check box is checked, the user
can enter return characters into text entered in the memo. If the check box is unchecked, return
characters aren't entered into the memo, but go to the form.
void __fastcall TForm1::CheckBox1Click(TObject *Sender)
{
if (CheckBox1->Checked)

Memo1->WantReturns = true;
else

Memo1->WantReturns = false;
}

WantTabs example

This example uses a memo and a check box on a form. When the check box is checked, the
user can enter tab characters into the memo's text. When the check box is unchecked, the user
can't enter tab characters into the text, but can use the Tab key to move between the memo and
the check box controls.
void __fastcall TForm1::CheckBox1Click(TObject *Sender)
{
if (CheckBox1->Checked)

Memo1->WantTabs = true;
else

Memo1->WantTabs = false;
}

Width example

The following code doubles the width of a button:
Button1->Width = Button1->Width * 2;

WordWrap example

This example allows text a user enters in the Memo1 control to wrap to the next line, if the
control is large enough to hold the text:
Memo1->WordWrap = true;

AllowAllUp example
In this example, there are three speed buttons on a form. All three belong to the same group as
all three have a GroupIndex value of 1. This line of code changes the AllowAllUp property to
True for all three speed buttons, so it's possible that all the speed buttons in the group can be
unselected at the same time:
SpeedButton3->AllowAllUp = true;

Brush example

The following code sets the color of the brush used by Form1 to fill shapes drawn on it with red:
void __fastcall TForm1::MakeRedButtonClick(TObject *Sender)
{
Canvas->Brush->Color = clRed;

}

This code changes the shape, color, and pattern of a shape component:
void __fastcall TForm1::ChangeShapeClick(TObject *Sender)
{
Shape1->Shape = stEllipse;
Shape1->Brush->Color = clMaroon;
Shape1->Brush->Style = bsFDiagonal;

}

CellRect example

This example uses a draw grid, four labels, and a button on a form. When the user clicks the
button, the coordinates of the cell in the second column and first row appear in the label
captions.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
TRect Rectangle;
Rectangle = DrawGrid1->CellRect(3, 2);
Label1->Caption = String(Rectangle.Top) + " is the top";
Label2->Caption = String(Rectangle.Bottom) + " is the bottom";
Label3->Caption = String(Rectangle.Left) + " is the left side";
Label4->Caption = String(Rectangle.Right) + " is the right side";

}

Center example

The following code centers the image in Image1 when the user checks CheckBox1:
void __fastcall TForm1::CheckBox1Click(TObject *Sender)
{
Image1->Center = CheckBox1->Checked;

}

ClassName example

This example uses a button, a label, a check box, and an edit box on a form. When the user
clicks one of the controls, the name of the control's class appears in the edit box.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Edit1->Text = String(Button1->ClassName());

}

void __fastcall TForm1::CheckBox1Click(TObject *Sender)
{
Edit1->Text = String(CheckBox1->ClassName());

}

void __fastcall TForm1::Label1Click(TObject *Sender)
{
Edit1->Text = String(Label1->ClassName());

}

ClassParent example

This code example uses a button and a list box on a form. When the user clicks the button, the
name of the button's class and the names of its parent classes are added to the list box.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
TClass ClassRef;
ListBox1->Clear();
ClassRef = Sender->ClassType();
while(ClassRef != NULL)
{

ListBox1->Items->Add(ClassRef->ClassName());
ClassRef = ClassRef->ClassParent();

}
}

The list box contains the following strings after the user clicks the button:
TButton
TButtonControl
TWinControl
TControl
TComponent
TPersistent
TObject

ClassType example

This example uses a button and a label on a form. When the user clicks the button, the type of
the button component (TButton) appears in the caption of the label.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
TClass ButtonClassType;
ButtonClassType = Button1->ClassType();
Label1->Caption = ButtonClassType->ClassName();

}

ClientHeight example

This example reduces the height of the form's client area by half when the user clicks the button
on the form:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Form1->ClientHeight = Form1->ClientHeight/2;

}

Note that only the client area is halved, not the entire form.

ClientOrigin example

This example displays the Y screen coordinate of the top right corner of the Button1 button client
area:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
char buf[10];
itoa(Button1->ClientOrigin.y, buf, 10);
AnsiString aBuf(buf);
Edit1->Text = aBuf;

}

ClientRect example

The following code uses ClientRect to find and draw a line from the top left to the bottom right of
the current form:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Canvas->MoveTo(ClientRect.Left,ClientRect.Top);
Canvas->LineTo(ClientRect.Right, ClientRect.Bottom);

}

ClientWidth example

This example uses a button on a form. Each time the user clicks the button, the button grows 10
pixels wider.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
Button1->ClientWidth = Button1->ClientWidth + 10;

}

Col example

This example uses a string grid with a label above it on a form. When the user clicks a cell in the
grid, the location of the cursor is displayed in the label caption.
void __fastcall TForm1::DrawGrid1Click(TObject *Sender)
{
char rBuf[10];
char cBuf[10];
itoa(DrawGrid1->Col + 1, cBuf, 10);
itoa(DrawGrid1->Row + 1, rBuf, 10);
Label1->Caption = String("The cursor is in column ") + String(cBuf) +
String(", row ") + String(rBuf);

}

ColCount example

The following line of code adds one column to a string grid named MyStrngGrd:
DrawGrid1->ColCount = DrawGrid1->ColCount + 1;

ColWidths example

The following code changes the width of column 0 in the string grid called StringGrid1 to twice
the default value.
DrawGrid1->ColWidths[0] = DrawGrid1->DefaultColWidth * 2;

ComponentCount example

This code uses several controls on a form, including a button and an edit box. When the user
clicks the button, the code counts all the components on the form and displays the number in the
Edit1 edit box. While the components are being counted, each is evaluated to see if it is a button
component. If the component is a button, the code changes the font on the button face.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
AnsiString nameString("TButton");
char compBuf[10];
TButton * button;
for(int i=0; i < ComponentCount; i++)
{

//Check to see if the component is a TButton
if (Components[i]->ClassNameIs(nameString))
{

//cast the component to a TButton *
button = (TButton *)Components[i];
button->Font->Name = "Courier";
itoa(ComponentCount, compBuf, 10);
Edit1->Text = AnsiString(compBuf) + AnsiString(" components");

}
}

}

Components example

This code uses several controls on a form, including a button and an edit box. When the user
clicks the button, the code counts all the components on the form and displays the number in the
Edit1 edit box. While the components are being counted, each is evaluated to see if it is a button
component. If the component is a button, the code changes the font on the button face.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
AnsiString nameString("TButton");
char compBuf[10];
TButton * button;
for(int i=0; i < ComponentCount; i++)
{

//Check to see if the component is a TButton
if (Components[i]->ClassNameIs(nameString))
{

//cast the component to a TButton *
button = (TButton *)Components[i];
button->Font->Name = "Courier";
itoa(ComponentCount, compBuf, 10);
Edit1->Text = AnsiString(compBuf) + AnsiString(" components");

}
}

}

ControlCount example

This example uses a group box on a form, with several radio button controls contained within the
group box. The form also has an edit box and a button outside of the group box. The code sets
the parent of the radio buttons to the radio group. It then counts each control's child controls
turning each of them invisible as they are counted. The total number of controls counted appears
in the edit box.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
RadioButton1->Parent = RadioGroup1;
RadioButton2->Parent = RadioGroup1;
RadioButton3->Parent = RadioGroup1;
for(int i=0; i < RadioGroup1->ControlCount; i++)

RadioGroup1->Controls[i]->Visible = false;
Edit1->Text = String(RadioGroup1->ControlCount) + String(" controls")
;

}

Controls example

This example uses a group box on a form, with several radio button controls contained within the
group box. The form also has an edit box and a button outside of the group box. The code sets
the parent of the radio buttons to the radio group. It then counts each control's child controls
turning each of them invisible as they are counted. The total number of controls counted appears
in the edit box.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
RadioButton1->Parent = RadioGroup1;
RadioButton2->Parent = RadioGroup1;
RadioButton3->Parent = RadioGroup1;

for(int i=0; i < RadioGroup1->ControlCount; i++)
RadioGroup1->Controls[i]->Visible = false;

Edit1->Text = String(RadioGroup1->ControlCount) + String(" controls")
;

}

DefaultColWidth example

The following code changes the width of column 0 in the string grid called StringGrid1 to twice
the default value.
DrawGrid1->ColWidths[0] = DrawGrid1->DefaultColWidth * 2;

DefaultDrawing example

The following code sets DefaultDrawing to False for DrawGrid1.
DrawGrid1->DefaultDrawing = false;

DefaultExt example

This example sets the default file extension to TXT, displays the Open dialog box, then assigns
the filename the user selects with the dialog box to a variable the application can use to open a
file:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
TFileName NameOfFile;
OpenDialog1->DefaultExt = String("TXT");
if(OpenDialog1->Execute())
NameOfFile = OpenDialog1->FileName;

}

When this code runs, if the user types a filename in the File Name edit box in the Open dialog
box, but doesn't specify an extension, the TXT extension is added to the filename, and the entire
filename is saved in the NameOfFile variable. For example, if the user types MYNOTES as the
filename, the string saved in the NameOfFile variable is MYNOTES.TXT.

DefaultRowHeight example

The following line of code changes the default height of the rows in a string grid control to 10
pixels more than the original value:
StringGrid1->DefaultRowHeight = StringGrid1->DefaultRowHeight + 10;

EditMask example

This example assigns an edit mask to the masked edit box on the form. The edit mask makes it
easy to enter American telephone numbers in the edit box.
void __fastcall TForm1::FormCreate(TObject *Sender)
{
MaskEdit1->EditMask = "!\(999\)000-0000;1";
MaskEdit1->Text = "";
MaskEdit1->AutoSelect = false;

}

FileName example

This example displays an Open dialog box and suggests the filename LIST.CPP to the user.
Once the user selects a filename, the code displays that name in a label on the form:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
OpenDialog1->FileName = "LIST.CPP";
if(OpenDialog1->Execute())
Label1->Caption = OpenDialog1->FileName;

}

FindNextPage example

The following code allows the user to select tab sheets by clicking on a button rather than a tab:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
PageControl1->ActivePage = PageControl1->FindNextPage(PageControl1->
ActivePage,true,true);

}

FixedColor example

This example uses a draw grid and a button on a form. When the user clicks the button, the color
of the nonscrolling (fixed) rows and columns of the draw grid changes color.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
if(DrawGrid1->FixedColor == clBlue)

DrawGrid1->FixedColor = clLime;
else

DrawGrid1->FixedColor = clMaroon;
}

FixedCols example

This example uses a string grid and a button. When the user clicks the button, a message dialog
box appears informing the user that a fixed column number of 2 is recommended. The dialog
box also offers the user an opportunity to accept the recommended number if the number of
fixed columns isn't already 2. If the user chooses Yes, the number of fixed columns changes to
2.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
int Check;
if(DrawGrid1->FixedCols != 2)

Check = Application->MessageBox("2 fixed columns are recommended!
Change?", "Incorrect Columns", MB_YESNOCANCEL);
if(Check == IDYES)

DrawGrid1->FixedCols = 2;
}

FixedRows example

This example uses a string grid and three radio buttons on a form. With the Object Inspector,
specify the following event handler for all OnClick events of the three radio buttons. As the user
selects different radio buttons, the number of fixed rows in the string grid changes.
void __fastcall TForm1::RadioButton1Click(TObject *Sender)
{
if(RadioButton1->Checked)

StringGrid1->FixedRows = 1;
else if (RadioButton2->Checked)

StringGrid1->FixedRows = 2;
else if (RadioButton3->Checked)

StringGrid1->FixedRows = 3;
}

Glyph example

This example uses a bitmap button on a form. When the application runs and the form is
created, a bitmap is placed on the bitmap button.
void __fastcall TForm1::FormCreate(TObject *Sender)
{
BitBtn1->Glyph->LoadFromFile("TIME.BMP");

}

These lines of code load a four-image bitmap into the Glyph property of a speed button, and
specify the appropriate value for the NumGlyphs property:
SpeedButton1->Glyph->LoadFromFile("MYBITMAP.BMP");
SpeedButton1->NumGlyphs = 4;

GridHeight example

This example uses a string grid and a label on a form. The height of the grid appears in the
caption of the label.
__fastcall TForm1::TForm1(TComponent* Owner) : TForm(Owner)
{
char buf[10];
itoa(StringGrid1->GridHeight, buf, 10);
Label1->Caption = String(buf) + String(" pixels");

}

GridLineWidth example

This example includes a draw grid on a form. When the application runs and the form is created,
the width of the lines on the draw grid changes if the default column width of the grid is over 90
pixels wide:
void __fastcall TForm1::FormCreate(TObject *Sender)
{
if(DrawGrid1->DefaultColWidth > 90)

DrawGrid1->GridLineWidth = 2;
else

DrawGrid1->GridLineWidth = 1;
}

GridWidth example

This example uses a string grid and a label on a form. The label reports the width of the grid.
void __fastcall TForm1::FormCreate(TObject *Sender)
{
for(int ARow = 1; ARow < StringGrid1->RowCount; ARow++)

for(int ACol = 1; ACol < StringGrid1->ColCount; ACol++)
StringGrid1->Cells[ARow][ACol] = "C++Builder";

char buf[10];
itoa(StringGrid1->Width, buf, 10);
Label1->Caption = String(buf) + " pixels";

}

GroupIndex example

This code assures that the three speed buttons work together as a group:
SpeedButton1->GroupIndex = 1;
SpeedButton2->GroupIndex = 1;
SpeedButton3->GroupIndex = 1;

HandleAllocated example

The following code displays a message if the the handle of GroupBox1 does not exist.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
if(!GroupBox1->HandleAllocated())

Label1->Caption = String("Handle not allocated.");
}

HandleNeeded example

The following code creates a window handle for Button1:
Button1->HandleNeeded();

Images example

The following example sets the tree views Images property to ImageList1.
TreeView1->Images = ImageList1;

IsMasked example

This example tests the masked edit box to determine if it has an edit mask. If it doesn't an edit
mask is assigned. The edit mask is one for dates in the MM/DD/YY format:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
if(!MaskEdit1->IsMasked)
MaskEdit1->EditMask = "!99/99/00;1;_";

}

Items example

The following example changes the caption of the first item in the list view.
ListView1->Items->Item[0]->Caption = String("NewItemName");

The following example demonstrates how to add nodes andchild nodes to a TTreeView control.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
//Adds a root node
TreeView1->Items->Add(TreeView1->Selected, "RootTreeNode1");
//Sets MyTreeNode to first node in
//tree view and adds a child node to it
TTreeNode *MyTreeNode1 = TreeView1->Items->Item[0];
TreeView1->Items->AddChild(MyTreeNode1,"ChildNode1");
//Adds a root node
TreeView1->Items->Add(TreeView1->Selected, "RootTreeNode2");
//Sets MyTreeNode to third node in
//tree view and adds a child node to it
TTreeNode *MyTreeNode2 = TreeView1->Items->Item[2];
TreeView1->Items->AddChild(MyTreeNode2,"ChildNode2");
//Sets MyTreeNode to fourth node in
//tree view and adds a child node to it
MyTreeNode2=TreeView1->Items->Item[3];
TreeView1->Items->AddChild(MyTreeNode2,"ChildNode2a");
//Sets MyTreeNode to fifth node in
//tree view and adds a child node to it
MyTreeNode2 = TreeView1->Items->Item[4];
TreeView1->Items->Add(MyTreeNode2,"ChildNode2b");
//add another root node
TreeView1->Items->Add(TreeView1->Selected, "RootTreeNode3");

}

LargeImages example

The following example sets the list view's LargeImages property to ImageList1.
ListView1->LargeImages = ImageList1;

Layout example

This example uses a bitmap button on a form that has a bitmap specified as the value of its
Glyph property. When the user clicks the bitmap button, the bitmap randomly changes its
position on the button:
void __fastcall TForm1::BitBtn1Click(TObject *Sender)
{
int rNum = rand() % 4;
switch(rNum)
{

case 0:
BitBtn1->Layout = blGlyphLeft;
break;
case 1:
BitBtn1->Layout = blGlyphRight;
break;
case 2:
BitBtn1->Layout = blGlyphTop;
break;
case 3:
BitBtn1->Layout = blGlyphBottom;
break;

default:
ShowMessage("Unhandled case");

}
}

LeftCol example

This line of code positions the fourth column of a string grid at the left edge of the grid:
StringGrid1->LeftCol = 3;

Margin example

This example uses a moderately large bitmap button on a form. When the application runs, a
bitmap (or glyph) is loaded on to the button, the bitmap appears on the right side of the button,
and bitmap is placed 30 pixels from the right edge of the bitmap button.
void __fastcall TForm1::FormCreate(TObject *Sender)
{
BitBtn1->Glyph->LoadFromFile("TIME.BMP");
BitBtn1->Layout = blGlyphRight;
BitBtn1->Margin = 30;

}

NumGlyphs example

This example uses a speed button and a label on a form. When the example runs, the number of
images in the specified bitmap appears as the caption of the label.
void __fastcall TForm1::FormActivate(TObject *Sender)
{
SpeedButton1->Glyph->LoadFromFile("TIME.BMP");
Label1->Caption = String(SpeedButton1->NumGlyphs) + String(" image(s)
");

}

OnChanging example

The following code prevents the tab from changing:
void __fastcall TForm1::TabControl1Changing(TObject *Sender, bool
&AllowChange)

{
AllowChange = false;

}

OnResizeRequest example

The following code resizes the rich edit control to accomodate growing or shrinking lines of text:
RichEdit1->BoundsRect = Rect;

Paragraph example

The following example sets the numbering property of the currently selected paragraph in
RichEdit1. The nsBullet style means that the paragraph is indented sufficiently for bullets.
RichEdit1->Paragraph->Numbering = TNumberingStyle(nsBullet);

Picture example

This example uses two picture components. When the form first appears, two bitmaps are
loaded into the picture components and stretched to fit the size of the components. To try this
code, substitute names of bitmaps you have available.
void __fastcall TForm1::FormCreate(TObject *Sender)
{
Image1->Stretch = true;
Image2->Stretch = true;
Image1->Picture->LoadFromFile("BITMAP1.BMP");
Image2->Picture->LoadFromFile("BITMAP2.BMP");

}

ReadOnly example

This code toggles the read-only state of an edit box each time the user double-clicks the form:
void __fastcall TForm1::FormActivate(TObject *Sender)
{
Edit1->Left = 2;
Edit1->Top = 2;
Edit1->ReadOnly = true;
Edit1->Text = "Change Me";
Canvas->TextOut(10, 40, "Double-click form to toggle read-only state")
;

}
void __fastcall TForm1::FormDblClick(TObject *Sender)
{
Edit1->ReadOnly = !Edit1->ReadOnly;

}

RemoveControl example

This example uses a button and two group boxes. When the user clicks the button, the other
group box becomes the parent of the button, so the button moves inside the other group box.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
if (Button1->Parent == GroupBox1)
{

GroupBox1->RemoveControl(Button1);
GroupBox2->InsertControl(Button1);

}
else
{

GroupBox2->RemoveControl(Button1);
GroupBox1->InsertControl(Button1);

}
}

Row example

This examples uses a string grid with a label above it on a form. When the user clicks a cell in
the grid, the location of the cursor is displayed in the caption of the label.
void __fastcall TForm1::DrawGrid1Click(TObject *Sender)
{
char cBuf[10];
char rBuf[10];
itoa(DrawGrid1->Col, cBuf, 10);
itoa(DrawGrid1->Row, rBuf, 10);
Label1->Caption = String("The cursor is in column ") + String(cBuf) +
", row " + String(rBuf);

}

RowCount example

This example uses a draw grid and a button. When the user clicks the button, the number of
columns and rows change:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
DrawGrid1->ColCount = 7;
DrawGrid1->RowCount = 11;

}

RowHeights example

This example uses a string grid and a button. When the user clicks the button, the number of
columns and rows change, and the first column and row in the grid are sized differently from the
rest of the columns and rows:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
DrawGrid1->ColCount = 7;
DrawGrid1->RowCount = 11;
DrawGrid1->RowHeights[0] = 35;
DrawGrid1->ColWidths[0] = 90;

}

Selected example

The following code deletes the selected item in the tree view.
TreeView1->Selected->Delete();

Selection example

The following code selects the rectangle containing rows 1 through 4, and columns 2 and 3.
void __fastcall TForm1::Button1Click(TObject *Sender)
{
TGridRect myRect;
myRect.Left = 3;
myRect.Top = 1;
myRect.Right = 2;
myRect.Bottom = 4;
DrawGrid1->Selection = myRect;

}

ShowColumnHeaders example

The following example will hide the column headers of the list view.
ListView1->ShowColumnHeaders = false;

SmallImages example

The following example sets the list view's SmallImages property to ImageList1.
ListView1->SmallImages = ImageList1;

Spacing example

This example loads a bitmap from a file when the form is created and places the bitmap 20
pixels from the right side of the button text:
void __fastcall TForm1::FormCreate(TObject *Sender)
{
BitBtn1->Glyph->LoadFromFile("TIME.BMP");
BitBtn1->Layout = blGlyphLeft;
BitBtn1->Spacing = 20;

}

StateImages example

The following example sets the StateImages property of the tree view to ImageList1.
TreeView1->StateImages = ImageList1;

Stretch example

This example uses an image component on a form. When the form is created, the specified
image is loaded and stretched to fit the boundaries of the image component.
void __fastcall TForm1::FormCreate(TObject *Sender)
{
Image1->Stretch = true;
Image1->Picture->LoadFromFile("TIME.BMP");

}

Tabs example

This example uses a tab set control and a memo control. When the user types a line in the
memo control, the line is added as a new tab on the tab set control. Each time the user presses
Enter in the memo control, a new tab is created in the tab set control:
void __fastcall TForm1::Memo1Change(TObject *Sender)
{
TabControl1->Tabs = Memo1->Lines;

}

TopItem example

The following example adds the caption for the first item in the list view to the list box.
ListBox1->Items->Add(ListView1->TopItem->Caption);
Note: To run this example ViewStyle must be set to vsReport or VsList.

TopRow example

This code uses a draw grid and a button on a form. When the user clicks the button, the last row
of the draw grid becomes the top row:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
DrawGrid1->TopRow = DrawGrid1->RowCount;

}

VisibleColCount example

This example uses a draw grid, two labels, and a button on a form. When the user clicks the
button, the number of rows and columns, excluding partial and fixed ones, are reported in the
captions of the two labels:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
char rBuf[10];
char cBuf[10];
itoa(DrawGrid1->VisibleRowCount, rBuf, 10);
itoa(DrawGrid1->VisibleColCount, cBuf, 10);
Label1->Caption = String(rBuf) + " rows";
Label2->Caption = String(cBuf) + " columns";

}

VisibleRowCount example

This example uses a draw grid, two labels, and a button on a form. When the user clicks the
button, the number of rows and columns, excluding partial and fixed ones, are reported in the
captions of the two labels:
void __fastcall TForm1::Button1Click(TObject *Sender)
{
char rBuf[10];
char cBuf[10];
itoa(DrawGrid1->VisibleRowCount, rBuf, 10);
itoa(DrawGrid1->VisibleColCount, cBuf, 10);
Label1->Caption = String(rBuf) + " rows";

Label2->Caption = String(cBuf) + " columns";
}

